Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
World J Microbiol Biotechnol ; 35(12): 188, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31741120

RESUMO

Soil contamination due to cadmium (Cd) is a ubiquitous environmental problem for which inexpensive remediation alternatives are required. Phytoaccumulation, the use of plants to extract and accumulate heavy metals from the contaminated environment, is such an alternative. In this study, we aimed at establishing effective plant-bacteria interplay between Brachiaria mutica and Cd-resistant endophytic bacteria eventually leading to improved phytoremediation. B. mutica was grown in a Cd-contaminated soil and inoculated with three Cd-tolerant endophytic bacteria individually as well as in combination. Plant physiological parameters, biomass production, bacterial colonization, and Cd-accumulation were observed at four different Cd exposures, i.e., 100, 200, 400 and 1000 mg kg-1 of soil. The combined application of endophytic bacteria was more effective as compared to their individual applications at all concentrations. Nevertheless, highest performance of consortium was seen at 100 mg Cd kg-1 of soil, i.e., root length was enhanced by 46%, shoot length by 62%, chlorophyll content by 40%, and dry biomass by 64%; which was reduced with the increase in Cd concentration. The bacterial population was highest in the root interior followed by rhizosphere and shoot interior. Concomitantly, plants inoculated with bacterial consortium displayed more Cd-accumulation in the roots (95%), shoots (55%), and leaves (44%). Higher values of BCFroot (> 1), and lower values for BCFshoot and TF (< 1) indicates capability of B. mutica to accumulate high amounts of Cd in the roots as compared to the aerial parts. The present study concludes that plant-endophyte interplay could be a sustainable and effective strategy for Cd removal from the contaminated soils.


Assuntos
Brachiaria/metabolismo , Brachiaria/microbiologia , Cádmio/metabolismo , Endófitos/fisiologia , Bactérias/metabolismo , Biodegradação Ambiental , Biomassa , Brachiaria/efeitos dos fármacos , Brachiaria/crescimento & desenvolvimento , Cádmio/análise , Cádmio/farmacologia , Produtos Agrícolas , Metais Pesados , Folhas de Planta/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo
2.
Plant Cell Rep ; 37(2): 293-306, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29080908

RESUMO

KEY MESSAGE: BbrizGID1 is expressed in the nucellus of apomictic Brachiaria brizantha, previous to aposporous initial differentiation. AtGID1a overexpression triggers differentiation of Arabidopsis thaliana MMC-like cells, suggesting its involvement in ovule development. GIBBERELLIN-INSENSITIVE DWARF1 (GID1) is a gibberellin receptor previously identified in plants and associated with reproductive development, including ovule formation. In this work, we characterized the Brachiaria brizantha GID1 gene (BbrizGID1). BbrizGID1 showed up to 92% similarity to GID1-like gibberellin receptors of other plants of the Poaceae family and around 58% to GID1-like gibberellin receptors of Arabidopsis thaliana. BbrizGID1 was more expressed in ovaries at megasporogenesis than in ovaries at megagametogenesis of both sexual and apomictic plants. In ovules, BbrizGID1 transcripts were detected in the megaspore mother cell (MMC) of sexual and apomictic B. brizantha. Only in the apomictic plants, expression was also observed in the surrounding nucellar cells, a region in which aposporous initial cells differentiate to form the aposporic embryo sac. AtGID1a ectopic expression in Arabidopsis determines the formation of MMC-like cells in the nucellus, close to the MMC, that did not own MMC identity. Our results suggest that GID1 might be involved in the proper differentiation of a single MMC during ovule development and provide valuable information on the role of GID1 in sexual and apomictic reproduction.


Assuntos
Brachiaria/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Óvulo Vegetal/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Apomixia/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brachiaria/crescimento & desenvolvimento , Brachiaria/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Homologia de Sequência de Aminoácidos
3.
J Anim Physiol Anim Nutr (Berl) ; 102(6): 1464-1471, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30094967

RESUMO

Selenium (Se) fertilisation in grazing systems can improve the quality of animal forage, but there are few studies addressing the influence of Se fertilisation on the chemical composition and ruminal degradability of forage fertilised with Se. The aim of this study was to evaluate the chemical composition and in vitro assays of truly degraded organic matter (TDOM), short-chain fatty acids (SCFA) total gas (GP) and methane (CH4 ) production of two harvests of Brachiaria brizantha cv. Marandu fertilised with urea coated with B, Cu and sodium selenate for 0, 10, 20, 40, 80 and 160 g/ha of Se. Selenium content in forage increased linearly with the different doses at 30 and 60 days after fertilisation. However, doses of 20 and 80 g/ha Se fertilisation yielded positive effects increasing Se content and truly degraded organic matter in vitro of Brachiaria brizantha cv. Marandu.


Assuntos
Brachiaria/química , Fertilizantes/análise , Ácido Selênico/metabolismo , Selênio/química , Ração Animal/análise , Brachiaria/metabolismo , Metano/metabolismo , Valor Nutritivo , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Caules de Planta/química , Ácido Selênico/química
4.
Int J Phytoremediation ; 18(9): 847-52, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26854007

RESUMO

It is important to know the mechanisms for forage development, especially those related to the tolerance of potentially toxic elements, when considering their use in phytoremediation in heavy metal contaminated areas. In this study, we evaluated plant growth, concentration, and the availability of cadmium (Cd) for forage grasses (Panicum maximum Jacq. cv. Aruana and cv. Tanzânia; Brachiaria decumbens cv. Basilisk; Brachiaria brizantha cv. Xaraés and cv. Marandu) cultivated in Cd contaminated soils. The experiments were performed under greenhouse conditions over a 90-day evaluation period, and the Cd rates were 2, 4, and 12 mg/kg of soil. The relative growth rate of the forage grasses decreased as Cd rates increased, and the following descending order of susceptibility was observed: Marandu > Xaraés > Aruana > Tanzânia > Basilisk, with regard to phytotoxicity in these plants. The forage Cd concentration increased in line with increases in the Cd rates. Cd contents extracted by Mehlich-1 and by diethylenetriaminepentaacetic acid presented high positive correlation with forage relative growth. The forage plants did not block Cd entry into the food chain because they were not capable of limiting Cd absorption.


Assuntos
Brachiaria/efeitos dos fármacos , Cádmio/toxicidade , Panicum/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Brachiaria/metabolismo , Brasil , Cádmio/metabolismo , Panicum/metabolismo , Poluentes do Solo/metabolismo
5.
Sci Rep ; 14(1): 8704, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622291

RESUMO

Grasslands cover approximately 24% of the Earth's surface and are the main feed source for cattle and other ruminants. Sustainable and efficient grazing systems require regular monitoring of the quantity and nutritive value of pastures. This study demonstrates the potential of estimating pasture leaf forage mass (FM), crude protein (CP) and fiber content of tropical pastures using Sentinel-2 satellite images and machine learning algorithms. Field datasets and satellite images were assessed from an experimental area of Marandu palisade grass (Urochloa brizantha sny. Brachiaria brizantha) pastures, with or without nitrogen fertilization, and managed under continuous stocking during the pasture growing season from 2016 to 2020. Models based on support vector regression (SVR) and random forest (RF) machine-learning algorithms were developed using meteorological data, spectral reflectance, and vegetation indices (VI) as input features. In general, SVR slightly outperformed the RF models. The best predictive models to estimate FM were those with VI combined with meteorological data. For CP and fiber content, the best predictions were achieved using a combination of spectral bands and meteorological data, resulting in R2 of 0.66 and 0.57, and RMSPE of 0.03 and 0.04 g/g dry matter. Our results have promising potential to improve precision feeding technologies and decision support tools for efficient grazing management.


Assuntos
Brachiaria , Poaceae , Bovinos , Animais , Poaceae/metabolismo , Brachiaria/metabolismo , Fibras na Dieta/metabolismo , Algoritmos , Ração Animal/análise
6.
Ann Bot ; 112(2): 297-316, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23118123

RESUMO

BACKGROUND: Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. SCOPE: In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed 'biological nitrification inhibition' (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4(+))-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and environmental perspective, the BNI function in plants could potentially have a large influence on biogeochemical cycling and closure of the N loop in crop-livestock systems.


Assuntos
Lactonas/farmacologia , Nitrificação/efeitos dos fármacos , Nitrogênio/metabolismo , Nitrosomonas/metabolismo , Raízes de Plantas/metabolismo , Agricultura , Brachiaria/química , Brachiaria/metabolismo , Produtos Agrícolas , Ecossistema , Fertilizantes , Lactonas/química , Raízes de Plantas/química , Compostos de Amônio Quaternário/metabolismo , Solo , Sorghum/química , Sorghum/metabolismo , Triticum/química , Triticum/metabolismo
7.
ScientificWorldJournal ; 2013: 281295, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24453825

RESUMO

The aim of this study was to determine the damage caused by adult Mahanarva spectabilis (Distant, 1909) (Hemiptera: Cercopidae) on Brachiaria ruziziensis (Germain & Evard) under field conditions. A total of 0, 4, 8, 12, or 16 M. spectabilis adults per plot were maintained for 6 days. Thereafter, the insects were removed from the plant, and the following parameters were evaluated: chlorophyll content, damage score, dry as well as fresh weights, percentage of shoots' dry matter, and the forage's ability to regrow. The chlorophyll content was significantly reduced; the damage score and percentage of dry matter in plants increased depending on the increased insect infestation density after 6 days of exposure. In contrast, no change was observed on the B. ruziziensis fresh and dry weights as well as the regrowth capacity depending on the M. spectabilis infestation densities. Attacks by 8 adult M. spectabilis per clump of B. ruziziensis with an average of 80 tillers for 6 days were sufficient to reduce the chlorophyll content and the functional plant loss index. This density can be a reference for spittlebug integrated management in Brachiaria.


Assuntos
Brachiaria , Clorofila/metabolismo , Hemípteros , Doenças das Plantas/parasitologia , Animais , Brachiaria/metabolismo , Brachiaria/parasitologia , Brotos de Planta/metabolismo , Brotos de Planta/parasitologia
8.
Genet Mol Res ; 11(4): 3601-6, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23096685

RESUMO

An understanding of the interaction between spittlebugs and forage grasses is essential for establishing factors that favor productive pastures. In the present study, we evaluated the protein profiles of the spittle of Mahanarva spectabilis (Distant, 1909) (Hemiptera: Cercopidae) fed various elephant grass genotypes. Each plant was infested with a single fifth-instar M. spectabilis. After 24 h, samples of the spittle produced by each nymph were collected and stored at -20°C, after which their protein profiles were analyzed. The exclusivity or interactions of the proteins present in the spittle produced by the insects revealed the susceptibility of the tested genotypes. The results indicate that groups of genotypes show identical spittle protein profiles when subjected to attack by spittlebugs. Resistant and susceptible elephant grass genotypes exhibited high similarity indices within each group. The similarity index was low for the resistance control species (Brachiaria brizantha) compared with that of the tested elephant grass genotypes. Qualitative and quantitative studies of the proteins expressed in the most promising materials will be performed in an ongoing genetic improvement program seeking to develop genotypes resistant to spittlebugs, which are the main biotic pests of elephant grasses.


Assuntos
Dieta , Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Proteômica/métodos , Animais , Brachiaria/genética , Brachiaria/metabolismo , Comportamento Alimentar , Genótipo , Filogenia
9.
Environ Monit Assess ; 184(2): 1015-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21487717

