RESUMO
Sensing of lipopolysaccharide (LPS) in the cytosol triggers caspase-11 activation and is central to host defense against Gram-negative bacterial infections and to the pathogenesis of sepsis. Most Gram-negative bacteria that activate caspase-11, however, are not cytosolic, and the mechanism by which LPS from these bacteria gains access to caspase-11 in the cytosol remains elusive. Here, we identify outer membrane vesicles (OMVs) produced by Gram-negative bacteria as a vehicle that delivers LPS into the cytosol triggering caspase-11-dependent effector responses in vitro and in vivo. OMVs are internalized via endocytosis, and LPS is released into the cytosol from early endosomes. The use of hypovesiculating bacterial mutants, compromised in their ability to generate OMVs, reveals the importance of OMVs in mediating the cytosolic localization of LPS. Collectively, these findings demonstrate a critical role for OMVs in enabling the cytosolic entry of LPS and, consequently, caspase-11 activation during Gram-negative bacterial infections.
Assuntos
Bactérias Gram-Negativas/citologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Lipopolissacarídeos/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Citosol/metabolismo , Ativação Enzimática , Bactérias Gram-Negativas/química , Imunidade Inata , Inflamação/imunologia , Inflamação/microbiologia , Interleucina-1/imunologia , CamundongosRESUMO
The outer membrane in Gram-negative bacteria consists of an asymmetric phospholipid-lipopolysaccharide bilayer that is densely packed with outer-membrane ß-barrel proteins (OMPs) and lipoproteins1. The architecture and composition of this bilayer is closely monitored and is essential to cell integrity and survival2-4. Here we find that SlyB, a lipoprotein in the PhoPQ stress regulon, forms stable stress-induced complexes with the outer-membrane proteome. SlyB comprises a 10 kDa periplasmic ß-sandwich domain and a glycine zipper domain that forms a transmembrane α-helical hairpin with discrete phospholipid- and lipopolysaccharide-binding sites. After loss in lipid asymmetry, SlyB oligomerizes into ring-shaped transmembrane complexes that encapsulate ß-barrel proteins into lipid nanodomains of variable size. We find that the formation of SlyB nanodomains is essential during lipopolysaccharide destabilization by antimicrobial peptides or acute cation shortage, conditions that result in a loss of OMPs and compromised outer-membrane barrier function in the absence of a functional SlyB. Our data reveal that SlyB is a compartmentalizing transmembrane guard protein that is involved in cell-envelope proteostasis and integrity, and suggest that SlyB represents a larger family of broadly conserved lipoproteins with 2TM glycine zipper domains with the ability to form lipid nanodomains.
Assuntos
Proteínas da Membrana Bacteriana Externa , Membrana Celular , Bactérias Gram-Negativas , Bicamadas Lipídicas , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Glicina/metabolismo , Lipopolissacarídeos/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Fosfolipídeos/metabolismo , Sítios de Ligação , Proteostase , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteoma/química , Proteoma/metabolismo , Regulon , Domínios Proteicos , Peptídeos Antimicrobianos/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismoRESUMO
The microbial cell wall is essential for maintenance of cell shape and resistance to external stressors1. The primary structural component of the cell wall is peptidoglycan, a glycopolymer with peptide crosslinks located outside of the cell membrane1. Peptidoglycan biosynthesis and structure are responsive to shifting environmental conditions such as pH and salinity2-6, but the mechanisms underlying such adaptations are incompletely understood. Precursors of peptidoglycan and other cell surface glycopolymers are synthesized in the cytoplasm and then delivered across the cell membrane bound to the recyclable lipid carrier undecaprenyl phosphate7 (C55-P, also known as UndP). Here we identify the DUF368-containing and DedA transmembrane protein families as candidate C55-P translocases, filling a critical gap in knowledge of the proteins required for the biogenesis of microbial cell surface polymers. Gram-negative and Gram-positive bacteria lacking their cognate DUF368-containing protein exhibited alkaline-dependent cell wall and viability defects, along with increased cell surface C55-P levels. pH-dependent synthetic genetic interactions between DUF368-containing proteins and DedA family members suggest that C55-P transporter usage is dynamic and modulated by environmental inputs. C55-P transporter activity was required by the cholera pathogen for growth and cell shape maintenance in the intestine. We propose that conditional transporter reliance provides resilience in lipid carrier recycling, bolstering microbial fitness both inside and outside the host.
Assuntos
Proteínas de Bactérias , Proteínas de Transporte , Aptidão Genética , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fosfatos de Poli-Isoprenil , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Lipídeos/análise , Peptidoglicano/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/metabolismo , Viabilidade MicrobianaRESUMO
Gram-negative bacteria are surrounded by two membranes. A special feature of the outer membrane is its asymmetry. It contains lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet1-3. The proper assembly of LPS in the outer membrane is required for cell viability and provides Gram-negative bacteria intrinsic resistance to many classes of antibiotics. LPS biosynthesis is completed in the inner membrane, so the LPS must be extracted, moved across the aqueous periplasm that separates the two membranes and translocated through the outer membrane where it assembles on the cell surface4. LPS transport and assembly requires seven conserved and essential LPS transport components5 (LptA-G). This system has been proposed to form a continuous protein bridge that provides a path for LPS to reach the cell surface6,7, but this model has not been validated in living cells. Here, using single-molecule tracking, we show that Lpt protein dynamics are consistent with the bridge model. Half of the inner membrane Lpt proteins exist in a bridge state, and bridges persist for 5-10 s, showing that their organization is highly dynamic. LPS facilitates Lpt bridge formation, suggesting a mechanism by which the production of LPS can be directly coupled to its transport. Finally, the bridge decay kinetics suggest that there may be two different types of bridges, whose stability differs according to the presence (long-lived) or absence (short-lived) of LPS. Together, our data support a model in which LPS is both a substrate and a structural component of dynamic Lpt bridges that promote outer membrane assembly.
Assuntos
Membrana Externa Bacteriana , Proteínas de Transporte , Bactérias Gram-Negativas , Lipopolissacarídeos , Proteínas de Membrana , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismoRESUMO
Mitochondria, chloroplasts and Gram-negative bacteria are encased in a double layer of membranes. The outer membrane contains proteins with a ß-barrel structure1,2. ß-Barrels are sheets of ß-strands wrapped into a cylinder, in which the first strand is hydrogen-bonded to the final strand. Conserved multi-subunit molecular machines fold and insert these proteins into the outer membrane3-5. One subunit of the machines is itself a ß-barrel protein that has a central role in folding other ß-barrels. In Gram-negative bacteria, the ß-barrel assembly machine (BAM) consists of the ß-barrel protein BamA, and four lipoproteins5-8. To understand how the BAM complex accelerates folding without using exogenous energy (for example, ATP)9, we trapped folding intermediates on this machine. Here we report the structure of the BAM complex of Escherichia coli folding BamA itself. The BamA catalyst forms an asymmetric hybrid ß-barrel with the BamA substrate. The N-terminal edge of the BamA catalyst has an antiparallel hydrogen-bonded interface with the C-terminal edge of the BamA substrate, consistent with previous crosslinking studies10-12; the other edges of the BamA catalyst and substrate are close to each other, but curl inward and do not pair. Six hydrogen bonds in a membrane environment make the interface between the two proteins very stable. This stability allows folding, but creates a high kinetic barrier to substrate release after folding has finished. Features at each end of the substrate overcome this barrier and promote release by stepwise exchange of hydrogen bonds. This mechanism of substrate-assisted product release explains how the BAM complex can stably associate with the substrate during folding and then turn over rapidly when folding is complete.
Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/química , Cloroplastos/química , Proteínas de Escherichia coli/química , Bactérias Gram-Negativas/química , Ligação de Hidrogênio , Mitocôndrias/química , Modelos Moleculares , Conformação Proteica , Especificidade por SubstratoRESUMO
Calcium-binding RTX proteins are equipped with C-terminal secretion signals and translocate from the Ca(2+)-depleted cytosol of Gram-negative bacteria directly into the Ca(2+)-rich external milieu, passing through the "channel-tunnel" ducts of type I secretion systems (T1SSs). Using Bordetella pertussis adenylate cyclase toxin, we solved the structure of an essential C-terminal assembly that caps the RTX domains of RTX family leukotoxins. This is shown to scaffold directional Ca(2+)-dependent folding of the carboxy-proximal RTX repeat blocks into ß-rolls. The resulting intramolecular Brownian ratchets then prevent backsliding of translocating RTX proteins in the T1SS conduits and thereby accelerate excretion of very large RTX leukotoxins from bacterial cells by a vectorial "push-ratchet" mechanism. Successive Ca(2+)-dependent and cosecretional acquisition of a functional RTX toxin structure in the course of T1SS-mediated translocation, through RTX domain folding from the C-terminal cap toward the N terminus, sets a paradigm that opens for design of virulence inhibitors of major pathogens.
Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Cálcio/metabolismo , Bactérias Gram-Negativas/metabolismo , Sistemas de Secreção Tipo I/metabolismo , Toxina Adenilato Ciclase/química , Toxina Adenilato Ciclase/metabolismo , Animais , Bordetella pertussis/química , Bordetella pertussis/enzimologia , Linhagem Celular , Bactérias Gram-Negativas/química , Camundongos , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Transporte ProteicoRESUMO
Gram-positive bacteria assemble a multilayered cell wall that provides tensile strength to the cell. The cell wall is composed of glycan strands cross-linked by nonribosomally synthesized peptide stems. Herein, we modify the peptide stems of the Gram-positive bacterium Bacillus subtilis with noncanonical electrophilic d-amino acids, which when in proximity to adjacent stem peptides form novel covalent 5,3-cross-links. Approximately 20% of canonical cell-wall cross-links can be replaced with synthetic cross-links. While a low level of synthetic cross-link formation does not affect B. subtilis growth and phenotype, at higher levels cell growth is perturbed and bacteria elongate. A comparison of the accumulation of synthetic cross-links over time in Gram-negative and Gram-positive bacteria highlights key differences between them. The ability to perturb cell-wall architecture with synthetic building blocks provides a novel approach to studying the adaptability, elasticity, and porosity of bacterial cell walls.
Assuntos
Parede Celular/química , Bacilos Gram-Positivos/química , Peptidoglicano/química , Aminoácidos/química , Aminoácidos/metabolismo , Bacillus subtilis/química , Bacillus subtilis/citologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismo , Bacilos Gram-Positivos/citologia , Bacilos Gram-Positivos/crescimento & desenvolvimento , Bacilos Gram-Positivos/metabolismo , Peptidoglicano/metabolismo , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , FenótipoRESUMO
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Assuntos
Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sistemas de Secreção Tipo I/metabolismo , Transportadores de Cassetes de Ligação de ATP , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas/química , Proteínas de Membrana Transportadoras/química , Simulação de Dinâmica Molecular , Conformação Proteica , Relação Estrutura-Atividade , Sistemas de Secreção Tipo I/químicaRESUMO
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Assuntos
Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Membrana Externa Bacteriana/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Modelos Biológicos , Simulação de Dinâmica MolecularRESUMO
Polymyxins are increasingly used as the last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, efforts to address the resistance in superbugs are compromised by a poor understanding of the bactericidal modes because high-resolution detection of the cell structure is still lacking. By performing molecular dynamics simulations at a coarse-grained level, here we show that polymyxin B (PmB) disrupts Gram-negative bacterial membranes by altering lipid homeostasis and asymmetry. We found that the binding of PmBs onto the asymmetric outer membrane (OM) loosens the packing of lipopolysaccharides (LPS) and induces unbalanced bending torque between the inner and outer leaflets, which in turn triggers phospholipids to flip from the inner leaflet to the outer leaflet to compensate for the stress deformation. Meanwhile, some LPSs may be detained on the inner membrane (IM). Then, the lipid-scrambled OM undergoes phase separation. Defects are created at the boundaries between LPS-rich domains and phospholipid-rich domains, which consequently facilitate the uptake of PmB across the OM. Finally, PmBs target LPSs detained on the IM and similarly perturb the IM. This lipid Scramble, membrane phase Separation, and peptide Translocation model depicts a novel mechanism by which polymyxins kill bacteria and sheds light on developing a new generation of polymyxins or antibiotic adjuvants with improved killing activities and higher therapeutic indices.
Assuntos
Lipopolissacarídeos , Polimixinas , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Membrana Celular/metabolismo , Bactérias Gram-Negativas/química , Homeostase , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Fosfolipídeos/química , Polimixina B/farmacologia , Polimixinas/análise , Polimixinas/metabolismo , Polimixinas/farmacologiaRESUMO
Bacterial type IV secretion systems (T4SSs) are a functionally diverse translocation superfamily. They consist mainly of two large subfamilies: (i) conjugation systems that mediate interbacterial DNA transfer and (ii) effector translocators that deliver effector macromolecules into prokaryotic or eukaryotic cells. A few other T4SSs export DNA or proteins to the milieu, or import exogenous DNA. The T4SSs are defined by 6 or 12 conserved "core" subunits that respectively elaborate "minimized" systems in Gram-positive or -negative bacteria. However, many "expanded" T4SSs are built from "core" subunits plus numerous others that are system-specific, which presumptively broadens functional capabilities. Recently, there has been exciting progress in defining T4SS assembly pathways and architectures using a combination of fluorescence and cryoelectron microscopy. This review will highlight advances in our knowledge of structure-function relationships for model Gram-negative bacterial T4SSs, including "minimized" systems resembling the Agrobacterium tumefaciens VirB/VirD4 T4SS and "expanded" systems represented by the Helicobacter pylori Cag, Legionella pneumophila Dot/Icm, and F plasmid-encoded Tra T4SSs. Detailed studies of these model systems are generating new insights, some at atomic resolution, to long-standing questions concerning mechanisms of substrate recruitment, T4SS channel architecture, conjugative pilus assembly, and machine adaptations contributing to T4SS functional versatility.
Assuntos
Conjugação Genética , Fímbrias Bacterianas/fisiologia , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/fisiologia , Sistemas de Translocação de Proteínas/metabolismo , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/fisiologia , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/fisiologia , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Microscopia Crioeletrônica , Bactérias Gram-Negativas/ultraestrutura , Infecções por Bactérias Gram-Negativas/microbiologia , Helicobacter pylori/química , Helicobacter pylori/fisiologia , Humanos , Legionella pneumophila/química , Legionella pneumophila/fisiologia , Simulação de Acoplamento Molecular , Sistemas de Translocação de Proteínas/química , Sistemas de Translocação de Proteínas/ultraestrutura , Relação Estrutura-Atividade , Sistemas de Secreção Tipo IV/ultraestruturaRESUMO
We live in the era of antibiotic resistance, and this problem will progressively worsen if no new solutions emerge. In particular, Gram-negative pathogens present both biological and chemical challenges that hinder the discovery of new antibacterial drugs. First, these bacteria are protected from a variety of structurally diverse drugs by a low-permeability barrier composed of two membranes with distinct permeability properties, in addition to active drug efflux, making this cell envelope impermeable to most compounds. Second, chemical libraries currently used in drug discovery contain few compounds that can penetrate Gram-negative bacteria. As a result of these challenges, intensive screening campaigns have led to few successes, highlighting the need for new approaches to identify regions of chemical space that are specifically relevant to antibacterial drug discovery. Herein we provide an overview of emerging insights into this problem and outline a general approach to addressing it using prospective analysis of chemical libraries for the ability of compounds to accumulate in Gram-negative bacteria. The overall goal is to develop robust cheminformatic tools to predict Gram-negative permeation and efflux, which can then be used to guide medicinal chemistry campaigns and the design of antibacterial discovery libraries.
Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Quimioinformática/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Modelos Estatísticos , Bibliotecas de Moléculas Pequenas/farmacologia , Antibacterianos/química , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Química Farmacêutica , Simulação por Computador , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Humanos , Porinas/química , Porinas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-AtividadeRESUMO
Lipopolysaccharides (LPSs) are negatively charged molecules covering the surface of Gram-negative bacteria (GNB). Adding divalent cations (DCs) is important to stabilize the LPS bilayer. Thus, DCs are always only considered as membrane stabilizing ions. Here, on the basis of a coarse-grained (CG) Martini force field, we conduct molecular dynamic (MD) simulations to study the divalent cation mediated LPS interaction and the stability of the LPS membrane in a wide range of DC concentrations. By measuring the LPS binding free energy and the LPS-LPS aggregate from the association course between two LPS molecules, we find that the initial addition of DCs may significantly facilitate the aggregation of LPSs into a compact structure, while sequentially adding more DCs only unpacks the LPS aggregate and drives the dissolution of LPSs. With an increasing concentration of DCs, we find a gradual replacement of DCs to monovalent cations as condensed counterions on the LPS, which follows a sign change from negative to positive in terms of the LPS effective charge and a switch of LPSs in solution from undergoing precipitation to resolubilization on adding DCs. This interaction change in the level of two LPSs accounts for the structure variation of the LPS assembly on a larger scale, where the LPS packing rigidity in the assembly bilayer is found with a similar nonmonotonic dependence with the DC concentration. Thus, our results demonstrate for the first time the presence of a re-entrant condensation behavior for LPS molecules, which can be exploited for developing novel membrane-perturbing agents based on multivalent ions as efficient GNB antibiotics.
Assuntos
Bactérias Gram-Negativas , Lipopolissacarídeos , Cátions Bivalentes/química , Lipopolissacarídeos/química , Bactérias Gram-Negativas/química , Cátions Monovalentes , AntibacterianosRESUMO
We previously reported a large collection of structured noncoding RNAs (ncRNAs) that includes many riboswitch candidates identified through comparative sequence analysis of bacterial intergenic regions. One of these candidates, initially named the "folE motif," adopts a simple architecture commonly found upstream of folE genes. FolE enzymes catalyze the first enzyme in the de novo folate biosynthesis pathway. Herein, we demonstrate that folE motif RNAs selectively bind the enzyme cofactor tetrahydrofolate (THF) and several of its close derivatives. These aptamers, commonly found in Gram-negative bacteria, are distinct from aptamers of the previous validated THF riboswitch class found in Gram-positive bacteria. Our findings indicate that folE motif RNAs are aptamer domains for a second THF riboswitch class, named THF-II. The biochemical validation of THF-II riboswitches further highlights the ability of bacteria to utilize diverse RNA structures to sense universal enzyme cofactors that are predicted to be of ancient origin.
Assuntos
Bactérias Gram-Negativas/genética , RNA não Traduzido/metabolismo , Tetra-Hidrofolatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA não Traduzido/química , RiboswitchRESUMO
Determining the chemical composition of biological materials is paramount to the study of natural phenomena. Here, we describe the composition of model gram-negative outer membranes, focusing on the predominant assembly, an asymmetrical bilayer of lipid molecules. We also give an overview of lipid biosynthetic pathways and molecular mechanisms that organize this material into the outer membrane bilayer. An emphasis is placed on the potential of these pathways as targets for antibiotic development. We discuss deviations in composition, through bacterial cell surface remodeling, and alternative modalities to the asymmetric lipid bilayer. Outer membrane lipid alterations of current microbiological interest, such as lipid structures found in commensal bacteria, are emphasized. Additionally, outer membrane components could potentially be engineered to develop vaccine platforms. Observations related to composition and assembly of gram-negative outer membranes will continue to generate novel discoveries, broaden biotechnologies, and reveal profound mysteries to compel future research.
Assuntos
Membrana Celular/metabolismo , Bactérias Gram-Negativas/metabolismo , Bicamadas Lipídicas/química , Membrana Celular/química , Membrana Celular/genética , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/genética , Bicamadas Lipídicas/metabolismoRESUMO
Type III secretion systems are used by some Gram-negative bacteria to inject effector proteins into targeted eukaryotic cells for the benefit of the bacterium. The type III secretion injectisome is a complex nanomachine comprised of four main substructures including a cytoplasmic sorting platform, an envelope-spanning basal body, an extracellular needle and an exposed needle tip complex. Upon contact with a host cell, secretion is induced, resulting in the formation of a translocon pore in the host membrane. Translocon formation completes the conduit needed for effector secretion into the host cell. Control of type III secretion occurs in response to environmental signals, with the final signal being host cell contact. Secretion control occurs primarily at two sites-the cytoplasmic sorting platform, which determines secretion hierarchy, and the needle tip complex, which is critical for sensing and responding to environmental signals. The best-characterized injectisomes are those from Yersinia, Shigella and Salmonella species where there is a wealth of information on the tip complex and the two translocator proteins. Of these systems, the best characterized from a secretion regulation standpoint is Shigella. In the Shigella system, the tip complex and the first secreted translocon both contribute to secretion control and, thus, both are considered components of the tip complex. In this review, all three of these type III secretion systems are described with discussion focused on the structure and formation of the injectisome tip complex and what is known of the transition from nascent tip complex to assembled translocon pore.
Assuntos
Sistemas de Secreção Tipo III/química , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Transporte Proteico , Sistemas de Secreção Tipo III/classificaçãoRESUMO
Gram-negative bacteria are protected by a multicompartmental molecular architecture known as the cell envelope that contains two membranes and a thin cell wall. As the cell envelope controls influx and efflux of molecular species, in recent years both experimental and computational studies of such architectures have seen a resurgence due to the implications for antibiotic development. In this article we review recent progress in molecular simulations of bacterial membranes. We show that enormous progress has been made in terms of the lipidic and protein compositions of bacterial systems. The simulations have moved away from the traditional setup of one protein surrounded by a large patch of the same lipid type toward a more bio-logically representative viewpoint. Simulations with multiple cell envelope components are also emerging. We review some of the key method developments that have facilitated recent progress, discuss some current limitations, and offer a perspective on future directions.
Assuntos
Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Carboidratos , Membrana Celular/química , Membrana Celular/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Simulação de Dinâmica MolecularRESUMO
In Gram-negative bacteria, the folding and insertion of ß-barrel outer membrane proteins (OMPs) to the outer membrane are mediated by the ß-barrel assembly machinery (BAM) complex. Two leading models of this process have been put forth: the hybrid barrel model, which claims that a lateral gate in BamA's ß-barrel can serve as a template for incoming OMPs, and the passive model, which claims that a thinned membrane near the lateral gate of BamA accelerates spontaneous OMP insertion. To examine the key elements of these two models, we have carried out 45.5 µs of equilibrium molecular dynamics simulations of BamA with and without POTRA domains from Escherichia coli, Salmonella enterica, Haemophilus ducreyi and Neisseria gonorrhoeae, together with BamA's homolog, TamA from E. coli, in their native, species-specific outer membranes. In these equilibrium simulations, we consistently observe membrane thinning near the lateral gate for all proteins. We also see occasional spontaneous lateral gate opening and sliding of the ß-strands at the gate interface for N. gonorrhoeae, indicating that the gate is dynamic. An additional 14 µs of free-energy calculations shows that the energy necessary to open the lateral gate in BamA/TamA varies by species, but is always lower than the Omp85 homolog, FhaC. Our combined results suggest OMP insertion utilizes aspects of both the hybrid barrel and passive models.
Assuntos
Proteínas da Membrana Bacteriana Externa , Membrana Celular , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica em Folha beta , Dobramento de ProteínaRESUMO
From arid, high desert soil samples collected near Bend, Oregon, 19 unique bacteria were isolated. Each strain was identified by 16S rRNA gene sequencing, and their organic extracts were tested for antibacterial and antiproliferative activities. Noteworthy, six extracts (30 %) exhibited strong inhibition resulting in less than 50 % cell proliferation in more than one cancer cell model, tested at 10â µg/mL. Principal component analysis (PCA) of LC/MS data revealed drastic differences in the metabolic profiles found in the organic extracts of these soil bacteria. In total, fourteen potent antibacterial and/or cytotoxic metabolites were isolated via bioactivity-guided fractionation, including two new natural products: a pyrazinone containing tetrapeptide and 7-methoxy-2,3-dimethyl-4H-chromen-4-one, as well as twelve known compounds: furanonaphthoquinone I, bafilomycin C1 and D, FD-594, oligomycin A, chloramphenicol, MY12-62A, rac-sclerone, isosclerone, tunicamycin VII, tunicamycin VIII, and (6S,16S)-anthrabenzoxocinone 1.264-C.
Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Solo/química , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Análise de Componente Principal , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Microbiologia do SoloRESUMO
In the outer membrane of Gram-negative bacteria, membrane proteins are thought to be organized into domains or islands that play a role in the segregation, movement, and turnover of membrane components. However, there is presently limited information on the structure of these domains or the molecular interactions that mediate domain formation. In the present work, the Escherichia coli outer membrane vitamin B12 transporter, BtuB, was spin-labeled, and double electron-electron resonance was used to measure the distances between proteins in intact cells. These data together with Monte Carlo simulations provide evidence for the presence of specific intermolecular contacts between BtuB monomers that could drive the formation of string-like oligomers. Moreover, the EPR data provide evidence for the location of the interacting interfaces and indicate that lipopolysaccharide mediates the contacts between BtuB monomers.