RESUMO
Consumption of a high-energy Western diet triggers mild adaptive ß cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of ß cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of ß cells, but not that of α cells, leading to enlarged ß cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of ß cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse ß cell failure in patients with diabetes.
Assuntos
Células Secretoras de Insulina/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Animais , Proliferação de Células , Ciclina D2/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Obesidade/tratamento farmacológico , Parabiose , Ligação Proteica , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismoRESUMO
Characterizing relationships between Zn2+, insulin, and insulin vesicles is of vital importance to the study of pancreatic beta cells. However, the precise content of Zn2+ and the specific location of insulin inside insulin vesicles are not clear, which hinders a thorough understanding of the insulin secretion process and diseases caused by blood sugar dysregulation. Here, we demonstrated the colocalization of Zn2+ and insulin in both single extracellular insulin vesicles and pancreatic beta cells by using an X-ray scanning coherent diffraction imaging (ptychography) technique. We also analyzed the elemental Zn2+ and Ca2+ contents of insulin vesicles using electron microscopy and energy dispersive spectroscopy (EDS) mapping. We found that the presence of Zn2+ is an important characteristic that can be used to distinguish insulin vesicles from other types of vesicles in pancreatic beta cells and that the content of Zn2+ is proportional to the size of insulin vesicles. By using dual-energy contrast X-ray microscopy and scanning transmission X-ray microscopy (STXM) image stacks, we observed that insulin accumulates in the off-center position of extracellular insulin vesicles. Furthermore, the spatial distribution of insulin vesicles and their colocalization with other organelles inside pancreatic beta cells were demonstrated using three-dimensional (3D) imaging by combining X-ray ptychography and an equally sloped tomography (EST) algorithm. This study describes a powerful method to univocally describe the location and quantitative analysis of intracellular insulin, which will be of great significance to the study of diabetes and other blood sugar diseases.
Assuntos
Células Secretoras de Insulina , Insulina , Vesículas Secretórias , Zinco , Animais , Glicemia , Linhagem Celular , Insulina/análise , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Ratos , Vesículas Secretórias/química , Vesículas Secretórias/metabolismo , Espectrometria por Raios X , Difração de Raios X , Zinco/análiseRESUMO
Islet ß-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion are tightly regulated in ß-cells at multiple subcellular levels. The epithelial intermediate filament (IF) protein keratin (K) 8 is the main ß-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in ß-cells, mice with targeted deletion of ß-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure, and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in ß-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of ß-cell K8 leads to a major reduction in K18. Islets without ß-cell K8 are more fragile, and these ß-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria with diffuse cristae. Lack of ß-cell K8 also leads to a reduced glucose-stimulated insulin secretion (GSIS) response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox, Ins-Cre mice have a decreased sensitivity to STZ compared with K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in ß-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments but mistargeted in cells with disrupted K8/K18 filaments. ß-Cell K8 is required for islet and ß-cell structural integrity, normal mitochondrial morphology, and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.NEW & NOTEWORTHY Keratin 8 is the main cytoskeletal protein in the cytoplasmic intermediate filament network in ß-cells. Here for the first time, we assessed the ß-cell autonomous mechanical and nonmechanical roles of keratin 8 in ß-cell function. We demonstrated the importance of keratin 8 in islet and ß-cell structural integrity, maintaining mitochondrial morphology and GLUT2 plasma membrane targeting.
Assuntos
Membrana Celular , Diabetes Mellitus Experimental , Transportador de Glucose Tipo 2 , Células Secretoras de Insulina , Queratina-8 , Mitocôndrias , Animais , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Camundongos , Queratina-8/metabolismo , Queratina-8/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/genética , Glucose/metabolismo , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
AIMS/HYPOTHESIS: We studied the effects of heterozygous human INS gene mutations on insulin secretion, endoplasmic reticulum (ER) stress and other mechanisms in both MIN6 and human induced pluripotent stem cells (hiPSC)-derived beta-like cells, as well as the effects of prolonged overexpression of mutant human INS in MIN6 cells. METHODS: We modelled the structure of mutant C109Y and G32V proinsulin computationally to examine the in silico effects. We then overexpressed either wild-type (WT), mutant (C109Y or G32V), or both WT and mutant human preproinsulin in MIN6 cells, both transiently and stably over several weeks. We measured the levels of human and rodent insulin secreted, and examined the transcript and protein levels of several ER stress and apoptotic markers. We also reprogrammed human donor fibroblasts heterozygous for the C109Y mutation into hiPSCs and differentiated these into pancreatic beta-like cells, which were subjected to single-cell RNA-sequencing and transcript and protein analyses for ER stress and apoptotic markers. RESULTS: The computational modelling studies, and short-term and long-term expression studies in beta cells, revealed the presence of ER stress, organelle changes and insulin processing defects, resulting in a decreased amount of insulin secreted but not the ability to secrete insulin. By 9 weeks of expression of mutant human INS, dominant-negative effects of mutant INS were evident and beta cell insulin secretory capacity declined. INS+/C109Y patient-derived beta-like cells and single-cell RNA-sequencing analyses then revealed compensatory upregulation in genes involved in insulin secretion, processing and inflammatory response. CONCLUSIONS/INTERPRETATION: The results provide deeper insights into the mechanisms of beta cell failure during INS mutation-mediated diabetes disease progression. Decreasing spliced X-box binding protein 1 (sXBP1) or inflammatory response could be avenues to restore the function of the remaining WT INS allele.
Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/genética , Mutação , Pancreatopatias/metabolismo , Transporte Biológico , Células Cultivadas , Diabetes Mellitus/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos , Glucose/farmacologia , Humanos , Lactente , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/ultraestrutura , Cariotipagem , Microscopia Eletrônica de Transmissão , Pancreatopatias/patologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Proinsulina/genética , Reação em Cadeia da Polimerase em Tempo Real , TransfecçãoRESUMO
Insulin secretion by pancreatic islet ß-cells is regulated by glucose levels and is accompanied by proton generation. The voltage-gated proton channel Hv1 is present in pancreatic ß-cells and extremely selective for protons. However, whether Hv1 is involved in insulin secretion is unclear. Here we demonstrate that Hv1 promotes insulin secretion of pancreatic ß-cells and glucose homeostasis. Hv1-deficient mice displayed hyperglycemia and glucose intolerance because of reduced insulin secretion but retained normal peripheral insulin sensitivity. Moreover, Hv1 loss contributed much more to severe glucose intolerance as the mice got older. Islets of Hv1-deficient and heterozygous mice were markedly deficient in glucose- and K+-induced insulin secretion. In perifusion assays, Hv1 deletion dramatically reduced the first and second phase of glucose-stimulated insulin secretion. Islet insulin and proinsulin content was reduced, and histological analysis of pancreas slices revealed an accompanying modest reduction of ß-cell mass in Hv1 knockout mice. EM observations also indicated a reduction in insulin granule size, but not granule number or granule docking, in Hv1-deficient mice. Mechanistically, Hv1 loss limited the capacity for glucose-induced membrane depolarization, accompanied by a reduced ability of glucose to raise Ca2+ levels in islets, as evidenced by decreased durations of individual calcium oscillations. Moreover, Hv1 expression was significantly reduced in pancreatic ß-cells from streptozotocin-induced diabetic mice, indicating that Hv1 deficiency is associated with ß-cell dysfunction and diabetes. We conclude that Hv1 regulates insulin secretion and glucose homeostasis through a mechanism that depends on intracellular Ca2+ levels and membrane depolarization.
Assuntos
Intolerância à Glucose/complicações , Intolerância à Glucose/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Secreção de Insulina , Canais Iônicos/metabolismo , Envelhecimento/patologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Tamanho Celular , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Citosol/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Regulação para Baixo/efeitos dos fármacos , Deleção de Genes , Glucose/farmacologia , Concentração de Íons de Hidrogênio , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/ultraestrutura , Canais Iônicos/deficiência , Canais Iônicos/genética , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Acetato de Tetradecanoilforbol/farmacologiaRESUMO
FBXW7, a classic tumor suppressor, is a substrate recognition subunit of the Skp1-cullin-F-box (SCF) ubiquitin ligase that targets oncoproteins for ubiquitination and degradation. We recently found that FBXW7 is recruited to DNA damage sites to facilitate nonhomologous end-joining (NHEJ). The detailed underlying molecular mechanism, however, remains elusive. Here we report that the WD40 domain of FBXW7, which is responsible for substrate binding and frequently mutated in human cancers, binds to poly(ADP-ribose) (PAR) immediately following DNA damage and mediates rapid recruitment of FBXW7 to DNA damage sites, whereas ATM-mediated FBXW7 phosphorylation promotes its retention at DNA damage sites. Cancer-associated arginine mutations in the WD40 domain (R465H, R479Q and R505C) abolish both FBXW7 interaction with PAR and recruitment to DNA damage sites, causing inhibition of XRCC4 polyubiquitination and NHEJ. Furthermore, inhibition or silencing of poly(ADP-ribose) polymerase 1 (PARP1) inhibits PAR-mediated recruitment of FBXW7 to the DNA damage sites. Taken together, our study demonstrates that the WD40 domain of FBXW7 is a novel PAR-binding motif that facilitates early recruitment of FBXW7 to DNA damage sites for subsequent NHEJ repair. Abrogation of this ability seen in cancer-derived FBXW7 mutations provides a molecular mechanism for defective DNA repair, eventually leading to genome instability.
Assuntos
Reparo do DNA por Junção de Extremidades , Proteína 7 com Repetições F-Box-WD/genética , Poli(ADP-Ribose) Polimerase-1/genética , Poli Adenosina Difosfato Ribose/metabolismo , Fator de Células-Tronco/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína 7 com Repetições F-Box-WD/química , Proteína 7 com Repetições F-Box-WD/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Fibroblastos/ultraestrutura , Raios gama , Células HCT116 , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos da radiação , Células Secretoras de Insulina/ultraestrutura , Modelos Moleculares , Mutação , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/química , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Fator de Células-Tronco/metabolismo , Ubiquitinação/efeitos da radiaçãoRESUMO
Over the last decades, lipotoxicity and glucotoxicity emerged as established mechanisms participating in the pathophysiology of obesity-related type 2 diabetes in general, and in the loss of ß-cell function in particular. However, these terms hold various potential biological processes, and it is not clear what precisely they refer to and to what extent they might be clinically relevant. In this review, we discuss the basis and the last advances of research regarding the role of free fatty acids, their metabolic intracellular pathways, and receptor-mediated signaling related to glucose-stimulated insulin secretion, as well as lipid-induced ß-cell dysfunction. We also describe the role of chronically elevated glucose, namely, glucotoxicity, which promotes failure and dedifferentiation of the ß cell. Glucolipotoxicity combines deleterious effects of exposures to both high glucose and free fatty acids, supposedly provoking synergistic defects on the ß cell. Nevertheless, recent studies have highlighted the glycerolipid/free fatty acid cycle as a protective pathway mediating active storage and recruitment of lipids. Finally, we discuss the putative correspondence of the loss of functional ß cells in type 2 diabetes with a natural, although accelerated, aging process.
Assuntos
Adaptação Biológica , Glucose/toxicidade , Secreção de Insulina , Células Secretoras de Insulina/patologia , Lipídeos/farmacologia , Adaptação Biológica/efeitos dos fármacos , Animais , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/ultraestrutura , Modelos BiológicosRESUMO
Live-cell imaging of mitochondrial function and dynamics can provide vital insights into both physiology and pathophysiology, including of metabolic diseases like type 2 diabetes. However, without super-resolution microscopy and commercial analysis software, it is challenging to accurately extract features from dense multilayered mitochondrial networks, such as those in insulin-secreting pancreatic ß-cells. Motivated by this, we developed a comprehensive pipeline and associated ImageJ plugin that enables 2D/3D quantification of mitochondrial network morphology and dynamics in mouse ß-cells and by extension other similarly challenging cell types. The approach is based on standard confocal microscopy and shareware, making it widely accessible. The pipeline was validated using mitochondrial photolabeling and unsupervised cluster analysis and is capable of morphological and functional analyses on a per-organelle basis, including in 4D (xyzt). Overall, this tool offers a powerful framework for multiplexed analysis of mitochondrial state/function and provides a valuable resource to accelerate mitochondrial research in health and disease.
Assuntos
Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/ultraestrutura , Microscopia Confocal/métodos , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Software , Imagem com Lapso de Tempo , Fluxo de TrabalhoRESUMO
There are presently no reliable ways to quantify human pancreatic beta cell mass (BCM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. Furthermore, the lack of beta cell imaging hampers the evaluation of the impact of new drugs aiming to prevent beta cell loss or to restore BCM in diabetes. We presently discuss the potential value of BCM determination as a cornerstone for individualized therapies in diabetes, describe the presently available probes for human BCM evaluation, and discuss our approach for the discovery of novel beta cell biomarkers, based on the determination of specific splice variants present in human beta cells. This has already led to the identification of DPP6 and FXYD2ga as two promising targets for human BCM imaging, and is followed by a discussion of potential safety issues, the role for radiochemistry in the improvement of BCM imaging, and concludes with an overview of the different steps from pre-clinical validation to a first-in-man trial for novel tracers.
Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Células Secretoras de Insulina/ultraestrutura , Transplante das Ilhotas Pancreáticas/diagnóstico por imagem , Compostos Radiofarmacêuticos/química , Anticorpos de Domínio Único/química , 5-Hidroxitriptofano/química , 5-Hidroxitriptofano/farmacocinética , Animais , Biomarcadores/análise , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Exenatida/química , Exenatida/farmacocinética , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/transplante , Imageamento por Ressonância Magnética/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Canais de Potássio/genética , Canais de Potássio/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Anticorpos de Domínio Único/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Tecnécio/química , Tecnécio/metabolismo , Tetrabenazina/análogos & derivados , Tetrabenazina/química , Tetrabenazina/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodosRESUMO
Amyloid-ß (Aß) and human islet amyloid polypeptide (hIAPP) aggregate to form amyloid fibrils that deposit in tissues and are associated with Alzheimer's disease (AD) and type II diabetes (T2D), respectively. Individuals with T2D have an increased risk of developing AD, and conversely, AD patients have an increased risk of developing T2D. Evidence suggests that this link between AD and T2D might originate from a structural similarity between aggregates of Aß and hIAPP. Using the cryoEM method microelectron diffraction, we determined the atomic structures of 11-residue segments from both Aß and hIAPP, termed Aß(24-34) WT and hIAPP(19-29) S20G, with 64% sequence similarity. We observed a high degree of structural similarity between their backbone atoms (0.96-Å root mean square deviation). Moreover, fibrils of these segments induced amyloid formation through self- and cross-seeding. Furthermore, inhibitors designed for one segment showed cross-efficacy for full-length Aß and hIAPP and reduced cytotoxicity of both proteins, although by apparently blocking different cytotoxic mechanisms. The similarity of the atomic structures of Aß(24-34) WT and hIAPP(19-29) S20G offers a molecular model for cross-seeding between Aß and hIAPP.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Modelos Moleculares , Emaranhados Neurofibrilares/metabolismo , Fragmentos de Peptídeos/metabolismo , Substituição de Aminoácidos , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Animais , Linhagem Celular Tumoral , Biologia Computacional , Cristalografia por Raios X , Desenho de Fármacos , Células HEK293 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/ultraestrutura , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Camundongos , Microscopia Eletrônica de Transmissão , Mutação , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Nootrópicos/química , Nootrópicos/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/prevenção & controle , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestruturaRESUMO
The structural organisation of pancreatic ß-cells in the islets of Langerhans is relatively unknown. Here, using three-dimensional (3D) two-photon, 3D confocal and 3D block-face serial electron microscopy, we demonstrate a consistent in situ polarisation of ß-cells and define three distinct cell surface domains. An apical domain located at the vascular apogee of ß-cells, defined by the location of PAR-3 (also known as PARD3) and ZO-1 (also known as TJP1), delineates an extracellular space into which adjacent ß-cells project their primary cilia. A separate lateral domain, is enriched in scribble and Dlg, and colocalises with E-cadherin and GLUT2 (also known as SLC2A2). Finally, a distinct basal domain, where the ß-cells contact the islet vasculature, is enriched in synaptic scaffold proteins such as liprin. This 3D analysis of ß-cells within intact islets, and the definition of distinct domains, provides new insights into understanding ß-cell structure and function.
Assuntos
Polaridade Celular , Células Secretoras de Insulina/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Vasos Sanguíneos/citologia , Transportador de Glucose Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Associadas SAP90-PSD95 , Sinapses/metabolismoRESUMO
This work describes viability and distribution of INS-1E beta cells in shell-crosslinked alginate capsules, focussing on cells located near the capsule surface. Capsules were formed by air-shearing alginate suspensions of INS-1E cells into a gelling bath, and coating with poly-l-lysine (PLL) and 50% hydrolysed poly(methylvinylether-alt-maleic anhydride) to form crosslinked networks reinforcing the capsule surfaces. The percentage of cells at the capsule surface were determined using 2D and 3D confocal colocalization mapping. Encapsulated INS-1E cells showed high cell viability and progressive cell clustering out to six weeks. About 30% of cells were initially colocated with the 20 micrometer thick alginate-PLL-PMM50 shell, with 7% of cells protruded at the capsule surfaces, both reflecting random cell distributions. Protruding cells may cause cell-based immune responses, weaken capsules, and potentially result in cell escape from the capsules. The data shown indicate that reinforcing capsules with crosslinked shells may assist in preventing cell exposure and escape.
Assuntos
Alginatos/química , Células Imobilizadas/citologia , Reagentes de Ligações Cruzadas/química , Células Secretoras de Insulina/citologia , Polilisina/análogos & derivados , Animais , Cápsulas/química , Linhagem Celular , Extensões da Superfície Celular/ultraestrutura , Sobrevivência Celular , Células Imobilizadas/ultraestrutura , Géis/química , Células Secretoras de Insulina/ultraestrutura , Anidridos Maleicos/química , Polilisina/química , RatosRESUMO
Characterization of molecular mechanisms underlying pancreatic ß-cell function in relation to glucose-stimulated insulin secretion is incomplete, especially with respect to global response in the nuclear environment. We focus on the characterization of proteins in the nuclear environment of ß-cells after brief, high glucose stimulation. We compared purified nuclei derived from ß-cells stimulated with 17 mM glucose for 0, 2, and 5 min using quantitative proteomics, a time frame that most likely does not result in translation of new protein in the cell. Among the differentially regulated proteins, we identified 20 components of the nuclear organization processes, including nuclear pore organization, ribonucleoprotein complex, and pre-mRNA transcription. We found alteration of the nuclear pore complex, together with calcium/calmodulin-binding chaperones that facilitate protein and RNA import or export to/from the nucleus to the cytoplasm. Putative insulin mRNA transcription-associated factors were identified among the regulated proteins, and they were cross-validated by Western blotting and confocal immunofluorescence imaging. Collectively, our data suggest that protein translocation between the nucleus and the cytoplasm is an important process, highly involved in the initial molecular mechanism underlying glucose-stimulated insulin secretion in pancreatic ß-cells.
Assuntos
Núcleo Celular/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas Nucleares/análise , Transporte Proteico/efeitos dos fármacos , Células Cultivadas , Citoplasma/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Espectrometria de Massas , Proteínas Nucleares/efeitos dos fármacos , Proteômica , Fatores de TempoRESUMO
In cryogenic correlated light and electron microscopy (cryo-CLEM), frozen targets of interest are identified and located on EM grids by fluorescence microscopy and then imaged at higher resolution by cryo-EM. Whilst working with these methods, we discovered that a variety of mammalian cells exhibit strong punctate autofluorescence when imaged under cryogenic conditions (80â¯K). Autofluorescence originated from multilamellar bodies (MLBs) and secretory granules. Here we describe a method to distinguish fluorescent protein tags from these autofluorescent sources based on the narrower emission spectrum of the former. The method is first tested on mitochondria and then applied to examine the ultrastructural variability of secretory granules within insulin-secreting pancreatic beta-cell-derived INS-1E cells.
Assuntos
Microscopia Crioeletrônica/métodos , Microscopia de Fluorescência/métodos , Mitocôndrias/ultraestrutura , Vesículas Secretórias/ultraestrutura , Animais , Linhagem Celular Tumoral , Fibroblastos/citologia , Fibroblastos/metabolismo , Fluoresceína-5-Isotiocianato/química , Fluorescência , Células HeLa , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mitocôndrias/metabolismo , Ratos , Vesículas Secretórias/metabolismoRESUMO
Type 1 diabetes (T1D) can be managed by transplanting either the whole pancreas or isolated pancreatic islets. However, cadaveric pancreas is scarcely available for clinical use, limiting this approach. As such, there is a great need to identify alternative sources of clinically usable pancreatic tissues. Here, we used induced pluripotent stem (iPS) cells derived from patients with T1D to generate glucose-responsive, insulin-producing cells (IPCs) via 3D culture. Initially, T1D iPS cells were resistant to differentiation, but transient demethylation treatment significantly enhanced IPC yield. The cells responded to high-glucose stimulation by secreting insulin in vitro The shape, size, and number of their granules, as observed by transmission electron microscopy, were identical to those found in cadaveric ß cells. When the IPCs were transplanted into immunodeficient mice that had developed streptozotocin-induced diabetes, they promoted a dramatic decrease in hyperglycemia, causing the mice to become normoglycemic within 28 days. None of the mice died or developed teratomas. Because the cells are derived from "self," immunosuppression is not required, providing a much safer and reliable treatment option for T1D patients. Moreover, these cells can be used for drug screening, thereby accelerating drug discovery. In conclusion, our approach eliminates the need for cadaveric pancreatic tissue.
Assuntos
Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/antagonistas & inibidores , Diabetes Mellitus Tipo 1/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Organoides/metabolismo , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Cadáver , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Metilases de Modificação do DNA/metabolismo , Decitabina , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/cirurgia , Inibidores Enzimáticos/farmacologia , Humanos , Hiperglicemia/prevenção & controle , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Insulina/biossíntese , Secreção de Insulina , Células Secretoras de Insulina/transplante , Células Secretoras de Insulina/ultraestrutura , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Organoides/transplante , Organoides/ultraestrutura , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Alicerces Teciduais , Transplante Heterólogo/efeitos adversos , Transplante Heterotópico/efeitos adversosRESUMO
We aimed to explore the effects of Inflammatory cytokines (IL-1ß, IFN-γ, TNF-α) on pancreatic ß-cells. CCK-8 assay showed that the cell viability decreased after 24 hr treatment of TNF-α, 48 hr of IFN-γ, and 84 hr of IL-1ß. EdU assay illustrated that after 24 hr treatment, there were significantly reduced EdU-labeled red fluorescence cells in TNF-α group while not in IFN-γ and IL-1ß groups. Flow Cytometry results displayed that TNF-α and IFN-γ groups increased apoptosis while IL-1ß group did not. Cell apoptosis results found that there was an increase in the S-phase population of IL-1ß and TNF-α groups, however, there was no significant difference in cell cycle between IFN-γ group and the control. TEM images showed that there were reduction in the number of granules and mitochondria in IL-1ß and IFN-γ groups, in particular paucity of insulin granules and mitochondria in TNF-α group. Radioimmunoassay results presented that TNF-α inhibited glucose-induced insulin secretion, while there were no significant changes in IL-1ß and IFN-γ groups when compared with the control. Metabolomic analysis found amino acid metabolism and Krebs cycle were the most robust altered metabolism pathways after inflammatory cytokines treatments. Overall, the altered amino acid metabolism and Krebs cycle metabolism might be important mechanisms of TNF-α induced mouse pancreatic ß-cells dysfuction.
Assuntos
Células Secretoras de Insulina/citologia , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Mediadores da Inflamação/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , CamundongosRESUMO
Blood group B glycosphingolipids (B-GSLs) are substrates of the lysosomal alpha-galactosidase A (AGAL). Similar to its major substrate-globotriaosylceramide (Gb3Cer)-B-GSLs are not degraded and accumulate in the cells of patients affected by an inherited defect of AGAL activity (Fabry disease-FD).The pancreas is a secretory organ known to have high biosynthesis of blood group GSLs. Herein, we provide a comprehensive overview of the biochemical and structural abnormalities in pancreatic tissue from two male FD patients with blood group B. In both patients, we found major accumulation of a variety of complex B-GSLs carrying predominantly hexa- and hepta-saccharide structures. The subcellular pathology was dominated by deposits containing B-glycoconjugates and autofluorescent ceroid. The contribution of Gb3Cer to the storage was minor. This abnormal storage pattern was specific for the pancreatic acinar epithelial cells. Other pancreatic cell types including those of islets of Langerhans were affected much less or not at all.Altogether, we provide evidence for a key role of B-antigens in the biochemical and morphological pathology of the exocrine pancreas in FD patients with blood group B. We believe that our findings will trigger further studies aimed at assessing the potential pancreatic dysfunction in this disease.
Assuntos
Doença de Fabry/metabolismo , Glicoesfingolipídeos/metabolismo , Pâncreas/metabolismo , Sistema ABO de Grupos Sanguíneos/metabolismo , Células Acinares/metabolismo , Células Acinares/ultraestrutura , Estudos de Casos e Controles , Doença de Fabry/sangue , Doença de Fabry/patologia , Galactose/análise , Galactose/metabolismo , Glicoesfingolipídeos/química , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Masculino , Pessoa de Meia-Idade , Pâncreas/ultraestruturaRESUMO
Light scattering was recently demonstrated to serve as an intrinsic indicator for pancreatic islet cell mass and secretion. The insulin secretory granule (ISG), in particular, was proposed to be a reasonable candidate as the main intracellular source of scattered light due to the densely-packed insulin semi-crystal in the granule lumen. This scenario, if confirmed, would in principle open new perspectives for label-free single-granule imaging, tracking, and analysis. Contrary to such expectations, here we demonstrate that ISGs are not a primary source of scattering in primary human ß-cells, as well as in immortalized ß-like cells, quantitatively not superior to other intracellular organelles/structures, such as lysosomes and internal membranes. This result is achieved through multi-channel imaging of scattered light along with fluorescence arising from selectively-labelled ISGs. Co-localization and spatiotemporal cross-correlation analysis is performed on these signals, and compared among different cell lines. Obtained results suggest a careful re-thinking of the possibility to exploit intrinsic optical properties originating from ISGs for single-granule imaging purposes.
Assuntos
Grânulos Citoplasmáticos/ultraestrutura , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/ultraestrutura , Lisossomos/ultraestrutura , Vesículas Secretórias/ultraestrutura , Análise de Célula Única/métodos , Idoso , Idoso de 80 Anos ou mais , Animais , Células CHO , Linhagem Celular , Cricetulus , Grânulos Citoplasmáticos/metabolismo , Feminino , Genes Reporter , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/metabolismo , Masculino , Pessoa de Meia-Idade , Imagem Óptica/métodos , Plasmídeos/química , Plasmídeos/metabolismo , Ratos , Vesículas Secretórias/metabolismo , Análise de Célula Única/normas , Espectrometria de Fluorescência/métodos , Transfecção , Proteína Vermelha FluorescenteRESUMO
Developmental stage-specific differentiation of stem or progenitor cells into safe and functional cells is of fundamental importance in regenerative medicine, including ß-cell replacement. However, the differentiation of islet progenitor cells (IPCs) into insulin-secreting ß cells remains elusive. Here, we report that the multifunctional molecule nicotinamide (NIC) is a specific differentiation regulator of mouse IPCs. The differentiated cells regulated by NIC exhibited many characteristics of adult ß cells, including ameliorating preclinical diabetes and a highly comparable transcriptome profile. Gene set enrichment analysis showed that during differentiation, numerous IPC transcription factor genes, including Ngn3, Pax4, Fev, and Mycl1, were all down regulated. Pharmacological, biochemical, and gene knockdown analyses collectively demonstrated that NIC regulated the differentiation via inhibiting Sirt1 (silent information regulator transcript 1). Finally, NIC also regulates human IPC differentiation. Thus, our study advances islet developmental biology and impacts on translational research and regenerative therapies to diabetes and other diseases. Stem Cells 2017;35:1341-1354.
Assuntos
Diferenciação Celular , Diabetes Mellitus Experimental/terapia , Células Secretoras de Insulina/transplante , Niacinamida/farmacologia , Células-Tronco/citologia , Transcriptoma/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/ultraestrutura , Proteínas Luminescentes/metabolismo , Camundongos SCID , Sirtuína 1/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Human islet amyloid polypeptide (hIAPP) aggregation is associated with ß-cell dysfunction and death in type 2 diabetes (T2D). we aimed to determine whether in vivo treatment with chemical chaperone 4-phenylbutyrate (PBA) ameliorates hIAPP-induced ß-cell dysfunction and islet amyloid formation. Oral administration of PBA in hIAPP transgenic (hIAPP Tg) mice expressing hIAPP in pancreatic ß cells counteracted impaired glucose homeostasis and restored glucose-stimulated insulin secretion. Moreover, PBA treatment almost completely prevented the transcriptomic alterations observed in hIAPP Tg islets, including the induction of genes related to inflammation. PBA also increased ß-cell viability and improved insulin secretion in hIAPP Tg islets cultured under glucolipotoxic conditions. Strikingly, PBA not only prevented but even reversed islet amyloid deposition, pointing to a direct effect of PBA on hIAPP. This was supported by in silico calculations uncovering potential binding sites of PBA to monomeric, dimeric, and pentameric fibrillar structures, and by in vitro assays showing inhibition of hIAPP fibril formation by PBA. Collectively, these results uncover a novel beneficial effect of PBA on glucose homeostasis by restoring ß-cell function and preventing amyloid formation in mice expressing hIAPP in ß cells, highlighting the therapeutic potential of PBA for the treatment of T2D.-Montane, J., de Pablo, S., Castaño, C., Rodríguez-Comas, J., Cadavez, L., Obach, M., Visa, M., Alcarraz-Vizán, G., Sanchez-Martinez, M., Nonell-Canals, A., Parrizas, M., Servitja, J.-M., Novials, A. Amyloid-induced ß-cell dysfunction and islet inflammation are ameliorated by 4-phenylbutyrate (PBA) treatment.