RESUMO

Mine waste water at South Kaliapani usually contains toxic levels of hexavalent Cr(VI). The present in situ study was conducted at South Kaliapani chromite mine area in Orissa state, India, to assess the phytoremediation ability of three plants, namely, rice (Oryza sativa L.), paragrass (Brachiaria mutica), and an aquatic weed (Eichhornia crassipes), in attenuating Cr(VI) from mine waste water and to correlate the bio-concentration factors (BCF) of Cr. Water hyacinth (E. crassipes) showed 24% to 54% reduction whereas paragrass (B. mutica) was able to reduce 18% to 33% of Cr(VI) from mine water. This reduction was studied over a period of 100 days of plant growth. The reduction was observed through a passage of a sum total of 2,000 sq. ft. cultivated plots and ponds separately. Reduction in Cr(VI) content in mine water varies with plant age as well as with the distance of passage. Cr accumulation and BCF values increased with high soil Cr levels as well as the age of plants. High BCF and transportation index (Ti) values, i.e., 10,924 and 32.09, respectively, were noted for water hyacinth. The Ti values indicated that the root-to-shoot translocation of Cr was very high after 100 days of growth. The total accumulation rate was maximum (8.29 mg Cr kg dry biomass(-1) day (-1)) in paragrass. The BCF values for roots were noted to be higher than those of leaves, stems, and grains of the 125-day-old plants. Hence, paragrass and water hyacinth may be used as tools of phytoremediation to combat the problem of in situ Cr contamination.


Assuntos
Brachiaria/química , Cromo/análise , Eichhornia/química , Oryza/química , Poluentes do Solo/análise , Biodegradação Ambiental , Brachiaria/metabolismo , Cromo/metabolismo , Eichhornia/metabolismo , Índia , Mineração , Oryza/metabolismo , Poluentes do Solo/metabolismo
10.
Integr Environ Assess Manag ; 18(2): 528-538, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34273133

RESUMO

The biggest world tailing dam rupture occurred in Brazil in 2015, releasing approximately 32 million m3 of iron tailings in the Doce River watershed, along its 660 km trajectory, reaching the Atlantic Ocean. This disaster significantly altered water and soil properties, increasing the soil metal contents, mainly iron concentration. Little is known about the concentration of toxic elements in plants grown in these areas. Brachiaria decumbens stands out as the most cultivated grass in the affected areas and is widely used for cattle grazing. This study verified the metal contents in soils and in samples of B. decumbens grown in the initial pathway of the debris flow. It was noted that the tailing deposition altered the substrate chemically, increasing Fe by 181% and reducing Zn soil contents by 188%. However, the metal contents in the forage grass were below the toxic limit for cattle feed. In addition, the results suggest that the natural geological characteristics of the region also influenced the metal contents in plants since those plants grown in nonaffected areas also showed high metal concentrations. The impacted area soils had a slightly basic pH, which can reduce the metal availability. Considering that, in the future, these soils would return to their natural acid state, the metal contents in plants grown in the affected regions could probably increase. Thus, long-term studies are needed to ensure the food safety of the forage production in these areas. Integr Environ Assess Manag 2022;18:528-538. © 2021 SETAC.


Assuntos
Brachiaria , Metais Pesados , Poluentes do Solo , Animais , Brachiaria/metabolismo , Bovinos , Monitoramento Ambiental/métodos , Ferro , Metais Pesados/análise , Poaceae , Solo/química , Poluentes do Solo/análise
11.
Sci Rep ; 10(1): 5072, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193510

RESUMO

Leaching of nitrate from fertilisers diminishes nitrogen use efficiency (the portion of nitrogen used by a plant) and is a major source of agricultural pollution. To improve nitrogen capture, grasses such as brachiaria are increasingly used, especially in South America and Africa, as a cover crop, either via intercropping or in rotation. However, the complex interactions between soil structure, nitrogen and the root systems of maize and different species of forage grasses remain poorly understood. This study explored how soil structure modification by the roots of maize (Zea maize), palisade grass (Brachiaria brizantha cv. Marandu) and ruzigrass (Brachiaria ruziziensis) affected nitrate leaching and retention, measured via chemical breakthrough curves. All plants were found to increase the rate of nitrate transport suggesting root systems increase the tendency for preferential flow. The greater density of fine roots produced by palisade grass, subtly decreased nitrate leaching potential through increased complexity of the soil pore network assessed with X-ray Computed Tomography. A dominance of larger roots in ruzigrass and maize increased nitrate loss through enhanced solute flow bypassing the soil matrix. These results suggest palisade grass could be a more efficient nitrate catch crop than ruzigrass (the most extensively used currently in countries such as Brazil) due to retardation in solute flow associated with the fine root system and the complex pore network.


Assuntos
Brachiaria/metabolismo , Nitratos/metabolismo , Fenômenos Fisiológicos da Nutrição , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Solo , Transporte Biológico
12.
Chemosphere ; 243: 125362, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31759212

RESUMO

Previous studies have unraveled contrasting Al genotypic differences between Urochloa brizantha cv. Marandu (moderately tolerant) and Urochloa brizantha cv. Xaraés (more tolerant). Our objective was to evaluate differences in the response to Al-induced stress between these genotypes, focusing on Al compartmentation in the root apoplast and symplast, and antioxidant enzyme activities after Al exposure. Al-accumulation was 25% higher in the roots of cv. Xaraés than cv. Marandu, while in the shoot Al accumulation was 150% higher in cv. Marandu than cv. Xaraés. U. brizantha cv. Marandu accumulated 73% of the Al absorbed in the root symplast and 27% in the root apoplast, while cv. Xaraés accumulated 61% of the Al absorbed in symplast and 39% in apoplast. Furthermore, Al exposure leaded to physiological and developmental changes in root morphology, such as disorganization of vascular system, the collapse of cortical cells and absence of root hairs from the root tip, with more drastic effects detectable in cv. Marandu. Catalase (CAT) and guaiacol peroxidase (GPOX) activities in the roots of cv. Marandu were lower compared to cv. Xaraés. Our results pointed out that higher Al compartmentalization rates in the root apoplast, altogether with up-regulated metabolic activities of CAT and GPOX and also lower long distance transport of Al are seemingly at the base of the Al tolerance in cv. Xaraés. In conclusion, biochemical analysis of roots suggested that understanding of metabolic pathways is one of pressing approach to elucidate stress tolerance mechanisms in this genus.


Assuntos
Alumínio/metabolismo , Brachiaria/fisiologia , Poluentes do Solo/metabolismo , Alumínio/toxicidade , Antioxidantes/metabolismo , Brachiaria/metabolismo , Catalase/metabolismo , Genótipo , Oxirredução , Peroxidase , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade
13.
Chemosphere ; 258: 127337, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947656

RESUMO

The experiment was designed to evaluate the roles of Rhizophagus irregularis on chlorophyll fluorescence and chromium bioaccumulation in a grass species (Brachiaria mutica) by supplementing Cr+6 at different concentrations. Arbuscular Mycorrhizal Fungi (AMF) association facilitated lessening of chromium level in contaminated soil and enhanced chromium bioavailability in Brachiaria mutica. The mycorrhizal inoculated increased the chlorophyll (0.925 mg/g), carotenoid (0.127 mg/g), protein (2.883 mg/g), proline (0.889 mg/g) contents and activities of antioxidant enzymes like catalase, ascorbate peroxidase and glutathione peroxidase. The mycorrhizal inoculated plants also showed enhanced overall photosynthetic performance (PIϕ = 2.473) and enhanced PS-II to PS-I electron transport as evident from yield parameter (0.712) and TR0/RC (2.419) for 60 mg/kg Cr+6 treatment. The observations suggest that AMF association could defend the plants from chromium stress by elevating the number of antioxidants in plants. Rhizophagus irregularis was found to maintain a successful symbiotic relationship with Brachiaria mutica in chromium contaminated soil. The observations recommended that Rhizophagus irregularis in association with Brachiaria mutica would be an innovative approach for decontamination of Cr+6.


Assuntos
Biodegradação Ambiental , Brachiaria/metabolismo , Cromo/metabolismo , Poluentes do Solo/metabolismo , Antioxidantes/metabolismo , Bioacumulação , Clorofila/metabolismo , Cromo/análise , Glomeromycota/metabolismo , Micorrizas/metabolismo , Fotossíntese , Plantas/metabolismo , Poaceae/metabolismo , Solo , Poluentes do Solo/análise , Simbiose
14.
Chemosphere ; 233: 216-222, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31173959

RESUMO

Considering the prevalence of eutrophication of water bodies, sustainable treatment technologies like constructed wetlands (CWs) have come up as a promising alternate for nutrient removal and wastewater treatment. The present study was undertaken to investigate the potential of Brachiaria-based constructed wetland for removal of phosphorus and nitrogen in different seasons of a sub-tropical region. The CW cell could efficiently remove phosphate and nitrogen under varying influent concentrations across different seasons. Average removal of total phosphate increased from 55.2% (winter) to 78.5% (spring), 80.7% (autumn), and 85.6% (summer), and maximum removal rate was 384.4 mg/m2-day during the summer season. The soluble/available phosphate was removed on priority owing to its easy bio-availability. The removal efficiency of Brachiaria increased with increasing influent phosphate concentration (5-20 mg/l), if supplemented with nitrogen maintaining the N:P ratio of 5:1. This highlighted the characteristic of Brachiaria to absorb chemical shocks w.r.t. phosphate. The neutral pH (6.2-8.3) and oxidising conditions in rhizosphere ruled out possibility of binding of phosphate with cations (Ca, Fe, and Al) in sediments. Ambient temperature and sunshine hours regulated evapotranspiration and hence nutrient removal. Simultaneous removal of nitrogen (75.6-84.6%) by Brachiaria indicated that it can serve dual purpose of nutrient removal and fodder-production for livestock, thus serving as a sustainable prototype for rural communities in sub-tropical regions.


Assuntos
Brachiaria/metabolismo , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Concentração de Íons de Hidrogênio , Índia , Nitrogênio/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Estações do Ano , Águas Residuárias , Qualidade da Água
15.
Plant Physiol Biochem ; 135: 206-214, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30576979

RESUMO

Invasive grasses inhibit the growth of other plant species, and water deficit is one of the major competition problems for native vegetation. We evaluated whether the presence of Brachiaria brizantha cv. Piatã has a negative influence on the competition for water and nutrients between Anadenanthera macrocarpa and Anadenanthera colubrina (Angico species). The interspecific competition was evaluated using a randomized experimental design with the following treatments: 1) free competition (FC), in which the native species were cultivated without the grass presence and 2) under competition (UC), in which the native species grew together with the invasive grass for 120 days. We analysed the water relationships in the two species, the effect of water limitation on the antioxidant stress, the nutritional content of shoots and roots, the relative competition intensity (RCI) and growth. The presence of Piatã grass reduced the soil moisture causing a decrease of 21.9% and 29.5% in the relative water content (RWC) of leaves for A. macrocarpa and A. colubrina, respectively. For the two Angico species, the quantum efficiency of Photosystem II (ΦPSII) decreased with reduction of RWC leaf, resulting in the H2O2 increase (57.5% at day 30 for A. colubrina and 38.8% at day 120 for A. macrocarpa). The oxidative stress was evidenced by the increase in the superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities in leaves and roots of both young native trees. In the UC treatment, reductions in water uptake also led to a decrease in root absorption of N, P, K, a Mg and low transport of these nutrients to the leaves of both Angico species. A. macrocarpa and A. colubrina showed less growth caused by limitation of water uptake, but the joint activity of the physiological and biochemical adjustments provided competitive ability.


Assuntos
Brachiaria/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Brachiaria/metabolismo , Brachiaria/fisiologia , Desidratação , Fabaceae/metabolismo , Fabaceae/fisiologia , Pradaria , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Complexo de Proteína do Fotossistema II/metabolismo
16.
Plant Physiol Biochem ; 137: 113-120, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30772621

RESUMO

The tropical forage grass Brachiaria humidicola (Bh) controls soil microbial nitrification via biological nitrification inhibition (BNI). The aim of our study was to verify if nitrate reductase activity (NRA) in Bh roots or leaves reflects in vivo performance of BNI in soils. NRA was measured in roots and leaves of contrasting accessions and apomictic hybrids of Bh grown under controlled greenhouse and natural field conditions. Nitrate (NO3-) contents were measured in soil solution and in Bh stem sap to validate NRA data. Potential soil nitrification rates (NRs) and leaf δ15N values were used to verify in vivo BNI by the NRA assay in the field study. NRA was detected in Bh leaves rather than roots, regardless of NO3- availability. NRA correlated with NO3- contents in soils and stem sap of contrasting Bh genotypes substantiating its reflectance of in vivo BNI performance. Additionally, leaf NRA data from the field study significantly correlated with simultaneously collected NRs and leaf δ15N data. The leaf NRA assay facilitated a rapid screening of contrasting Bh genotypes for their differences in in vivo performance of BNI under field and greenhouse conditions, but inconsistency of the BNI potential by Bh germplasm was observed. Among Bh genotypes tested, leaf NRA was closely linked with nitrification activity, and consequently with actual BNI performance. It was concluded that NRA in leaves of Bh can serve as an indicator of in vivo BNI activity when complemented with established BNI methodologies (δ15N, NRs) under greenhouse and field conditions.


Assuntos
Brachiaria/metabolismo , Nitrato Redutase/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Solo/química , Brachiaria/genética , Fertilizantes , Genótipo , Alemanha , Nitratos/análise , Nitratos/metabolismo , Nitrificação , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Raízes de Plantas/metabolismo
17.
Cell Biol Int ; 32(11): 1459-63, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18675367

RESUMO

Several mutations are known to alter the normal progression of meiosis and can be correlated with defects in microtubule distribution. The dv mutation affects the spindle organization and chromosomes do not converge into focused poles. Two Brachiaria hybrids presented the phenotypic expressions of dv mutation but exhibited many more details in the second division. Bivalents were distantly positioned and spread over a large metaphase plate and failed to converge into focused poles. Depending on the distance of chromosomes at the poles, telophase I nuclei were elongated or the chromosomes were grouped into various micronuclei of different sizes in each cell. The first cytokinesis occurred. However, when there were micronuclei, a second cytokinesis immediately took place dividing the prophase II meiocytes into three or four cells. In each meiocyte, meiosis progressed to the second division. Slightly elongated nuclei or micronuclei were recorded in telophase II. After a third cytokinesis, hexads or octads were formed. Pollen grains of different sizes were generated. One of these hybrids presented a higher frequency of abnormal cells than when previously analyzed. The fate of these hybrids as genitors or as candidates for cultivars in the Brachiaria breeding program is discussed.


Assuntos
Brachiaria/genética , Quimera/genética , Regulação da Expressão Gênica de Plantas/genética , Meiose/genética , Mutação/genética , Fuso Acromático/genética , Brachiaria/crescimento & desenvolvimento , Brachiaria/metabolismo , Ciclo Celular/genética , Segregação de Cromossomos/genética , Citocinese/genética , Micronúcleo Germinativo/genética , Fenótipo , Pólen/citologia , Pólen/genética , Reprodução/genética , Telófase/genética
18.
Braz J Microbiol ; 49 Suppl 1: 64-67, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30145264

RESUMO

The aim of this research was to evaluate the efficiency of aqueous alkali-treated Brachiaria straw for the cultivation of appropriate species of oyster mushroom. The substrate used in the cultivation of various Pleurotus spp. was soaked for 20min by using two different procedures: (i) 0.5-2.0% Ca(OH)2 in 100L water, and (ii) 50-250L water. As a result, 1% Ca(OH)2 dissolved in 100L water and 3.5kg of Brachiaria straw presented the best production. The most suitable species for the application of the present method were P. pulmonarius and P. sapidus. The success of this technique is directly related to the concentration of Ca(OH)2 and water, the species, and the origin and quality of raw material used as the substrate in the production of oyster mushroom.


Assuntos
Brachiaria/química , Produção Agrícola/métodos , Meios de Cultura/química , Pleurotus/crescimento & desenvolvimento , Biodegradação Ambiental , Brachiaria/metabolismo , Brachiaria/microbiologia , Produção Agrícola/instrumentação , Meios de Cultura/metabolismo , Hidrólise , Caules de Planta/química , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Pleurotus/metabolismo
19.
Chemosphere ; 200: 257-265, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29494906

RESUMO

Hydroponics experiment was conducted to investigate the effects of different levels of Pb on Para Grass (Brachiaria mutica) and Castorbean (Ricinus communis L). Generally, Para Grass exhibited higher tolerance to excessive concentrations of Pb in nutrient solution, whereas a consistent decline was observed in growth of Castorbean plants exposed to similar Pb levels. Malondialdehyde (MDA) and H2O2 contents exhibited contrasting results with a general decrease in Para Grass and a linear increase in case of Castorbean. In both species a decrease was noticed in the activities of superoxide dismutase (SOD) and guaiacol peroxidase (G-POD) while catalase (CAT) activity was significantly increased. Ultrastructural studies revealed increased starch grains and adversely affected thylakoid membranes in chloroplasts of leaf cells of plants treated with 500 µM Pb. Photosynthetic parameters such as CO2 assimilation rate, stomatal conductance (gs) and transpiration rate (E) decreased in both plant species under different levels of Pb. Maximum concentrations of Pb in shoots of Para Grass and Castorbean were 1.29 and 0.352 g kg-1, respectively while in roots maximum values were 8.88 and 49.86 g kg-1, respectively. The high concentrations of Pb (about 5%) in the roots of Castorbean plants suggest its possible role in the phytoremediation/rhizofiltration of Pb contaminated water.


Assuntos
Antioxidantes/farmacologia , Biodegradação Ambiental/efeitos dos fármacos , Brachiaria/crescimento & desenvolvimento , Chumbo/toxicidade , Fotossíntese/efeitos dos fármacos , Ricinus/crescimento & desenvolvimento , Brachiaria/efeitos dos fármacos , Brachiaria/metabolismo , Brachiaria/ultraestrutura , Peróxido de Hidrogênio/farmacologia , Malondialdeído/metabolismo , Microscopia Eletrônica de Transmissão , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Ricinus/efeitos dos fármacos , Ricinus/metabolismo , Ricinus/ultraestrutura , Superóxido Dismutase/metabolismo
20.
Chemosphere ; 67(8): 1588-600, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17234253

RESUMO

The objectives of this paper are to determine effects of different grass species and their harvests on pollutant removal, elucidate impacts on soil characteristics and grass constituents, observe grass yield and quantify nutrient uptake by vegetation in an overland flow system (OLFS). Polluted creek water was applied to eight channels in the OLFS, which were planted with Paragrass, Nilegrass, Cattail, and Vetiver, with each two channels being randomly planted with a given grass species. The grass in one channel was harvested while that in the other channel was not. At a high rate of 27.8 m d(-1) hydraulic loading, the removal efficiencies of conventional pollutants such as BOD, COD, suspended solids (SS), and total coliforms in wastewater are not affected by the type of the grasses species, but those of nitrogen and phosphorus are affected by different species. Overall average removal efficiencies of BOD, COD, SS, ammonia, total nitrogen, total phosphorus and total coliforms through the OLFS are 42%, 48%, 78%, 47%, 40%, 33% and 89%, respectively. The concentration of nitrate, however, increases due to nitrification. Soil characteristics in OLFS have been changed significantly; specific conductivity, organic matter, exchangeable magnesium, extractable copper and zinc in soils all increase with time while pHs decrease. During the winter season, there is a significant accumulation of nitrate in grass with the subsequent reduction during the active growing season (Spring). The contents of nitrate and phosphorus in grass tissue are higher than those of grass in general pastureland, probably due to nutrient luxury uptake by grass. The overall grass yield, growth rate and nutrient uptake are quantified and implication of such high rate OLFS discussed.


Assuntos
Biodegradação Ambiental , Poaceae/metabolismo , Poluentes do Solo/análise , Poluição Química da Água/análise , Purificação da Água/métodos , Brachiaria/química , Brachiaria/crescimento & desenvolvimento , Brachiaria/metabolismo , Vetiveria/química , Vetiveria/crescimento & desenvolvimento , Vetiveria/metabolismo , Nitrogênio/metabolismo , Poaceae/química , Poaceae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA