Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 854
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 158(6): 1415-1430, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215496

RESUMO

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study, we quantified the transcriptome--a subset of the metabolome--and, using targeted proteomics, quantified a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein, and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. These integrated molecular profiles also allowed further characterization of complex pathways, particularly the mitochondrial unfolded protein response (UPR(mt)). UPR(mt) shows strikingly variant responses at the transcript and protein level that are remarkably conserved among C. elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.


Assuntos
Perfilação da Expressão Gênica , Fígado/química , Camundongos/metabolismo , Mitocôndrias/química , Proteoma/análise , Soro/química , Animais , Glucose/metabolismo , Humanos , Cetona Oxirredutases/metabolismo , Fígado/citologia , Fígado/metabolismo , Camundongos/classificação , Camundongos/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mitocôndrias/metabolismo , Locos de Características Quantitativas , Soro/metabolismo , Resposta a Proteínas não Dobradas
2.
Cell ; 154(3): 530-40, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911320

RESUMO

To mechanistically characterize the microevolutionary processes active in altering transcription factor (TF) binding among closely related mammals, we compared the genome-wide binding of three tissue-specific TFs that control liver gene expression in six rodents. Despite an overall fast turnover of TF binding locations between species, we identified thousands of TF regions of highly constrained TF binding intensity. Although individual mutations in bound sequence motifs can influence TF binding, most binding differences occur in the absence of nearby sequence variations. Instead, combinatorial binding was found to be significant for genetic and evolutionary stability; cobound TFs tend to disappear in concert and were sensitive to genetic knockout of partner TFs. The large, qualitative differences in genomic regions bound between closely related mammals, when contrasted with the smaller, quantitative TF binding differences among Drosophila species, illustrate how genome structure and population genetics together shape regulatory evolution.


Assuntos
Evolução Molecular , Camundongos/classificação , Camundongos/genética , Fatores de Transcrição/genética , Animais , Drosophila/genética , Fígado/metabolismo , Camundongos/metabolismo , Camundongos Endogâmicos , Camundongos Knockout , Ratos/genética , Fatores de Transcrição/metabolismo
3.
Cell ; 143(7): 1174-89, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21183079

RESUMO

Although most tissues in an organism are genetically identical, the biochemistry of each is optimized to fulfill its unique physiological roles, with important consequences for human health and disease. Each tissue's unique physiology requires tightly regulated gene and protein expression coordinated by specialized, phosphorylation-dependent intracellular signaling. To better understand the role of phosphorylation in maintenance of physiological differences among tissues, we performed proteomic and phosphoproteomic characterizations of nine mouse tissues. We identified 12,039 proteins, including 6296 phosphoproteins harboring nearly 36,000 phosphorylation sites. Comparing protein abundances and phosphorylation levels revealed specialized, interconnected phosphorylation networks within each tissue while suggesting that many proteins are regulated by phosphorylation independently of their expression. Our data suggest that the "typical" phosphoprotein is widely expressed yet displays variable, often tissue-specific phosphorylation that tunes protein activity to the specific needs of each tissue. We offer this dataset as an online resource for the biological research community.


Assuntos
Perfilação da Expressão Gênica , Camundongos/genética , Especificidade de Órgãos , Fosforilação , Proteínas/metabolismo , Animais , Camundongos/metabolismo , Proteínas Quinases/genética , Proteômica
4.
Cell ; 136(2): 364-77, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19167336

RESUMO

Induced pluripotent stem (iPS) cells can be obtained from fibroblasts upon expression of Oct4, Sox2, Klf4, and c-Myc. To understand how these factors induce pluripotency, we carried out genome-wide analyses of their promoter binding and expression in iPS and partially reprogrammed cells. We find that target genes of the four factors strongly overlap in iPS and embryonic stem (ES) cells. In partially reprogrammed cells, many genes co-occupied by c-Myc and any of the other three factors already show an ES cell-like binding and expression pattern. In contrast, genes that are specifically co-bound by Oct4, Sox2, and Klf4 in ES cells and encode pluripotency regulators severely lack binding and transcriptional activation. Among the four factors, c-Myc promotes the most ES cell-like transcription pattern when expressed individually in fibroblasts. These data uncover temporal and separable contributions of the four factors during the reprogramming process and indicate that ectopic c-Myc predominantly acts before pluripotency regulators are activated.


Assuntos
Reprogramação Celular , Células-Tronco Embrionárias/citologia , Camundongos/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Fator 4 Semelhante a Kruppel , Proteínas Nucleares/metabolismo
5.
Nucleic Acids Res ; 49(2): 657-673, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33367834

RESUMO

Antisense oligonucleotides (ASOs) have emerged as a new class of drugs to treat a wide range of diseases, including neurological indications. Spinraza, an ASO that modulates splicing of SMN2 RNA, has shown profound disease modifying effects in Spinal Muscular Atrophy (SMA) patients, energizing efforts to develop ASOs for other neurological diseases. While SMA specifically affects spinal motor neurons, other neurological diseases affect different central nervous system (CNS) regions, neuronal and non-neuronal cells. Therefore, it is important to characterize ASO distribution and activity in all major CNS structures and cell types to have a better understanding of which neurological diseases are amenable to ASO therapy. Here we present for the first time the atlas of ASO distribution and activity in the CNS of mice, rats, and non-human primates (NHP), species commonly used in preclinical therapeutic development. Following central administration of an ASO to rodents, we observe widespread distribution and target RNA reduction throughout the CNS in neurons, oligodendrocytes, astrocytes and microglia. This is also the case in NHP, despite a larger CNS volume and more complex neuroarchitecture. Our results demonstrate that ASO drugs are well suited for treating a wide range of neurological diseases for which no effective treatments are available.


Assuntos
Sistema Nervoso Central/química , Camundongos/metabolismo , Oligonucleotídeos Antissenso/farmacocinética , Primatas/metabolismo , Ratos/metabolismo , Animais , Sistema Nervoso Central/citologia , Feminino , Hibridização In Situ , Injeções Intraventriculares , Injeções Espinhais , Macaca fascicularis , Masculino , Neuroglia/química , Neurônios/química , Oligonucleotídeos Antissenso/administração & dosagem , Especificidade de Órgãos , RNA Longo não Codificante/análise , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , Ratos Sprague-Dawley , Ribonuclease H , Distribuição Tecidual
6.
Proc Natl Acad Sci U S A ; 117(33): 20015-20026, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759216

RESUMO

We sequenced more than 52,500 single cells from embryonic day 11.5 (E11.5) postembryonic day 5 (P5) gonads and performed lineage tracing to analyze primordial follicles and wave 1 medullar follicles during mouse fetal and perinatal oogenesis. Germ cells clustered into six meiotic substages, as well as dying/nurse cells. Wnt-expressing bipotential precursors already present at E11.5 are followed at each developmental stage by two groups of ovarian pregranulosa (PG) cells. One PG group, bipotential pregranulosa (BPG) cells, derives directly from bipotential precursors, expresses Foxl2 early, and associates with cysts throughout the ovary by E12.5. A second PG group, epithelial pregranulosa (EPG) cells, arises in the ovarian surface epithelium, ingresses cortically by E12.5 or earlier, expresses Lgr5, but delays robust Foxl2 expression until after birth. By E19.5, EPG cells predominate in the cortex and differentiate into granulosa cells of quiescent primordial follicles. In contrast, medullar BPG cells differentiate along a distinct pathway to become wave 1 granulosa cells. Reflecting their separate somatic cellular lineages, second wave follicles were ablated by diptheria toxin treatment of Lgr5-DTR-EGFP mice at E16.5 while first wave follicles developed normally and supported fertility. These studies provide insights into ovarian somatic cells and a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicles.


Assuntos
Células da Granulosa/citologia , Camundongos/embriologia , Folículo Ovariano/embriologia , Animais , Diferenciação Celular , Linhagem da Célula , Feminino , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Células da Granulosa/metabolismo , Camundongos/metabolismo , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Gravidez , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Biochem Biophys Res Commun ; 566: 170-176, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34129964

RESUMO

Akkermansia muciniphila is a symbiotic intestinal bacterium with a high medicinal value. Amuc_1100 is the outer membrane protein of A. muciniphila and plays an important role in the interaction between A. muciniphila and its host. The objective of this study was to evaluate the antidepressant activity of Amuc_1100 in a chronic unpredictable mild stress (CUMS) model. Amuc_1100 intervention ameliorated CUMS-induced depression-like behavior and CUMS-induced down-regulation of serotonin (5-hydroxytryptamine, or simply, 5-HT) in the serum and colon of mice. Microbial analysis of mouse feces showed that Amuc_1100 could improve the gut microbiota dysregulation induced by CUMS. In addition, Amuc_1100 intervention could also improve the down-regulation of brain-derived neurotrophic factor (BDNF) and inflammation in the hippocampus induced by CUMS. These results suggest that Amuc_1100 has a good antidepressant effect, and the mechanism may be related to the improvement of gut microbiota, the up-regulation of the BDNF level, and the inhibition of the neuroinflammatory response.


Assuntos
Proteínas de Bactérias/metabolismo , Depressão/microbiologia , Microbioma Gastrointestinal , Camundongos/microbiologia , Akkermansia/fisiologia , Animais , Antidepressivos/metabolismo , Antidepressivos/uso terapêutico , Proteínas de Bactérias/uso terapêutico , Depressão/etiologia , Depressão/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Estresse Psicológico/complicações
8.
Biol Reprod ; 105(4): 976-986, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34007999

RESUMO

Activating transcription factor 1 (ATF1), belonging to the CREB/ATF family of transcription factors, is highly expressed in the testes. However, its role in spermatogenesis has not yet been established. Here, we aimed to elucidate the impact of ATF1 in spermatogenesis by examining the expression pattern of ATF1 in mice and the effect of ATF1 knockdown in the mouse testes. We found that ATF1 is expressed in various organs, with very high levels in the testes. Immunohistochemical staining showed that ATF1 was localized in the nuclei of spermatogonia and co-localized with proliferating cell nuclear antigen. In ATF1-deficient mice, the seminiferous tubules of the testis contained cells at all developmental stages; however, the number of spermatocytes was decreased. Proliferating cell nuclear antigen expression was decreased and apoptotic cells were rare in the seminiferous tubules. These results indicate that ATF1 plays a role in male germ cell proliferation and sperm production.


Assuntos
Fator 1 Ativador da Transcrição/genética , Expressão Gênica , Camundongos/genética , Espermatogênese/genética , Testículo/metabolismo , Fator 1 Ativador da Transcrição/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos/metabolismo
9.
Biol Reprod ; 105(5): 1272-1282, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416757

RESUMO

The vagina is the site of copulation and serves as the birth canal. It also provides protection against external pathogens. In mice, due to the absence of cervical glands, the vaginal epithelium is the main producer of vaginal mucus. The development and differentiation of vaginal epithelium-constituting cells and the molecular characteristics of vaginal mucus have not been thoroughly examined. Here, we characterized vaginal mucous cell development and the expression of mucus-related factors in pregnant mice. The vaginal mucous epithelium layer thickened and became multilayered after Day 12 of pregnancy and secreted increasing amounts of mucus until early postpartum. Using histochemistry and transmission electron microscopy, we found supra-basal mucous cells as probable candidates for precursor cells. In vaginal mucous cells, the expression of TFF1, a stabilizer of mucus, was high, and some members of mucins and antimicrobial peptides (MUC5B and DEFB1) were expressed in a stage-dependent manner. In summary, this study presents the partial characterization of vaginal epithelial mucous cell lineage and expression of genes encoding several peptide substances that may affect vaginal tissue homeostasis and mucosal immunity during pregnancy and parturition.


Assuntos
Células Epiteliais/metabolismo , Expressão Gênica , Camundongos/metabolismo , Muco/metabolismo , Prenhez/metabolismo , Vagina/metabolismo , Animais , Feminino , Camundongos/crescimento & desenvolvimento , Gravidez , Prenhez/genética
10.
Biol Reprod ; 105(5): 1126-1139, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34344022

RESUMO

Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that methylates lysine residue 27, and thereby suppresses gene expression. EZH2 plays integral roles in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNA-seq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Camundongos/genética , Transcriptoma , Útero/metabolismo , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Perfilação da Expressão Gênica , Camundongos/metabolismo , Camundongos Knockout
11.
Transfusion ; 61(10): 3017-3025, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480352

RESUMO

BACKGROUND: Genetically modified mice are used widely to explore mechanisms in most biomedical fields-including transfusion. Concluding that a gene modification is responsible for a phenotypic change assumes no other differences between the gene-modified and wild-type mice besides the targetted gene. STUDY DESIGN AND METHODS: To test the hypothesis that the N-terminus of Band3, which regulates metabolism, affects RBC storage biology, RBCs from mice with a modified N-terminus of Band3 were stored under simulated blood bank conditions. All strains of mice were generated with the same initial embryonic stem cells from 129 mice and each strain was backcrossed with C57BL/6 (B6) mice. Both 24-h recoveries post-transfusion and metabolomics were determined for stored RBCs. Genetic profiles of mice were assessed by a high-resolution SNP array. RESULTS: RBCs from mice with a mutated Band3 N-terminus had increased lipid oxidation and worse 24-h recoveries, "demonstrating" that Band3 regulates oxidative injury during RBC storage. However, SNP analysis demonstrated variable inheritance of 129 genetic elements between strains. Controlled interbreeding experiments demonstrated that the changes in lipid oxidation and some of the decreased 24-hr recovery were caused by inheritance of a region of chromosome 1 of 129 origin, and not due to the modification of Band 3. SNP genotyping of a panel of commonly used commercially available KO mice showed considerable 129 contamination, despite wild-type B6 mice being listed as the correct control. DISCUSSION: Thousands of articles published each year use gene-modified mice, yet genetic background issues are rarely considered. Assessment of such issues are not, but should become, routine norms of murine experimentation.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/genética , Camundongos/genética , Animais , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Pesquisa Biomédica , Preservação de Sangue , Eritrócitos/metabolismo , Patrimônio Genético , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único
12.
Rapid Commun Mass Spectrom ; 35(11): e9073, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33634533

RESUMO

RATIONALE: Ecologists increasingly determine the δ15 N values of amino acids (AA) in animal tissue; "source" AA typically exhibit minor variation between diet and consumer, while "trophic" AA have increased δ15 N values in consumers. Thus, trophic-source δ15 N offsets (i.e., Δ15 NT-S ) reflect trophic position in a food web. However, even minor variations in δ15 Nsource AA values may influence the magnitude of offset that represents a trophic step, known as the trophic discrimination factor (i.e., TDFT-S ). Diet digestibility and protein content can influence the δ15 N values of bulk animal tissue, but the effects of these factors on AA Δ15 NT-S and TDFT-S in mammals are unknown. METHODS: We fed captive mice (Mus musculus) either (A) a low-fat, high-fiber diet with low, intermediate, or high protein; or (B) a high-fat, low-fiber diet with low or intermediate protein. Mouse muscle and dietary protein were analyzed for bulk tissue δ15 N using elemental analyzer-isotope ratio mass spectrometry (EA-IRMS), and were also hydrolyzed into free AA that were analyzed for δ15 N using gas chromatography-combustion-IRMS. RESULTS: As dietary protein increased, Δ15 NConsumer-Diet slightly declined for bulk muscle tissue in both experiments; increased for AA in the low-fat, high-fiber diet (A); and remained the same or decreased for AA in the high-fat, low-fiber diet (B). The effects of dietary protein on Δ15 NT-S and on TDFT-S varied by AA but were consistent between variables. CONCLUSIONS: Diets were less digestible and included more protein in Experiment A than in Experiment B. As a result, the mice in Experiment A probably oxidized more AA, resulting in greater Δ15 NConsumer-Diet values. However, the similar responses of Δ15 NT-S and of TDFT-S to diet variation suggest that if diet samples are available, Δ15 NT-S accurately tracks trophic position. If diet samples are not available, the patterns presented here provide a basis to interpret Δ15 NT-S values. The trophic-source offset of Pro-Lys did not vary across diets, and therefore may be more reliable for omnivores than other offsets (e.g., Glu-Phe).


Assuntos
Aminoácidos/análise , Proteínas Alimentares/farmacocinética , Camundongos/metabolismo , Isótopos de Nitrogênio/análise , Ração Animal/análise , Animais , Peso Corporal , Gorduras na Dieta/administração & dosagem , Fibras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/química , Metabolismo , Músculo Esquelético/química , Isótopos de Nitrogênio/farmacocinética , Oxirredução , Proteólise
13.
Proc Natl Acad Sci U S A ; 115(8): E1916-E1925, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432155

RESUMO

The mammalian circadian clock coordinates physiology with environmental cycles through the regulation of daily oscillations of gene expression. Thousands of transcripts exhibit rhythmic accumulations across mouse tissues, as determined by the balance of their synthesis and degradation. While diurnally rhythmic transcription regulation is well studied and often thought to be the main factor generating rhythmic mRNA accumulation, the extent of rhythmic posttranscriptional regulation is debated, and the kinetic parameters (e.g., half-lives), as well as the underlying regulators (e.g., mRNA-binding proteins) are relatively unexplored. Here, we developed a quantitative model for cyclic accumulations of pre-mRNA and mRNA from total RNA-seq data, and applied it to mouse liver. This allowed us to identify that about 20% of mRNA rhythms were driven by rhythmic mRNA degradation, and another 15% of mRNAs regulated by both rhythmic transcription and mRNA degradation. The method could also estimate mRNA half-lives and processing times in intact mouse liver. We then showed that, depending on mRNA half-life, rhythmic mRNA degradation can either amplify or tune phases of mRNA rhythms. By comparing mRNA rhythms in wild-type and Bmal1-/- animals, we found that the rhythmic degradation of many transcripts did not depend on a functional BMAL1. Interestingly clock-dependent and -independent degradation rhythms peaked at distinct times of day. We further predicted mRNA-binding proteins (mRBPs) that were implicated in the posttranscriptional regulation of mRNAs, either through stabilizing or destabilizing activities. Together, our results demonstrate how posttranscriptional regulation temporally shapes rhythmic mRNA accumulation in mouse liver.


Assuntos
Relógios Circadianos , Regulação da Expressão Gênica , Fígado/metabolismo , Camundongos/genética , RNA Mensageiro/genética , Animais , Masculino , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Transcrição Gênica
14.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769078

RESUMO

Selenophosphate synthetase 1 (SEPHS1) plays an essential role in cell growth and survival. However, the underlying molecular mechanisms remain unclear. In the present study, the pathways regulated by SEPHS1 during gastrulation were determined by bioinformatical analyses and experimental verification using systemic knockout mice targeting Sephs1. We found that the coagulation system and retinoic acid signaling were most highly affected by SEPHS1 deficiency throughout gastrulation. Gene expression patterns of altered embryo morphogenesis and inhibition of Wnt signaling were predicted with high probability at E6.5. These predictions were verified by structural abnormalities in the dermal layer of Sephs1-/- embryos. At E7.5, organogenesis and activation of prolactin signaling were predicted to be affected by Sephs1 knockout. Delay of head fold formation was observed in the Sephs1-/- embryos. At E8.5, gene expression associated with organ development and insulin-like growth hormone signaling that regulates organ growth during development was altered. Consistent with these observations, various morphological abnormalities of organs and axial rotation failure were observed. We also found that the gene sets related to redox homeostasis and apoptosis were gradually enriched in a time-dependent manner until E8.5. However, DNA damage and apoptosis markers were detected only when the Sephs1-/- embryos aged to E9.5. Our results suggest that SEPHS1 deficiency causes a gradual increase of oxidative stress which changes signaling pathways during gastrulation, and afterwards leads to apoptosis.


Assuntos
Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/embriologia , Fosfotransferases/genética , Animais , Perda do Embrião/genética , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Feminino , Deleção de Genes , Camundongos/genética , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfotransferases/metabolismo , Gravidez , Transdução de Sinais
15.
Environ Geochem Health ; 43(1): 171-183, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32794111

RESUMO

The health effects of mercury vapor exposure on the brain in volcanic areas have not been previously addressed in the literature. However, 10% of the worldwide population inhabits in the vicinity of an active volcano, which are natural sources of elemental mercury emission. To evaluate the presence of mercury compounds in the brain after chronic exposure to volcanogenic mercury vapor, a histochemical study, using autometallographic silver, was carried out to compare the brain of mice chronically exposed to an active volcanic environment (Furnas village, Azores, Portugal) with those not exposed (Rabo de Peixe village, Azores, Portugal). Results demonstrated several mercury deposits in blood vessels, white matter and some cells of the hippocampus in the brain of chronically exposed mice. Our results highlight that chronic exposure to an active volcanic environment results in brain mercury accumulation, raising an alert regarding potential human health risks. These findings support the hypothesis that mercury exposure can be a risk factor in causing neurodegenerative diseases in the inhabitants of volcanically active areas.


Assuntos
Química Encefálica , Exposição Ambiental , Poluentes Ambientais/metabolismo , Mercúrio/metabolismo , Camundongos/metabolismo , Erupções Vulcânicas/efeitos adversos , Animais , Animais Selvagens/metabolismo , Açores , Química Encefálica/efeitos dos fármacos , Feminino , Gases/efeitos adversos , Histocitoquímica/veterinária , Masculino , Fatores de Risco
16.
Biochem Biophys Res Commun ; 530(4): 638-643, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768193

RESUMO

Hyperlipidemia is an abnormal elevation of lipid level in blood, which affects more than 100 million people in US. Zebrafish has recently emerged as a model to study pathophysiology associated with hyperlipidemia. As a poikilotherm, the innate response toward a high fat diet regimen in zebrafish is likely to be distinct from humans, and therefore, additional caution is warranted to appropriately interpret results obtained from zebrafish model. However, to date, detailed comparative analyses on similarities and dissimilarities between zebrafish and mammals, in particular, at molecular level, have not been reported yet. Here, we identified changes in hepatic specific transcriptomic profiles of zebrafish fed with a high fat diet regimen and comparatively analyzed transcriptomic changes in zebrafish and mice. While a number of previously identified risk factors for human hyperlipidemia has been upregulated in zebrafish fed with a high fat diet regimen, zebrafish hepatic transcriptome does not share high similarity with mice. Despite these differences, KEGG pathway analyses revealed that similar signaling pathways upregulated in zebrafish and mice as a response to a high fat diet. Our data show that these two species may utilize species-specific set of genes to upregulate common signaling pathways, indicating evolutionary convergence between poikilotherm and homeotherm in regulating lipid metabolism and validating the use of zebrafish as a model for human hyperlipidemia and associated diseases.


Assuntos
Metabolismo dos Lipídeos , Camundongos/genética , Transcriptoma , Peixe-Zebra/genética , Animais , Evolução Biológica , Dieta Hiperlipídica , Ontologia Genética , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Lipídeos/genética , Camundongos/metabolismo , Peixe-Zebra/metabolismo
17.
J Exp Biol ; 223(Pt 5)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32041806

RESUMO

Mass-specific metabolic rate negatively co-varies with body mass from the whole-animal to the mitochondrial levels. Mitochondria are the mainly consumers of oxygen inspired by mammals to generate ATP or compensate for energetic losses dissipated as the form of heat (proton leak) during oxidative phosphorylation. Consequently, ATP synthesis and proton leak compete for the same electrochemical gradient. Because proton leak co-varies negatively with body mass, it is unknown whether extremely small mammals further decouple their mitochondria to maintain their body temperature or whether they implement metabolic innovations to ensure cellular homeostasis. The present study investigated the impact of body mass variation on cellular and mitochondrial functioning in small mammals, comparing two extremely small African pygmy mice (Mus mattheyi, ∼5 g, and Mus minutoides, ∼7 g) with the larger house mouse (Mus musculus, ∼22 g). Oxygen consumption rates were measured from the animal to the mitochondrial levels. We also measured mitochondrial ATP synthesis in order to appreciate the mitochondrial efficiency (ATP/O). At the whole-animal scale, mass- and surface-specific metabolic rates co-varied negatively with body mass, whereas this was not necessarily the case at the cellular and mitochondrial levels. Mus mattheyi had generally the lowest cellular and mitochondrial fluxes, depending on the tissue considered (liver or skeletal muscle), as well as having more-efficient muscle mitochondria than the other two species. Mus mattheyi presents metabolic innovations to ensure its homeostasis, by generating more ATP per oxygen consumed.


Assuntos
Peso Corporal , Camundongos/metabolismo , Mitocôndrias Musculares/metabolismo , Animais , Metabolismo Basal , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(34): E7131-E7139, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28778995

RESUMO

EGR1 is an early growth response zinc finger transcription factor with broad actions, including in differentiation, mitogenesis, tumor suppression, and neuronal plasticity. Here we demonstrate that Egr1-/- mice on the C57BL/6 background have normal eyelid development, but back-crossing to BALB/c background for four or five generations resulted in defective eyelid development by day E15.5, at which time EGR1 was expressed in eyelids of WT mice. Defective eyelid formation correlated with profound ocular anomalies evident by postnatal days 1-4, including severe cryptophthalmos, microphthalmia or anophthalmia, retinal dysplasia, keratitis, corneal neovascularization, cataracts, and calcification. The BALB/c albino phenotype-associated Tyrc tyrosinase mutation appeared to contribute to the phenotype, because crossing the independent Tyrc-2J allele to Egr1-/- C57BL/6 mice also produced ocular abnormalities, albeit less severe than those in Egr1-/- BALB/c mice. Thus EGR1, in a genetic background-dependent manner, plays a critical role in mammalian eyelid development and closure, with subsequent impact on ocular integrity.


Assuntos
Pálpebras/crescimento & desenvolvimento , Camundongos/genética , Camundongos/metabolismo , Animais , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Olho/crescimento & desenvolvimento , Olho/metabolismo , Pálpebras/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Int J Environ Health Res ; 30(2): 117-133, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30758226

RESUMO

The relationship between air pollution exposure and haematology remains controversial. Evidences in the effect of trace organic air pollutants and in the impact of such exposure on lipid and protein levels are scarce. This work investigated the health effects of medium-term exposure to traffic-related air pollution on both haematological and biochemical indices in animal models. Two groups of albino mice (Mus musculus) were exposed to ambient air polluted by vehicle exhaust for three and six months, and one group was kept as control. Results found significant depletions (p < 0.05) in red blood cells, packed cell volume, neutrophils, eosinophils, monocytes, and total cholesterol after air pollution exposure. On the contrary, significant elevations (p < 0.05) were observed in platelet, lymphocytes, and serum albumin compared to control condition. Correlation data suggested that significant changes in blood parameters may be altered by the synergistic effect of several organic and inorganic air pollutants.


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Camundongos/metabolismo , Emissões de Veículos/análise , Poluição do Ar/análise , Animais , Análise Química do Sangue , Feminino , Testes Hematológicos , Masculino , Camundongos/sangue
20.
J Neurosci ; 37(36): 8706-8717, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28821665

RESUMO

The molecular signature and functional properties of astroglial subtypes in the adult CNS remain largely undefined. By using translational ribosome affinity purification followed by RNA-Seq, we profiled astroglial ribosome-associated (presumably translating) mRNAs in major cortical and subcortical brain regions (cortex, hippocampus, caudate-putamen, nucleus accumbens, thalamus, and hypothalamus) of BAC aldh1l1-translational ribosome affinity purification (TRAP) mice (both sexes). We found that the expression of astroglial translating mRNAs closely follows the dorsoventral axis, especially from cortex/hippocampus to thalamus/hypothalamus posteriorly. This region-specific expression pattern of genes, such as synaptogenic modulator sparc and transcriptional factors (emx2, lhx2, and hopx), was validated by qRT-PCR and immunostaining in brain sections. Interestingly, cortical or subcortical astrocytes selectively promote neurite growth and synaptic activity of neurons only from the same region in mismatched cocultures, exhibiting region-matched astrocyte to neuron communication. Overall, these results generated new molecular signature of astrocyte types in the adult CNS, providing insights into their origin and functional diversity.SIGNIFICANCE STATEMENT We investigated the in vivo molecular and functional heterogeneity of astrocytes inter-regionally from adult brain. Our results showed that the expression pattern of ribosome-associated mRNA profiles in astrocytes closely follows the dorsoventral axis, especially posteriorly from cortex/hippocampus to thalamus/hypothalamus. In line with this, our functional results further demonstrated region-selective roles of cortical and subcortical astrocytes in regulating cortical or subcortical neuronal synaptogenesis and maturation. These in vivo studies provide a previously uncharacterized and important molecular atlas for exploring region-specific astroglial functions.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Camundongos/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/metabolismo , Animais , Astrócitos/classificação , Astrócitos/citologia , Encéfalo/citologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA