Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Emerg Infect Dis ; 25(7): 1433-1435, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31075078

RESUMO

African swine fever is one of the most dangerous diseases of swine. We confirmed the 2019 outbreak in Vietnam by real-time reverse transcription PCR. The causative strain belonged to p72 genotype II and was 100% identical with viruses isolated in China (2018) and Georgia (2007). International prevention and control collaboration is needed.


Assuntos
Febre Suína Africana/epidemiologia , Febre Suína Africana/história , Febre Suína Africana/virologia , Animais , Asfarviridae/classificação , Asfarviridae/genética , DNA Viral , Surtos de Doenças , Genes Virais , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , História do Século XXI , Filogenia , Análise de Sequência de DNA , Suínos
2.
Proc Natl Acad Sci U S A ; 113(22): 6206-11, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185929

RESUMO

Many viruses protect their genome with a combination of a protein shell with or without a membrane layer. Here we describe the structure of faustovirus, the first DNA virus (to our knowledge) that has been found to use two protein shells to encapsidate and protect its genome. The crystal structure of the major capsid protein, in combination with cryo-electron microscopy structures of two different maturation stages of the virus, shows that the outer virus shell is composed of a double jelly-roll protein that can be found in many double-stranded DNA viruses. The structure of the repeating hexameric unit of the inner shell is different from all other known capsid proteins. In addition to the unique architecture, the region of the genome that encodes the major capsid protein stretches over 17,000 bp and contains a large number of introns and exons. This complexity might help the virus to rapidly adapt to new environments or hosts.


Assuntos
Asfarviridae/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , DNA Viral/química , Genoma Viral , Vírion/química , Asfarviridae/genética , Asfarviridae/ultraestrutura , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Vírion/ultraestrutura
3.
J Gen Virol ; 99(5): 613-614, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29565243

RESUMO

The family Asfarviridae includes the single species African swine fever virus, isolates of which have linear dsDNA genomes of 170-194 kbp. Virions have an internal core, an internal lipid membrane, an icosahedral capsid and an outer lipid envelope. Infection of domestic pigs and wild boar results in an acute haemorrhagic fever with transmission by contact or ingestion, or by ticks of the genus Ornithodoros. Indigenous pigs act as reservoirs in Africa, where infection is endemic, and from where introductions occur periodically to Europe. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Asfarviridae, which is available at www.ictv.global/report/asfarviridae.


Assuntos
Asfarviridae/classificação , Asfarviridae/genética , África , Febre Suína Africana , Vírus da Febre Suína Africana , Animais , Doenças Endêmicas , Europa (Continente) , Genoma Viral , Sus scrofa/virologia , Suínos/virologia , Vírion
4.
Virus Genes ; 46(3): 441-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23338931

RESUMO

Metagenomic characterization of water virome was performed in four Mississippi catfish ponds. Although differing considerably from African swine fever virus (ASFV), 48 of 446,100 sequences from 12 samples were similar enough to indicate that they represent new members in the family Asfarviridae. At present, ASFV is the only member of Asfarviridae, and this study presents the first indication of a similar virus in North America. At this point, there is no indication that the identified virus(es) pose a threat to human or animal health, and further study is needed to characterize their potential risks to both public health and agricultural development.


Assuntos
Asfarviridae/classificação , Asfarviridae/genética , Metagenômica , Lagoas/virologia , Rios/virologia , Animais , Aquicultura , Asfarviridae/isolamento & purificação , Peixes-Gato , América do Norte
6.
Vopr Virusol ; 67(2): 153-164, 2022 05 05.
Artigo em Russo | MEDLINE | ID: mdl-35521988

RESUMO

INTRODUCTION: The causative agent of African swine fever (Asfarviridae: Asfivirus: African swine fever virus) (ASF) is a double-stranded DNA virus of 175-215 nm. To date, 24 of its genotypes are known. Clustering of ASF genotype II isolates is carried out by examining a limited number of selected genome markers. Despite the relatively high rate of mutations in the genome of this infectious agent compared to other DNA viruses, the number of known genome molecular markers for genotype II isolates is still insufficient for detailed subclustering. The aims of this work were the comparative analysis of ASFV/Zabaykali/WB-5314/2020 virus isolate and determination of additional molecular markers which can be used for clustering of viral genotype II sequences. MATERIAL AND METHODS: ASF virus isolate ASFV/Zabaykali/WB-5314/2020 was used to extract genomic DNA (gDNA). Sequencing libraries were constructed using the Nextera XT DNA library prepare kit (Illumina, USA) using the methodology of the next generation sequencing (NGS). RESULTS: The genome length was 189,380 bp, and the number of open reading frames (ORFs) was 189. In comparison with the genome of reference isolate Georgia 2007/1, 33 single nucleotide polymorphisms (SNPs) were identified, of which 13 were localized in the intergenic region, 10 resulted to the changes in the amino acid sequences of the encoded proteins, and 10 affected the ORF of ASF virus genes. DISCUSSION: When analyzing intergenic regions, the ASFV/Zabaykali/WB-5314/2020 isolate is grouped separately from a number of isolates from Poland and three isolates from People's Republic of China (PRC), since it does not harbor additional tandem repeat sequence (TRS). At the same time, the construction of a phylogenetic tree based on DP60R gene sequencing relates ASFV/Zabaykali/WB-5314/2020 to isolates from PRC and Poland. Moreover, phylogenetic analysis of full-genome sequences confirmed previous studies on the grouping of viruses of genotype II, and as for the studied isolate, it was grouped with the variants from China. CONCLUSION: A new variable region was identified, the DP60R gene, clustering for which gave a result similar to the analysis of full-length genomes. Probably, further study of the distribution of ASF virus isolates by groups based on the analysis of this gene sequences will reveal its significance for studying the evolution of the virus and its spread.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Animais , Asfarviridae/genética , Humanos , Mongólia , Filogenia , Análise de Sequência de DNA , Sus scrofa/genética , Suínos
7.
Viruses ; 13(2)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498382

RESUMO

Kaumoebavirus infects the amoeba Vermamoeba vermiformis and has recently been described as a distant relative of the African swine fever virus. To characterize the diversity and evolution of this novel viral genus, we report here on the isolation and genome sequencing of a second strain of Kaumoebavirus, namely LCC10. Detailed analysis of the sequencing data suggested that its 362-Kb genome is linear with covalently closed hairpin termini, so that DNA forms a single continuous polynucleotide chain. Comparative genomic analysis indicated that although the two sequenced Kaumoebavirus strains share extensive gene collinearity, 180 predicted genes were either gained or lost in only one genome. As already observed in another distant relative, i.e., Faustovirus, which infects the same host, the center and extremities of the Kaumoebavirus genome exhibited a higher rate of sequence divergence and the major capsid protein gene was colonized by type-I introns. A possible role of the Vermamoeba host in the genesis of these evolutionary traits is hypothesized. The Kaumoebavirus genome exhibited a significant gene strand bias over the two-third of genome length, a feature not seen in the other members of the "extended Asfarviridae" clade. We suggest that this gene strand bias was induced by a putative single origin of DNA replication located near the genome extremity that imparted a selective force favoring the genes positioned on the leading strand.


Assuntos
Asfarviridae/genética , Genoma Viral , Vírus Gigantes/genética , Vírus não Classificados/genética , Asfarviridae/classificação , Proteínas do Capsídeo/genética , Replicação do DNA , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Evolução Molecular , Genes Virais , Vírus Gigantes/classificação , Vírus Gigantes/isolamento & purificação , Vírus Gigantes/ultraestrutura , Lobosea/virologia , Filogenia , Esgotos/virologia , Proteínas Virais/genética , Vírus não Classificados/isolamento & purificação , Vírus não Classificados/ultraestrutura
8.
Emerg Microbes Infect ; 9(1): 628-630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32183615

RESUMO

The African swine fever virus (ASFV) was first detected in wild boar in the Demilitarized Zone, a bordered area between South and North Korea, on 2 October 2019. Phylogenetic analyses of ASFV genes encoding p72 and CD2v indicated that the causative strain belongs to genotype II and serogroup 8, respectively, and contained additional tandem repeat sequences between the I73R and the I329L protein genes.


Assuntos
Febre Suína Africana , Asfarviridae/genética , Febre Suína Africana/diagnóstico , Febre Suína Africana/epidemiologia , Animais , Filogenia , República da Coreia , Sus scrofa , Suínos
9.
Viruses ; 12(5)2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456325

RESUMO

Faustovirus is a recently discovered genus of large DNA virus infecting the amoeba Vermamoeba vermiformis, which is phylogenetically related to Asfarviridae. To better understand the diversity and evolution of this viral group, we sequenced six novel Faustovirus strains, mined published metagenomic datasets and performed a comparative genomic analysis. Genomic sequences revealed three consistent phylogenetic groups, within which genetic diversity was moderate. The comparison of the major capsid protein (MCP) genes unveiled between 13 and 18 type-I introns that likely evolved through a still-active birth and death process mediated by intron-encoded homing endonucleases that began before the Faustovirus radiation. Genome-wide alignments indicated that despite genomes retaining high levels of gene collinearity, the central region containing the MCP gene together with the extremities of the chromosomes evolved at a faster rate due to increased indel accumulation and local rearrangements. The fluctuation of the nucleotide composition along the Faustovirus (FV) genomes is mostly imprinted by the consistent nucleotide bias of coding sequences and provided no evidence for a single DNA replication origin like in circular bacterial genomes.


Assuntos
Evolução Molecular , Genoma Viral , Genômica , Vírus não Classificados/genética , Asfarviridae/genética , Proteínas do Capsídeo/genética , Vírus de DNA/genética , DNA Viral/genética , Metagenômica , Filogenia , Montagem de Vírus , Vírus não Classificados/classificação , Vírus não Classificados/isolamento & purificação
10.
Nat Commun ; 11(1): 1710, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249765

RESUMO

The discovery of eukaryotic giant viruses has transformed our understanding of the limits of viral complexity, but the extent of their encoded metabolic diversity remains unclear. Here we generate 501 metagenome-assembled genomes of Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) from environments around the globe, and analyze their encoded functional capacity. We report a remarkable diversity of metabolic genes in widespread giant viruses, including many involved in nutrient uptake, light harvesting, and nitrogen metabolism. Surprisingly, numerous NCLDV encode the components of glycolysis and the TCA cycle, suggesting that they can re-program fundamental aspects of their host's central carbon metabolism. Our phylogenetic analysis of NCLDV metabolic genes and their cellular homologs reveals distinct clustering of viral sequences into divergent clades, indicating that these genes are virus-specific and were acquired in the distant past. Overall our findings reveal that giant viruses encode complex metabolic capabilities with evolutionary histories largely independent of cellular life, strongly implicating them as important drivers of global biogeochemical cycles.


Assuntos
Carbono/metabolismo , Genoma Viral , Vírus Gigantes/genética , Asfarviridae/genética , Ciclo do Ácido Cítrico/genética , Citoplasma/virologia , Eucariotos/virologia , Evolução Molecular , Vírus Gigantes/enzimologia , Vírus Gigantes/metabolismo , Glicólise/genética , Família Multigênica , Nitrogênio/metabolismo , Processos Fototróficos/genética , Processos Fototróficos/efeitos da radiação , Filogenia , Poxviridae/genética
11.
Virol J ; 6: 223, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20017929

RESUMO

BACKGROUND: The Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) comprise an apparently monophyletic class of viruses that infect a broad variety of eukaryotic hosts. Recent progress in isolation of new viruses and genome sequencing resulted in a substantial expansion of the NCLDV diversity, resulting in additional opportunities for comparative genomic analysis, and a demand for a comprehensive classification of viral genes. RESULTS: A comprehensive comparison of the protein sequences encoded in the genomes of 45 NCLDV belonging to 6 families was performed in order to delineate cluster of orthologous viral genes. Using previously developed computational methods for orthology identification, 1445 Nucleo-Cytoplasmic Virus Orthologous Groups (NCVOGs) were identified of which 177 are represented in more than one NCLDV family. The NCVOGs were manually curated and annotated and can be used as a computational platform for functional annotation and evolutionary analysis of new NCLDV genomes. A maximum-likelihood reconstruction of the NCLDV evolution yielded a set of 47 conserved genes that were probably present in the genome of the common ancestor of this class of eukaryotic viruses. This reconstructed ancestral gene set is robust to the parameters of the reconstruction procedure and so is likely to accurately reflect the gene core of the ancestral NCLDV, indicating that this virus encoded a complex machinery of replication, expression and morphogenesis that made it relatively independent from host cell functions. CONCLUSIONS: The NCVOGs are a flexible and expandable platform for genome analysis and functional annotation of newly characterized NCLDV. Evolutionary reconstructions employing NCVOGs point to complex ancestral viruses.


Assuntos
Vírus de DNA/classificação , Vírus de DNA/genética , Eucariotos/virologia , Evolução Molecular , Genoma Viral , Proteínas Virais/genética , Asfarviridae/genética , Núcleo Celular/virologia , Citoplasma/virologia , Genômica , Iridoviridae/genética , Phycodnaviridae/genética , Filogenia , Poxviridae/genética , Proteoma
12.
PLoS One ; 13(2): e0192565, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29489860

RESUMO

African swine fever (ASF) is a complex infectious disease of swine that constitutes devastating impacts on animal health and the world economy. Here, we investigated the evolutionary epidemiology of ASF virus (ASFV) in Eurasia and Africa using the concatenated gene sequences of the viral protein 72 and the central variable region of isolates collected between 1960 and 2015. We used Bayesian phylodynamic models to reconstruct the evolutionary history of the virus, to identify virus population demographics and to quantify dispersal patterns between host species. Results suggest that ASFV exhibited a significantly high evolutionary rate and population growth through time since its divergence in the 18th century from East Africa, with no signs of decline till recent years. This increase corresponds to the growing pig trade activities between continents during the 19th century, and may be attributed to an evolutionary drift that resulted from either continuous circulation or maintenance of the virus within Africa and Eurasia. Furthermore, results implicate wild suids as the ancestral host species (root state posterior probability = 0.87) for ASFV in the early 1700s in Africa. Moreover, results indicate the transmission cycle between wild suids and pigs is an important cycle for ASFV spread and maintenance in pig populations, while ticks are an important natural reservoir that can facilitate ASFV spread and maintenance in wild swine populations. We illustrated the prospects of phylodynamic methods in improving risk-based surveillance, support of effective animal health policies, and epidemic preparedness in countries at high risk of ASFV incursion.


Assuntos
Febre Suína Africana/epidemiologia , Asfarviridae/genética , Epidemiologia Molecular , Filogenia , África/epidemiologia , Febre Suína Africana/virologia , Animais , Asfarviridae/classificação , Ásia/epidemiologia , Europa (Continente)/epidemiologia , Genes Virais , Suínos
13.
Viruses ; 9(2)2017 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-28218698

RESUMO

African swine fever (ASF) is a devastating disease of domestic pigs. It is a socioeconomically important disease, initially described from Kenya, but subsequently reported in most Sub-Saharan countries. ASF spread to Europe, South America and the Caribbean through multiple introductions which were initially eradicated-except for Sardinia-followed by re­introduction into Europe in 2007. In this study of ASF within the Democratic Republic of the Congo, 62 domestic pig samples, collected between 2005-2012, were examined for viral DNA and sequencing at multiple loci: C-terminus of the B646L gene (p72 protein), central hypervariable region (CVR) of the B602L gene, and the E183L gene (p54 protein). Phylogenetic analyses identified three circulating genotypes: I (64.5% of samples), IX (32.3%), and XIV (3.2%). This is the first evidence of genotypes IX and XIV within this country. Examination of the CVR revealed high levels of intra-genotypic variation, with 19 identified variants.


Assuntos
Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Asfarviridae/classificação , Asfarviridae/isolamento & purificação , Surtos de Doenças , Genótipo , Animais , Asfarviridae/genética , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , República Democrática do Congo/epidemiologia , Epidemiologia Molecular , Filogenia , Análise de Sequência de DNA , Sus scrofa , Suínos
15.
J Vet Diagn Invest ; 27(2): 140-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25776540

RESUMO

African swine fever (ASF), classical swine fever (CSF), and foot-and-mouth disease (FMD) are highly contagious animal diseases of significant economic importance. Pigs infected with ASF and CSF viruses (ASFV and CSFV) develop clinical signs that may be indistinguishable from other diseases. Likewise, various causes of vesicular disease can mimic clinical signs caused by the FMD virus (FMDV). Early detection is critical to limiting the impact and spread of these disease outbreaks, and the ability to perform herd-level surveillance for all 3 diseases rapidly and cost effectively using a single diagnostic sample and test is highly desirable. This study assessed the feasibility of simultaneous ASFV, CSFV, and FMDV detection by multiplex reverse transcription real-time polymerase chain reaction (mRT-qPCR) in swine oral fluids collected through the use of chewing ropes. Animal groups were experimentally infected independently with each virus, observed for clinical signs, and oral fluids collected and tested throughout the course of infection. All animal groups chewed on the ropes readily before and after onset of clinical signs and before onset of lameness or serious clinical signs. ASFV was detected as early as 3 days postinoculation (dpi), 2-3 days before onset of clinical disease; CSFV was detected at 5 dpi, coincident with onset of clinical disease; and FMDV was detected as early as 1 dpi, 1 day before the onset of clinical disease. Equivalent results were observed in 4 independent studies and demonstrate the feasibility of oral fluids and mRT-qPCR for surveillance of ASF, CSF, and FMD in swine populations.


Assuntos
Asfarviridae/isolamento & purificação , Vírus da Febre Suína Clássica/isolamento & purificação , Vírus da Febre Aftosa/isolamento & purificação , Doenças dos Suínos/diagnóstico , Febre Suína Africana/diagnóstico , Febre Suína Africana/virologia , Animais , Asfarviridae/genética , Peste Suína Clássica/diagnóstico , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/genética , DNA Viral/análise , Febre Aftosa/diagnóstico , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Boca/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Transcrição Reversa , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/virologia
16.
Vet Microbiol ; 103(3-4): 169-82, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15504588

RESUMO

In 1998, domestic pigs originating from villages within a 40 km radius of Ulongwe in the northern Tete Province of Mozambique were held in a quarantine facility for a 3-month period prior to their importation into South Africa. Eight of a total of 25 pigs died within the first 3 weeks of quarantine of what appeared clinically and on post mortem examination to be African swine fever (ASF). Organs were collected and preserved in formol-glycerosaline and the presence of ASF virus in these specimens was confirmed by three independent polymerase chain reaction (PCR) tests. Two gene regions were characterised, namely the C-terminus end of the major immunodominant protein VP72 and the central variable region (CVR) of the 9RL open reading frame (ORF). Results confirmed the presence of two genetically distinct viruses circulating simultaneously within a single outbreak focus. However, despite the pigs being housed within the same facility, no evidence of co-infection was observed within individual animals. Comparison of the two 1998 virus variants with viruses causing historical outbreaks of the disease in Mozambique revealed that these viruses belong to two distinct genotypes which are unrelated to viruses causing outbreaks between 1960 and 1994. In addition, the CVR and p72 gene regions of one of the 1998 Mozambique virus variants (variant-40) was shown to be identical to the virus recovered from an ASF outbreak in Madagascar in the same year, whilst the other (variant-92) was identical to a 1988 pig isolate from Zambia.


Assuntos
Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Asfarviridae/isolamento & purificação , Proteínas do Capsídeo/genética , Surtos de Doenças/veterinária , Sequência de Aminoácidos , Animais , Asfarviridae/classificação , Asfarviridae/genética , Proteínas do Capsídeo/química , Genótipo , Dados de Sequência Molecular , Moçambique/epidemiologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , Alinhamento de Sequência/veterinária , Suínos
17.
PLoS One ; 8(7): e71019, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23923045

RESUMO

A single-step, multiplex, real-time polymerase chain reaction (RT-PCR) was developed for the simultaneous and differential laboratory diagnosis of Classical swine fever virus (CSFV) and African swine fever virus (ASFV) alongside an exogenous internal control RNA (IC-RNA). Combining a single extraction methodology and primer and probe sets for detection of the three target nucleic acids CSFV, ASFV and IC-RNA, had no effect on the analytical sensitivity of the assay and the new triplex RT-PCR was comparable to standard PCR techniques for CSFV and ASFV diagnosis. After optimisation the assay had a detection limit of 5 CSFV genome copies and 22 ASFV genome copies. Analytical specificity of the triplex assay was validated using a panel of viruses representing 9 of the 11 CSFV subgenotypes, at least 8 of the 22 ASFV genotypes as well as non-CSFV pestiviruses. Positive and negative clinical samples from animals infected experimentally, due to field exposure or collected from the UK which is free from both swine diseases, were used to evaluate the diagnostic sensitivity and specificity for detection of both viruses. The diagnostic sensitivity was 100% for both viruses whilst diagnostic specificity estimates were 100% for CSFV detection and 97.3% for ASFV detection. The inclusion of a heterologous internal control allowed identification of false negative results, which occurred at a higher level than expected. The triplex assay described here offers a valuable new tool for the differential detection of the causative viruses of two clinically indistinguishable porcine diseases, whose geographical occurrence is increasingly overlapping.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/diagnóstico , Asfarviridae/genética , Infecções por Vírus de DNA/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Doenças dos Suínos/diagnóstico , Suínos/virologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Asfarviridae/isolamento & purificação , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Sensibilidade e Especificidade , Doenças dos Suínos/virologia
19.
Biol Direct ; 4: 51, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20021668

RESUMO

BACKGROUND: Eukaryotic Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) encode most if not all of the enzymes involved in their DNA replication. It has been inferred that genes for these enzymes were already present in the last common ancestor of the NCLDV. However, the details of the evolution of these genes that bear on the complexity of the putative ancestral NCLDV and on the evolutionary relationships between viruses and their hosts are not well understood. RESULTS: Phylogenetic analysis of the ATP-dependent and NAD-dependent DNA ligases encoded by the NCLDV reveals an unexpectedly complex evolutionary history. The NAD-dependent ligases are encoded only by a minority of NCLDV (including mimiviruses, some iridoviruses and entomopoxviruses) but phylogenetic analysis clearly indicated that all viral NAD-dependent ligases are monophyletic. Combined with the topology of the NCLDV tree derived by consensus of trees for universally conserved genes suggests that this enzyme was represented in the ancestral NCLDV. Phylogenetic analysis of ATP-dependent ligases that are encoded by chordopoxviruses, most of the phycodnaviruses and Marseillevirus failed to demonstrate monophyly and instead revealed an unexpectedly complex evolutionary trajectory. The ligases of the majority of phycodnaviruses and Marseillevirus seem to have evolved from bacteriophage or bacterial homologs; the ligase of one phycodnavirus, Emiliana huxlei virus, belongs to the eukaryotic DNA ligase I branch; and ligases of chordopoxviruses unequivocally cluster with eukaryotic DNA ligase III. CONCLUSIONS: Examination of phyletic patterns and phylogenetic analysis of DNA ligases of the NCLDV suggest that the common ancestor of the extant NCLDV encoded an NAD-dependent ligase that most likely was acquired from a bacteriophage at the early stages of evolution of eukaryotes. By contrast, ATP-dependent ligases from different prokaryotic and eukaryotic sources displaced the ancestral NAD-dependent ligase at different stages of subsequent evolution. These findings emphasize complex routes of viral evolution that become apparent through detailed phylogenomic analysis but not necessarily in reconstructions based on phyletic patterns of genes. REVIEWERS: This article was reviewed by: Patrick Forterre, George V. Shpakovski, and Igor B. Zhulin.


Assuntos
Evolução Biológica , DNA Ligases/genética , Vírus de DNA/enzimologia , Vírus de DNA/genética , Asfarviridae/classificação , Asfarviridae/enzimologia , Asfarviridae/genética , Núcleo Celular/enzimologia , Citoplasma/virologia , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Vírus de DNA/classificação , Eucariotos , Genoma Viral , Iridoviridae/classificação , Iridoviridae/enzimologia , Iridoviridae/genética , Phycodnaviridae/classificação , Phycodnaviridae/enzimologia , Phycodnaviridae/genética , Filogenia , Poxviridae/classificação , Poxviridae/enzimologia , Poxviridae/genética
20.
Biochemistry ; 45(49): 14826-33, 2006 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-17144676

RESUMO

We previously demonstrated that the DNA repair system encoded by the African swine fever virus (ASFV) is both extremely error-prone during the single-nucleotide gap-filling step (catalyzed by ASFV DNA polymerase X) and extremely error-tolerant during the nick-sealing step (catalyzed by ASFV DNA ligase). On the basis of these findings we have suggested that at least some of the diversity known to exist among ASFV isolates may be a consequence of mutagenic DNA repair, wherein damaged nucleotides are replaced with undamaged but incorrect nucleotides by Pol X and the resultant mismatched nicks are sealed by ASFV DNA ligase. Recently, this hypothesis appeared to be discredited by Salas and co-workers [(2003) J. Mol. Biol. 326, 1403-1412], who reported the fidelity of Pol X to be, on average, 2 orders of magnitude higher than what we previously published. In an effort to address this discrepancy and provide a definitive conclusion about the fidelity of Pol X, herein we examine the fidelity of Pol X-catalyzed single-nucleotide gap-filling in both the steady state and the pre-steady state under a diverse array of assay conditions (varying pH and ionic strength) and within different DNA sequence contexts. These studies corroborate our previously published data (demonstrating the low fidelity of Pol X to be independent of assay condition/sequence context), do not reproduce the data of Salas et al., and therefore confirm Pol X to be one of the most error-prone polymerases known. These results are discussed in light of ASFV biology and the mutagenic DNA repair hypothesis described above.


Assuntos
Asfarviridae/enzimologia , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Asfarviridae/genética , Sequência de Bases , Reparo do DNA , Cinética , Dados de Sequência Molecular , Mutação , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA