Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.298
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 173(3): 749-761.e38, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29606352

RESUMO

Coexpression of proteins in response to pathway-inducing signals is the founding paradigm of gene regulation. However, it remains unexplored whether the relative abundance of co-regulated proteins requires precise tuning. Here, we present large-scale analyses of protein stoichiometry and corresponding regulatory strategies for 21 pathways and 67-224 operons in divergent bacteria separated by 0.6-2 billion years. Using end-enriched RNA-sequencing (Rend-seq) with single-nucleotide resolution, we found that many bacterial gene clusters encoding conserved pathways have undergone massive divergence in transcript abundance and architectures via remodeling of internal promoters and terminators. Remarkably, these evolutionary changes are compensated post-transcriptionally to maintain preferred stoichiometry of protein synthesis rates. Even more strikingly, in eukaryotic budding yeast, functionally analogous proteins that arose independently from bacterial counterparts also evolved to convergent in-pathway expression. The broad requirement for exact protein stoichiometries despite regulatory divergence provides an unexpected principle for building biological pathways both in nature and for synthetic activities.


Assuntos
Enzimas/química , Escherichia coli/enzimologia , Evolução Molecular , Isoformas de Proteínas/química , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Família Multigênica , Óperon , Filogenia , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Ribossomos/química , Análise de Sequência de RNA , Transcriptoma
2.
Mol Cell ; 81(4): 756-766.e8, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33472056

RESUMO

Bacillus subtilis structural maintenance of chromosomes (SMC) complexes are topologically loaded at centromeric sites adjacent to the replication origin by the partitioning protein ParB. These ring-shaped ATPases then translocate down the left and right chromosome arms while tethering them together. Here, we show that the site-specific recombinase XerD, which resolves chromosome dimers, is required to unload SMC tethers when they reach the terminus. We identify XerD-specific binding sites in the terminus region and show that they dictate the site of unloading in a manner that depends on XerD but not its catalytic residue, its partner protein XerC, or the recombination site dif. Finally, we provide evidence that ParB and XerD homologs perform similar functions in Staphylococcus aureus. Thus, two broadly conserved factors that act at the origin and terminus have second functions in loading and unloading SMC complexes that travel between them.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/metabolismo , Integrases/metabolismo , Staphylococcus aureus/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , DNA Primase/genética , DNA Primase/metabolismo , Integrases/genética , Staphylococcus aureus/genética
3.
Mol Cell ; 80(2): 227-236.e5, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32991829

RESUMO

The pathways for ribosomal RNA (rRNA) maturation diverge greatly among the domains of life. In the Gram-positive model bacterium, Bacillus subtilis, the final maturation steps of the two large ribosomal subunit (50S) rRNAs, 23S and 5S pre-rRNAs, are catalyzed by the double-strand specific ribonucleases (RNases) Mini-RNase III and RNase M5, respectively. Here we present a protocol that allowed us to solve the 3.0 and 3.1 Å resolution cryoelectron microscopy structures of these RNases poised to cleave their pre-rRNA substrates within the B. subtilis 50S particle. These data provide the first structural insights into rRNA maturation in bacteria by revealing how these RNases recognize and process double-stranded pre-rRNA. Our structures further uncover how specific ribosomal proteins act as chaperones to correctly fold the pre-rRNA substrates and, for Mini-III, anchor the RNase to the ribosome. These r-proteins thereby serve a quality-control function in the process from accurate ribosome assembly to rRNA processing.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Precursores de RNA/metabolismo , Ribonucleases/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Sequência de Bases , Microscopia Crioeletrônica , Modelos Moleculares , Precursores de RNA/ultraestrutura , Ribonucleases/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 121(43): e2414737121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39405354

RESUMO

Bacillus subtilis spores are produced inside the cytosol of a mother cell. Spore surface assembly requires the SpoVK protein in the mother cell, but its function is unknown. Here, we report that SpoVK is a sporulation-specific, forespore-localized putative chaperone from a distinct higher-order clade of AAA+ ATPases that promotes the peptidoglycan glycosyltransferase activity of MurG during sporulation, even though MurG does not normally require activation during vegetative growth. MurG redeploys to the forespore surface during sporulation, where we show that the local pH is reduced and propose that this change in cytosolic nanoenvironment abrogates MurG function. Further, we show that SpoVK participates in a developmental checkpoint in which improper spore surface assembly mis-localizes SpoVK, which leads to sporulation arrest. The AAA+ ATPase clade containing SpoVK includes specialized chaperones involved in secretion, cell envelope biosynthesis, and carbohydrate metabolism, suggesting that such fine-tuning might be a widespread feature of different subcellular nanoenvironments.


Assuntos
Adenosina Trifosfatases , Bacillus subtilis , Proteínas de Bactérias , Esporos Bacterianos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano Glicosiltransferase/genética , Esporos Bacterianos/metabolismo
5.
PLoS Genet ; 20(8): e1011349, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39088561

RESUMO

Cellular processes require precise and specific gene regulation, in which continuous mRNA degradation is a major element. The mRNA degradation mechanisms should be able to degrade a wide range of different RNA substrates with high efficiency, but should at the same time be limited, to avoid killing the cell by elimination of all cellular RNA. RNase Y is a major endoribonuclease found in most Firmicutes, including Bacillus subtilis and Staphylococcus aureus. However, the molecular interactions that direct RNase Y to cleave the correct RNA molecules at the correct position remain unknown. In this work we have identified transcripts that are homologs in S. aureus and B. subtilis, and are RNase Y targets in both bacteria. Two such transcript pairs were used as models to show a functional overlap between the S. aureus and the B. subtilis RNase Y, which highlighted the importance of the nucleotide sequence of the RNA molecule itself in the RNase Y targeting process. Cleavage efficiency is driven by the primary nucleotide sequence immediately downstream of the cleavage site and base-pairing in a secondary structure a few nucleotides downstream. Cleavage positioning is roughly localised by the downstream secondary structure and fine-tuned by the nucleotide immediately upstream of the cleavage. The identified elements were sufficient for RNase Y-dependent cleavage, since the sequence elements from one of the model transcripts were able to convert an exogenous non-target transcript into a target for RNase Y.


Assuntos
Bacillus subtilis , Regulação Bacteriana da Expressão Gênica , Clivagem do RNA , Estabilidade de RNA , RNA Bacteriano , Staphylococcus aureus , Staphylococcus aureus/genética , Staphylococcus aureus/enzimologia , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Conformação de Ácido Nucleico , Sequência de Bases
6.
Proc Natl Acad Sci U S A ; 121(21): e2401738121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743623

RESUMO

Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.


Assuntos
Escherichia coli , Ferro , Manganês , Manganês/metabolismo , Ferro/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Peróxido de Hidrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Zinco/metabolismo , Lactococcus lactis/enzimologia , Lactococcus lactis/metabolismo , Oxirredução , Metais/metabolismo
7.
Nature ; 585(7823): 124-128, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32848247

RESUMO

Tight coupling of transcription and translation is considered a defining feature of bacterial gene expression1,2. The pioneering ribosome can both physically associate and kinetically coordinate with RNA polymerase (RNAP)3-11, forming a signal-integration hub for co-transcriptional regulation that includes translation-based attenuation12,13 and RNA quality control2. However, it remains unclear whether transcription-translation coupling-together with its broad functional consequences-is indeed a fundamental characteristic of bacteria other than Escherichia coli. Here we show that RNAPs outpace pioneering ribosomes in the Gram-positive model bacterium Bacillus subtilis, and that this 'runaway transcription' creates alternative rules for both global RNA surveillance and translational control of nascent RNA. In particular, uncoupled RNAPs in B. subtilis explain the diminished role of Rho-dependent transcription termination, as well as the prevalence of mRNA leaders that use riboswitches and RNA-binding proteins. More broadly, we identified widespread genomic signatures of runaway transcription in distinct phyla across the bacterial domain. Our results show that coupled RNAP-ribosome movement is not a general hallmark of bacteria. Instead, translation-coupled transcription and runaway transcription constitute two principal modes of gene expression that determine genome-specific regulatory mechanisms in prokaryotes.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , Transcrição Gênica , Regiões 5' não Traduzidas/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Filogenia , RNA Bacteriano/biossíntese , RNA Bacteriano/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator Rho/metabolismo , Ribossomos/metabolismo , Riboswitch/genética
8.
Nucleic Acids Res ; 52(10): 5880-5894, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38682613

RESUMO

Dihydrouridine (D) is a common modified base found predominantly in transfer RNA (tRNA). Despite its prevalence, the mechanisms underlying dihydrouridine biosynthesis, particularly in prokaryotes, have remained elusive. Here, we conducted a comprehensive investigation into D biosynthesis in Bacillus subtilis through a combination of genetic, biochemical, and epitranscriptomic approaches. Our findings reveal that B. subtilis relies on two FMN-dependent Dus-like flavoprotein homologs, namely DusB1 and DusB2, to introduce all D residues into its tRNAs. Notably, DusB1 exhibits multisite enzyme activity, enabling D formation at positions 17, 20, 20a and 47, while DusB2 specifically catalyzes D biosynthesis at positions 20 and 20a, showcasing a functional redundancy among modification enzymes. Extensive tRNA-wide D-mapping demonstrates that this functional redundancy impacts the majority of tRNAs, with DusB2 displaying a higher dihydrouridylation efficiency compared to DusB1. Interestingly, we found that BsDusB2 can function like a BsDusB1 when overexpressed in vivo and under increasing enzyme concentration in vitro. Furthermore, we establish the importance of the D modification for B. subtilis growth at suboptimal temperatures. Our study expands the understanding of D modifications in prokaryotes, highlighting the significance of functional redundancy in this process and its impact on bacterial growth and adaptation.


Assuntos
Bacillus subtilis , RNA de Transferência , Uridina , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , RNA de Transferência/metabolismo , RNA de Transferência/genética , Uridina/metabolismo , Uridina/análogos & derivados , Expressão Gênica
9.
Nucleic Acids Res ; 52(16): 9613-9629, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39051562

RESUMO

Unrepaired DNA damage encountered by the cellular replication machinery can stall DNA replication, ultimately leading to cell death. In the DNA damage tolerance pathway translesion synthesis (TLS), replication stalling is alleviated by the recruitment of specialized polymerases to synthesize short stretches of DNA near a lesion. Although TLS promotes cell survival, most TLS polymerases are low-fidelity and must be tightly regulated to avoid harmful mutagenesis. The gram-negative bacterium Escherichia coli has served as the model organism for studies of the molecular mechanisms of bacterial TLS. However, it is poorly understood whether these same mechanisms apply to other bacteria. Here, we use in vivo single-molecule fluorescence microscopy to investigate the TLS polymerase Pol Y1 in the model gram-positive bacterium Bacillus subtilis. We find significant differences in the localization and dynamics of Pol Y1 in comparison to its E. coli homolog, Pol IV. Notably, Pol Y1 is constitutively enriched at or near sites of replication in the absence of DNA damage through interactions with the DnaN clamp; in contrast, Pol IV has been shown to be selectively enriched only upon replication stalling. These results suggest key differences in the roles and mechanisms of regulation of TLS polymerases across different bacterial species.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/genética , Reparo do DNA , DNA Polimerase beta/metabolismo , DNA Polimerase beta/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Imagem Individual de Molécula
10.
Nucleic Acids Res ; 52(11): 6347-6359, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38661211

RESUMO

Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Magnésio , Mitomicina , Mitomicina/farmacologia , Mitomicina/química , Magnésio/química , Magnésio/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Modelos Moleculares , Domínio Catalítico , Reparo do DNA , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Cristalografia por Raios X , DNA/metabolismo , DNA/química , Exonucleases/metabolismo , Exonucleases/química
11.
J Biol Chem ; 300(9): 107700, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173947

RESUMO

How protein phosphatases achieve specificity for their substrates is a major outstanding question. PPM family serine/threonine phosphatases are widespread in bacteria and eukaryotes, where they dephosphorylate target proteins with a high degree of specificity. In bacteria, PPM phosphatases control diverse transcriptional responses by dephosphorylating anti-anti-sigma factors of the STAS domain family, exemplified by Bacillus subtilis phosphatases SpoIIE, which controls cell-fate during endospore formation, and RsbU, which initiates the general stress response. Using a combination of forward genetics, biochemical reconstitution, and AlphaFold2 structure prediction, we identified a conserved, tripartite substrate docking interface comprised of three variable loops on the surface of the PPM phosphatase domains of SpoIIE and RsbU that recognize the three-dimensional structure of the substrate protein. Nonconserved amino acids in these loops facilitate the accommodation of the cognate substrate and prevent dephosphorylation of the noncognate substrate. Together, single-amino acid substitutions in these three elements cause an over 500-fold change in specificity. Our data additionally suggest that substrate-docking interactions regulate phosphatase specificity through a conserved allosteric switch element that controls the catalytic efficiency of the phosphatase by positioning the metal cofactor and substrate. We hypothesize that this is a generalizable mechanistic model for PPM family phosphatase substrate specificity. Importantly, the substrate docking interface with the phosphatase is only partially overlapping with the much more extensive interface with the upstream kinase, suggesting the possibility that kinase and phosphatase specificity evolved independently.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Fosfoproteínas Fosfatases , Especificidade por Substrato , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fosforilação
12.
Mol Microbiol ; 122(2): 213-229, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38922761

RESUMO

In the model organism Bacillus subtilis, a signaling protease produced in the forespore, SpoIVB, is essential for the activation of the sigma factor σK, which is produced in the mother cell as an inactive pro-protein, pro-σK. SpoIVB has a second function essential to sporulation, most likely during cortex synthesis. The cortex is composed of peptidoglycan (PG) and is essential for the spore's heat resistance and dormancy. Surprisingly, the genome of the intestinal pathogen Clostridioides difficile, in which σK is produced without a pro-sequence, encodes two SpoIVB paralogs, SpoIVB1 and SpoIVB2. Here, we show that spoIVB1 is dispensable for sporulation, while a spoIVB2 in-frame deletion mutant fails to produce heat-resistant spores. The spoIVB2 mutant enters sporulation, undergoes asymmetric division, and completes engulfment of the forespore by the mother cell but fails to synthesize the spore cortex. We show that SpoIIP, a PG hydrolase and part of the engulfasome, the machinery essential for engulfment, is cleaved by SpoIVB2 into an inactive form. Within the engulfasome, the SpoIIP amidase activity generates the substrates for the SpoIID lytic transglycosylase. Thus, following engulfment completion, the cleavage and inactivation of SpoIIP by SpoIVB2 curtails the engulfasome hydrolytic activity, at a time when synthesis of the spore cortex peptidoglycan begins. SpoIVB2 is also required for normal late gene expression in the forespore by a currently unknown mechanism. Together, these observations suggest a role for SpoIVB2 in coordinating late morphological and gene expression events between the forespore and the mother cell.


Assuntos
Proteínas de Bactérias , Clostridioides difficile , N-Acetil-Muramil-L-Alanina Amidase , Peptidoglicano , Esporos Bacterianos , Esporos Bacterianos/metabolismo , Esporos Bacterianos/genética , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Clostridioides difficile/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo , Fator sigma/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimologia , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética
13.
Mol Cell ; 65(5): 861-872.e9, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28238653

RESUMO

SMC proteins support vital cellular processes in all domains of life by organizing chromosomal DNA. They are composed of ATPase "head" and "hinge" dimerization domains and a connecting coiled-coil "arm." Binding to a kleisin subunit creates a closed tripartite ring, whose ∼47-nm-long SMC arms act as barrier for DNA entrapment. Here, we uncover another, more active function of the bacterial Smc arm. Using high-throughput genetic engineering, we resized the arm in the range of 6-60 nm and found that it was functional only in specific length regimes following a periodic pattern. Natural SMC sequences reflect these length constraints. Mutants with improper arm length or peptide insertions in the arm efficiently target chromosomal loading sites and hydrolyze ATP but fail to use ATP hydrolysis for relocation onto flanking DNA. We propose that SMC arms implement force transmission upon nucleotide hydrolysis to mediate DNA capture or loop extrusion.


Assuntos
Adenosina Trifosfatases/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos Bacterianos/enzimologia , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Engenharia Genética/métodos , Ensaios de Triagem em Larga Escala , Hidrólise , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Relação Estrutura-Atividade
14.
J Bacteriol ; 206(6): e0005224, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38819154

RESUMO

Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the Bacillus subtilis yqgC-sodA (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function, and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient mneP mneS double mutant both accumulate Mn and have similar metabolic perturbations, they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the mneP mneS efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the mneP mneS strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the mneP mneS and the YS deletion mutants results from distinct enzymatic vulnerabilities.IMPORTANCEBacteria require multiple trace metal ions for survival. Metal homeostasis relies on the tightly regulated expression of metal uptake, storage, and efflux proteins. Metal intoxication occurs when metal homeostasis is perturbed and often results from enzyme mis-metalation. In Bacillus subtilis, Mn-dependent superoxide dismutase (MnSOD) is the most abundant Mn-containing protein and is important for oxidative stress resistance. Here, we report novel roles for MnSOD and a co-regulated membrane protein, YqgC, in Mn homeostasis. Loss of both MnSOD and YqgC (but not the individual proteins) prevents the efficient expression of Mn efflux proteins and leads to a large-scale perturbation of the metabolome due to inhibition of Mg-dependent enzymes, including key chorismate-utilizing MST (menaquinone, siderophore, and tryptophan) family enzymes.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Magnésio , Manganês , Óperon , Superóxido Dismutase , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimologia , Manganês/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Magnésio/metabolismo
15.
J Bacteriol ; 206(10): e0030724, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39235960

RESUMO

The lipopeptide antibiotic daptomycin exhibits bactericidal activity against Gram-positive bacteria by forming a complex with phosphatidylglycerol (PG) and lipid II in the cell membrane, causing membrane perforation. With the emergence of daptomycin-resistant bacteria, understanding the mechanisms of bacterial resistance to daptomycin has gained great importance. In this study, we aimed to identify the genetic factors contributing to daptomycin resistance in Bacillus subtilis, a model Gram-positive bacterium. Our findings demonstrated that overexpression of ugtP, which encodes diglucosyldiacylglycerol synthase, induces daptomycin resistance in B. subtilis. Specifically, overexpression of ugtP resulted in increased levels of diglucosyldiacylglycerol (Glc2DAG) and decreased levels of acidic phospholipids cardiolipin and PG, as well as the basic phospholipid lysylphosphatidylglycerol. However, ugtP overexpression did not alter the cell surface charge and the susceptibility to the cationic antimicrobial peptide nisin or the cationic surfactant hexadecyltrimethylammonium bromide. Furthermore, by serial passaging in the presence of daptomycin, we obtained daptomycin-resistant mutants carrying ugtP mutations. These mutants showed increased levels of Glc2DAG and a >4-fold increase in the minimum inhibitory concentration of daptomycin. These results suggest that increased Glc2DAG levels, driven by ugtP overexpression, modify the phospholipid composition and confer daptomycin resistance in B. subtilis without altering the cell surface charge of the bacteria.IMPORTANCEDaptomycin is one of the last-resort drugs for the treatment of methicillin-resistant Staphylococcus aureus infections, and the emergence of daptomycin-resistant bacteria has become a major concern. Understanding the mechanism of daptomycin resistance is important for establishing clinical countermeasures against daptomycin-resistant bacteria. In the present study, we found that overexpression of ugtP, which encodes diglucosyldiacylglycerol synthase, induces daptomycin resistance in B. subtilis, a model Gram-positive bacteria. The overexpression of UgtP increased diglucosyldiacylglycerol levels, resulting in altered phospholipid composition and daptomycin resistance. These findings are important for establishing clinical strategies against daptomycin-resistant bacteria, including their detection and management.


Assuntos
Antibacterianos , Bacillus subtilis , Proteínas de Bactérias , Daptomicina , Farmacorresistência Bacteriana , Bacillus subtilis/genética , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Daptomicina/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Fosfatidilgliceróis/metabolismo
16.
EMBO J ; 39(3): e102500, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31840842

RESUMO

RNase J1 is the major 5'-to-3' bacterial exoribonuclease. We demonstrate that in its absence, RNA polymerases (RNAPs) are redistributed on DNA, with increased RNAP occupancy on some genes without a parallel increase in transcriptional output. This suggests that some of these RNAPs represent stalled, non-transcribing complexes. We show that RNase J1 is able to resolve these stalled RNAP complexes by a "torpedo" mechanism, whereby RNase J1 degrades the nascent RNA and causes the transcription complex to disassemble upon collision with RNAP. A heterologous enzyme, yeast Xrn1 (5'-to-3' exonuclease), is less efficient than RNase J1 in resolving stalled Bacillus subtilis RNAP, suggesting that the effect is RNase-specific. Our results thus reveal a novel general principle, whereby an RNase can participate in genome-wide surveillance of stalled RNAP complexes, preventing potentially deleterious transcription-replication collisions.


Assuntos
Bacillus subtilis/enzimologia , Exorribonucleases/metabolismo , RNA Mensageiro/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , Transcrição Gênica
17.
BMC Biotechnol ; 24(1): 49, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010004

RESUMO

This study used conservative one variable-at-a-time study and statistical surface response methods to increase the yields of an extracellular thermostable protease secreted by a newly identified thermophilic Bacillus subtilis BSP strain. Using conventional optimization techniques, physical parameters in submerged fermentation were adjusted at the shake flask level to reach 184 U/mL. These physicochemical parameters were further optimized by statistical surface response methodology using Box Behnken design, and the protease yield increased to 295 U/mL. The protease was purified and characterized biochemically. Both Ca2+ and Fe2+ increased the activity of the 36 kDa protease enzyme. Based on its strong inhibition by ethylenediaminetetracetate (EDTA), the enzyme was confirmed to be a metalloprotease. The protease was also resistant to various organic solvents (benzene, ethanol, methanol), surfactants (Triton X-100), sodium dodecyl sulfate (SDS), Tween 20, Tween-80 and oxidants hydrogen per oxide (H2O2). Characteristics, such as tolerance to high SDS and H2O2 concentrations, indicate that this protease has potential applications in the pharmaceutical and detergent industries.


Assuntos
Bacillus subtilis , Estabilidade Enzimática , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Peróxido de Hidrogênio/metabolismo , Fermentação , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Concentração de Íons de Hidrogênio , Solventes/química , Temperatura
18.
Chembiochem ; 25(12): e202400165, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38616163

RESUMO

Studying the metabolic role of non-essential promiscuous enzymes is a challenging task, as genetic manipulations usually do not reveal at which point(s) of the metabolic network the enzymatic activity of such protein is beneficial for the organism. Each of the HAD-like phosphatases YcsE, YitU and YwtE of Bacillus subtilis catalyzes the dephosphorylation of 5-amino-6-ribitylamino-uracil 5'-phosphate, which is essential in the biosynthesis of riboflavin. Using CRISPR technology, we have found that the deletion of these genes, individually or in all possible combinations failed to cause riboflavin auxotrophy and did not result in significant growth changes. Analysis of flavin and adenylate content in B. subtilis knockout mutants showed that (i) there must be one or several still unidentified phosphatases that can replace the deleted proteins; (ii) such replacements, however, cannot fully restore the intracellular content of any of three flavins studied (riboflavin, FMN, FAD); (iii) whereas bacterial fitness was not significantly compromised by mutations, the intracellular balance of flavins and adenylates did show some significant changes.


Assuntos
Bacillus subtilis , Flavinas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimologia , Flavinas/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Técnicas de Inativação de Genes
19.
Chembiochem ; 25(9): e202300872, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376941

RESUMO

Dye-decolorizing peroxidases (DyPs) are recently identified microbial enzymes that have been used in several Biotechnology applications from wastewater treatment to lignin valorization. However, their properties and mechanism of action still have many open questions. Their heme-containing active site is buried by three conserved flexible loops with a putative role in modulating substrate access and enzyme catalysis. Here, we investigated the role of a conserved glutamate residue in stabilizing interactions in loop 2 of A-type DyPs. First, we did site saturation mutagenesis of this residue, replacing it with all possible amino acids in bacterial DyPs from Bacillus subtilis (BsDyP) and from Kitasatospora aureofaciens (KaDyP1), the latter being characterized here for the first time. We screened the resulting libraries of variants for activity towards ABTS and identified variants with increased catalytic efficiency. The selected variants were purified and characterized for activity and stability. We furthermore used Molecular Dynamics simulations to rationalize the increased catalytic efficiency and found that the main reason is the electron channeling becoming easier from surface-exposed tryptophans. Based on our findings, we also propose that this glutamate could work as a pH switch in the wild-type enzyme, preventing intracellular damage.


Assuntos
Bacillus subtilis , Corantes , Ácido Glutâmico , Peroxidases , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Corantes/química , Corantes/metabolismo , Bacillus subtilis/enzimologia , Peroxidases/química , Peroxidases/metabolismo , Peroxidases/genética , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Mutagênese Sítio-Dirigida
20.
RNA ; 28(2): 227-238, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34815358

RESUMO

The Bacillus subtilis genome is predicted to encode numerous ribonucleases, including four 3' exoribonucleases that have been characterized to some extent. A strain containing gene knockouts of all four known 3' exoribonucleases is viable, suggesting that one or more additional RNases remain to be discovered. A protein extract from the quadruple RNase mutant strain was fractionated and RNase activity was followed, resulting in the identification of an enzyme activity catalyzed by the YloC protein. YloC is an endoribonuclease and is a member of the highly conserved "YicC family" of proteins that is widespread in bacteria. YloC is a metal-dependent enzyme that catalyzes the cleavage of single-stranded RNA, preferentially at U residues, and exists in an oligomeric form, most likely a hexamer. As such, YloC shares some characteristics with the SARS-CoV Nsp15 endoribonuclease. While the in vivo function of YloC in B. subtilis is yet to be determined, YloC was found to act similarly to YicC in an Escherichia coli in vivo assay that assesses decay of the small RNA, RyhB. Thus, YloC may play a role in small RNA regulation.


Assuntos
Bacillus subtilis/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endorribonucleases/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Microrganismos Geneticamente Modificados , Mutação , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Especificidade por Substrato , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA