Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
J Neurosci ; 38(10): 2551-2568, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29437856

RESUMO

Noise exposure causes auditory nerve (AN) degeneration and hearing deficiency, though the proximal biological consequences are not entirely understood. Most AN fibers and spiral ganglion neurons are ensheathed by myelinating glia that provide insulation and ensure rapid transmission of nerve impulses from the cochlea to the brain. Here we show that noise exposure administered to mice of either sex rapidly affects myelinating glial cells, causing molecular and cellular consequences that precede nerve degeneration. This response is characterized by demyelination, inflammation, and widespread expression changes in myelin-related genes, including the RNA splicing regulator Quaking (QKI) and numerous QKI target genes. Analysis of mice deficient in QKI revealed that QKI production in cochlear glial cells is essential for proper myelination of spiral ganglion neurons and AN fibers, and for normal hearing. Our findings implicate QKI dysregulation as a critical early component in the noise response, influencing cochlear glia function that leads to AN demyelination and, ultimately, to hearing deficiency.SIGNIFICANCE STATEMENT Auditory glia cells ensheath a majority of spiral ganglion neurons with myelin, protect auditory neurons, and allow for fast conduction of electrical impulses along the auditory nerve. Here we show that noise exposure causes glial dysfunction leading to myelin abnormality and altered expression of numerous genes in the auditory nerve, including QKI, a gene implicated in regulating myelination. Study of a conditional mouse model that specifically depleted QKI in glia showed that QKI deficiency alone was sufficient to elicit myelin-related abnormality and auditory functional declines. These results establish QKI as a key molecular target in the noise response and a causative agent in hearing loss.


Assuntos
Nervo Coclear/patologia , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Perda Auditiva Provocada por Ruído/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Camundongos Quaking/genética , Proteínas de Ligação a RNA/genética , Animais , Cóclea/patologia , Feminino , Regulação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos CBA , Neuroglia/patologia , Neurônios/patologia , Gânglio Espiral da Cóclea/patologia
2.
Nucleic Acids Res ; 42(11): 7319-29, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24792162

RESUMO

The selective RNA-binding protein quaking I (QKI) plays important roles in controlling alternative splicing (AS). Three QKI isoforms are broadly expressed, which display distinct nuclear-cytoplasmic distribution. However, molecular mechanisms by which QKI isoforms control AS, especially in distinct cell types, still remain elusive. The quakingviable (qk(v)) mutant mice carry deficiencies of all QKI isoforms in oligodendrocytes (OLs) and Schwann cells (SWCs), the myelinating glia of central and peripheral nervous system (CNS and PNS), respectively, resulting in severe dysregulation of AS. We found that the cytoplasmic isoform QKI-6 regulates AS of polyguanine (G-run)-containing transcripts in OLs and rescues aberrant AS in the qk(v) mutant by repressing expression of two canonical splicing factors, heterologous nuclear ribonucleoproteins (hnRNPs) F and H. Moreover, we identified a broad spectrum of in vivo functional hnRNP F/H targets in OLs that contain conserved exons flanked by G-runs, many of which are dysregulated in the qk(v) mutant. Interestingly, AS targets of the QKI-6-hnRNP F/H pathway in OLs are differentially affected in SWCs, suggesting that additional cell-type-specific factors modulate AS during CNS and PNS myelination. Together, our studies provide the first evidence that cytoplasmic QKI-6 acts upstream of hnRNP F/H, which forms a novel pathway to control AS in myelinating glia.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Neuroglia/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Citoplasma/metabolismo , Éxons , Camundongos , Camundongos Quaking , Camundongos Transgênicos , Bainha de Mielina/fisiologia , Oligodendroglia/metabolismo , Isoformas de Proteínas/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Células de Schwann/metabolismo
3.
Circ Res ; 113(9): 1065-75, 2013 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23963726

RESUMO

RATIONALE: RNA-binding proteins are critical post-transcriptional regulators of RNA and can influence pre-mRNA splicing, RNA localization, and stability. The RNA-binding protein Quaking (QKI) is essential for embryonic blood vessel development. However, the role of QKI in the adult vasculature, and in particular in vascular smooth muscle cells (VSMCs), is currently unknown. OBJECTIVE: We sought to determine the role of QKI in regulating adult VSMC function and plasticity. METHODS AND RESULTS: We identified that QKI is highly expressed by neointimal VSMCs of human coronary restenotic lesions, but not in healthy vessels. In a mouse model of vascular injury, we observed reduced neointima hyperplasia in Quaking viable mice, which have decreased QKI expression. Concordantly, abrogation of QKI attenuated fibroproliferative properties of VSMCs, while potently inducing contractile apparatus protein expression, rendering noncontractile VSMCs with the capacity to contract. We identified that QKI localizes to the spliceosome, where it interacts with the myocardin pre-mRNA and regulates the splicing of alternative exon 2a. This post-transcriptional event impacts the Myocd_v3/Myocd_v1 mRNA balance and can be modulated by mutating the quaking response element in exon 2a of myocardin. Furthermore, we identified that arterial damage triggers myocardin alternative splicing and is tightly coupled with changes in the expression levels of distinct QKI isoforms. CONCLUSIONS: We propose that QKI is a central regulator of VSMC phenotypic plasticity and that intervention in QKI activity can ameliorate pathogenic, fibroproliferative responses to vascular injury.


Assuntos
Proliferação de Células , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Animais , Lesões das Artérias Carótidas/metabolismo , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Movimento Celular , Reestenose Coronária/metabolismo , Reestenose Coronária/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hiperplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Quaking , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Transativadores/genética , Transativadores/metabolismo , Transfecção
4.
J Neurosci Res ; 91(3): 374-81, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23224912

RESUMO

The dysmyelinating mouse mutant quaking (qk) is thought to be a model of schizophrenia based on diminution of CNS myelin (Andreone et al., 2007) and downregulation of the Qk gene (Haroutunian et al., 2006) in the brains of schizophrenic patients. The purpose of this study was to identify specific structural defects in the qk mouse CNS that could compromise physiologic function and that in humans might account for some of the cognitive defects characteristic of schizophrenia. Ultrastructural analysis of qk mouse CNS myelinated fibers shows abnormalities in nodal, internodal, and paranodal regions, including marked variation in myelin thickness among neighboring fibers, spotty disruption of paranodal junctions, abnormal distribution of nodal and paranodal ion channel complexes, generalized thinning and incompactness of myelin, and on many axonal profiles complete absence of myelin. These structural defects are likely to cause abnormalities in conduction velocity, synchrony of activation, temporal ordering of signals, and other physiological parameters. We conclude that the structural abnormalities described are likely to be responsible for significant functional impairment both in the qk mouse CNS and in the human CNS with comparable myelin pathology.


Assuntos
Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Esquizofrenia/patologia , Medula Espinal/patologia , Animais , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/patologia , Doenças Desmielinizantes/genética , Camundongos , Camundongos Quaking , Esquizofrenia/genética , Medula Espinal/ultraestrutura
5.
Nat Genet ; 12(3): 260-5, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8589716

RESUMO

The mouse quaking gene, essential for nervous system myelination and survival of the early embryo has been positionally cloned. Its sequence implies that the locus encodes a multifunctional gene used in a specific set of developing tissues to unite signal transduction with some aspect of RNA metabolism. The quaking(viable) (qkv) mutation has one class of messages truncated by a deletion. An independent ENU-induced mutation has a nonconservative amino acid change in one of two newly identified domains that are conserved from the C. elegans gld-1 tumour suppressor gene to the human Src-associated protein Sam68. The size and conservation of the quaking gene family implies that the pathway defined by this mutation may have broad relevance for rapid conveyance of extracellular information directly to primary gene transcripts.


Assuntos
Desenvolvimento Embrionário e Fetal/genética , Bainha de Mielina/fisiologia , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Clonagem Molecular/métodos , Primers do DNA , Proteínas de Ligação a DNA/química , Desenvolvimento Embrionário e Fetal/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos DBA , Camundongos Quaking , Dados de Sequência Molecular , Mutação , Sistema Nervoso/embriologia , Fosfoproteínas/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/fisiologia , Mapeamento por Restrição
6.
Glia ; 60(1): 69-82, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21948283

RESUMO

Sirtuin 2 (SIRT2), a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase expressed by oligodendrocytes (OLs), the myelin-producing cells of the central nervous system (CNS), is markedly up-regulated during active myelination (Li et al. (2007) J Neurosci 27:2606-2616; Southwood et al. (2007) Neurochem Res 32:187-195; Werner et al. (2007) J Neurosci 27:7717-7730). SIRT2 is a component of the myelin proteome and is severely reduced in the Plp1 knockout mouse brain, in which both proteolipid protein (PLP) and DM20 are absent (Werner et al. (2007) J Neurosci 27:7717-7730). The mechanisms that regulate SIRT2 expression in OLs and myelin remain to be investigated. We report for the first time that the expression of SIRT2 is regulated by the QKI-dependent pathway and this effect is mediated through selective regulation of PLP. In the homozygous quakingviable (qk(v) /qk(v) ) mutant mouse that harbors QKI deficiency in OLs (Bockbrader and Feng (2008) Future Neurol 3:655-668; Ebersole et al. (1996) Nat Genet 12:260-265; Hardy et al. (1996) J Neurosci 16:7941-7949), PLP, but not DM20 mRNA, was selectively down-regulated and SIRT2 protein was severely reduced whereas SIRT2 mRNA expression was unaffected. Expression of the cytoplasmic isoform QKI6 in OLs (Zhao et al. (2006) J Neurosci 26:11278-11286) rescued SIRT2 expression in the qk(v) /qk(v) mutant concomitantly with restoration of PLP expression. Moreover, SIRT2 protein is diminished in myelin tracts and compact myelin of the PLP-ISEdel mutant brain, in which PLP protein but not DM20 is selectively reduced (Wang et al. (2008) Exp Neurol 214:322-330). In contrast, SIRT2 expression and its cellular function in regulating process complexity are not affected by the absence of PLP in PLP-ISEdel non-myelinating OLs. Collectively, our results indicate that the abundance of SIRT2 in myelin is dependent on PLP, but not DM20.


Assuntos
Encéfalo/citologia , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/fisiologia , Sirtuína 2/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Diferenciação Celular , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Quaking , Camundongos Transgênicos , Mutação , Proteína Proteolipídica de Mielina/genética , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Receptores do Fator Natriurético Atrial/genética , Transdução de Sinais/genética , Sirtuína 2/genética
7.
Hum Mol Genet ; 19(8): 1593-602, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20106870

RESUMO

The quakingviable mouse (qkv) is a spontaneous recessive mouse mutant with a deletion of approximately 1.1 Mb in the proximal region of chromosome 17. The deletion affects the expression of three genes; quaking (Qk), Parkin-coregulated gene (Pacrg) and parkin (Park2). The resulting phenotype, which includes dysmyelination of the central nervous system and male sterility, is due to reduced expression of Qk and a complete lack of Pacrg expression, respectively. Pacrg is required for correct development of the spermatozoan flagella, a specialized type of motile cilia. In vertebrates, motile cilia are required for multiple functions related to cellular movement or movement of media over a stationary cell surface. To investigate the potential role of PACRG in motile cilia we analysed qkv mutant mice for evidence of cilial dysfunction. Histological and magnetic resonance imaging analyses demonstrated that qkv mutant mice were affected by acquired, communicating hydrocephalus (HC). Structural analysis of ependymal cilia demonstrated that the 9 + 2 arrangement of axonemal microtubules was intact and that both the density of ciliated cells and cilia length was similar to wild-type littermates. Cilia function studies showed a reduction in ependymal cilial beat frequency and cilial mediated flow in qkv mutant mice compared with wild-type littermate controls. Moreover, transgenic expression of Pacrg was necessary and sufficient to correct this deficit and rescue the HC phenotype in the qkv mutant. This study provides novel in vivo evidence that Pacrg is required for motile cilia function and may be involved in the pathogenesis of human ciliopathies, such as HC, asthenospermia and primary ciliary dyskinesia.


Assuntos
Cílios/fisiologia , Epêndima/metabolismo , Deleção de Genes , Hidrocefalia/genética , Proteínas/genética , Animais , Cílios/genética , Modelos Animais de Doenças , Feminino , Humanos , Hidrocefalia/metabolismo , Hidrocefalia/fisiopatologia , Masculino , Camundongos , Camundongos Quaking , Proteínas dos Microfilamentos , Chaperonas Moleculares , Proteínas/metabolismo
8.
Mol Cell Neurosci ; 47(2): 100-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21447392

RESUMO

The quaking viable (qk(v)) mice harbor an autosomal recessive mutation that deletes the parkin co-regulated gene (pacrg) and parkin (park2) genes, and alters the expression of the quaking (qkI) gene. qk(v) mice have been well-studied for their dysmyelination phenotype caused by the altered expression of the qkI gene. The qk(v) mice exhibit sterility in males and develop acquired mild hydrocephalus due to the lack of PACRG expression. To identify genetic interactors of the pacrg-parkin-qkI locus, we crossbred the qk(v) mice with various mouse strains including the patched1 (ptch1)-deficient mice. The ptch1 heterozygous mice exhibit increased Sonic Hedgehog (Shh) signaling and are prone to several malignancies including tumorigenesis. In the present study, we show that the qk(v/v); ptch1⁺/⁻ mice are distinguished by a dome-shaped skull at 4 to 6weeks of age and exhibit dilation of the lateral and third ventricles leading to fatal acquired hydrocephalus by ~5months of age, unlike their littermate controls that did not develop the condition. The qk(v/v); ptch1⁺/⁻ mice contained normal ciliated ependymal cells lining the ventricles of the brain, but these cells were functionally compromised with a severe cilial mediated flow defect. Our findings suggest that the ptch1 and the pacrg-parkin-qkI loci genetically interact to regulate cilia function of the ependymal cells.


Assuntos
Cílios/metabolismo , Epêndima/citologia , Haploinsuficiência , Hidrocefalia/genética , Hidrocefalia/mortalidade , Camundongos Quaking , Receptores de Superfície Celular/genética , Animais , Ventrículos Cerebrais/anatomia & histologia , Cílios/patologia , Epêndima/metabolismo , Hidrocefalia/patologia , Masculino , Camundongos , Camundongos Knockout , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/deficiência , Taxa de Sobrevida
9.
Nat Struct Mol Biol ; 12(8): 691-8, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16041388

RESUMO

Quaking viable (Qk(v)) mice have developmental defects that result in their characteristic tremor. The quaking (Qk) locus expresses alternatively spliced RNA-binding proteins belonging to the STAR family. To characterize the RNA binding specificity of the QKI proteins, we selected for RNA species that bound QKI from random pools of RNAs and defined the QKI response element (QRE) as a bipartite consensus sequence NACUAAY-N(1-20)-UAAY. A bioinformatic analysis using the QRE identified the three known RNA targets of QKI and 1,430 new putative mRNA targets, of which 23 were validated in vivo. A large proportion of the mRNAs are implicated in development and cell differentiation, as predicted from the phenotype of the Qk(v) mice. In addition, 24% are implicated in cell growth and/or maintenance, suggesting a role for QKI in cancer.


Assuntos
Família Multigênica/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Elementos de Resposta/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular/genética , Biologia Computacional , Camundongos , Camundongos Quaking , Dados de Sequência Molecular , Oligonucleotídeos , Proteínas de Ligação a RNA/genética , Análise de Sequência de DNA , beta-Lactamases
10.
Biochim Biophys Acta ; 1779(8): 486-94, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18590840

RESUMO

Myelin is a specialized structure of the nervous system that both enhances electrical conductance and protects neurons from degeneration. In the central nervous system, extensively polarized oligodendrocytes form myelin by wrapping cellular processes in a spiral pattern around neuronal axons. Myelin formation requires the oligodendrocyte to regulate gene expression in response to changes in its extracellular environment. Because these changes occur at a distance from the cell body, post-transcriptional control of gene expression allows the cell to fine-tune its response. Here, we review the RNA-binding proteins that control myelin formation in the brain, highlighting the molecular mechanisms by which they control gene expression and drawing parallels from studies in other cell types.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Bainha de Mielina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Axônios/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Camundongos , Camundongos Quaking , Oligodendroglia/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais
11.
J Cell Biol ; 99(2): 594-606, 1984 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-6204994

RESUMO

The myelin-associated glycoprotein (MAG) is an integral membrane glycoprotein that is located in the periaxonal membrane of myelin-forming Schwann cells. On the basis of this localization, it has been hypothesized that MAG plays a structural role in (a) forming and maintaining contact between myelinating Schwann cells and the axon (the 12-14-nm periaxonal space) and (b) maintaining the Schwann cell periaxonal cytoplasmic collar of myelinated fibers. To test this hypothesis, we have determined the immunocytochemical localization of MAG in the L4 ventral roots from 11-mo-old quaking mice. These roots display various stages in the association of remyelinating Schwann cells with axons, and abnormalities including loss of the Schwann cell periaxonal cytoplasmic collar and dilation of the periaxonal space of myelinated fibers. Therefore, this mutant provides distinct opportunities to observe the relationships between MAG and (a) the formation of the periaxonal space during remyelination and (b) the maintenance of the periaxonal space and Schwann cell periaxonal cytoplasmic collar in myelinated fibers. During association of remyelinating Schwann cells and axons, MAG was detected in Schwann cell adaxonal membranes that apposed the axolemma by 12-14 nm. Schwann cell plasma membranes separated from the axolemma by distances greater than 12-14 nm did not react with MAG antiserum. MAG was present in adaxonal Schwann cell membranes that apposed the axolemma by 12-14 nm but only partially surrounded the axon and, therefore, may be actively involved in the ensheathment of axons by remyelinating Schwann cells. To test the dual role of MAG in maintaining the periaxonal space and Schwann cell periaxonal cytoplasmic collar of myelinated fibers, we determined the immunocytochemical localization of MAG in myelinated quaking fibers that displayed pathological alterations of these structures. Where Schwann cell periaxonal membranes were not stained by MAG antiserum, the cytoplasmic side of the periaxonal membrane was "fused" with the cytoplasmic side of the inner compact myelin lamella and formed a major dense line. This loss of MAG and the Schwann cell periaxonal cytoplasmic collar usually resulted in enlargement of the 12-14-nm periaxonal space and ruffling of the apposing axolemma. In myelinated fibers, there was a strict correlation between the presence of MAG in the Schwann cell periaxonal membrane and (a) maintenance of the 12-14-nm periaxonal space, and (b) presence of the Schwann cell periaxonal cytoplasmic collar.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Axônios/ultraestrutura , Camundongos Quaking/fisiologia , Proteínas da Mielina/fisiologia , Bainha de Mielina/ultraestrutura , Células de Schwann/ultraestrutura , Animais , Técnicas Imunoenzimáticas , Camundongos , Microscopia Eletrônica , Glicoproteína Associada a Mielina , Células de Schwann/citologia , Medula Espinal/citologia , Medula Espinal/ultraestrutura
12.
J Cell Biol ; 107(2): 675-85, 1988 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2458358

RESUMO

Ultrastructural studies have shown that during early stages of Schwann cell myelination mesaxon membranes are converted to compact myelin lamellae. The distinct changes that occur in the spacing of these Schwann cell membranes are likely to be mediated by the redistribution of (a) the myelin-associated glycoprotein, a major structural protein of mesaxon membranes; and (b) P0 protein, the major structural protein of compact myelin. To test this hypothesis, the immunocytochemical distribution of these two proteins was determined in serial 1-micron-thick Epon sections of ventral roots from quaking mice and compared to the ultrastructure of identical areas in an adjacent thin section. Ventral roots of this hypomyelinating mouse mutant were studied because many fibers have a deficit in converting mesaxon membranes to compact myelin. The results indicated that conversion of mesaxon membranes to compact myelin involves the insertion of P0 protein into and the removal of the myelin-associated glycoprotein from mesaxon membranes. The failure of some quaking mouse Schwann cells to form compact myelin appears to result from an inability to remove the myelin-associated glycoprotein from their mesaxon membranes.


Assuntos
Glicoproteínas de Membrana/análise , Proteínas da Mielina/análise , Bainha de Mielina/fisiologia , Nervos Periféricos/análise , Animais , Axônios/análise , Axônios/ultraestrutura , Membrana Celular/análise , Membrana Celular/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Quaking , Microscopia Eletrônica , Proteína P0 da Mielina , Bainha de Mielina/análise , Bainha de Mielina/ultraestrutura , Glicoproteína Associada a Mielina , Nervos Periféricos/ultraestrutura , Células de Schwann/fisiologia , Células de Schwann/ultraestrutura
13.
J Cell Biol ; 131(6 Pt 2): 1811-20, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8557747

RESUMO

Quaking is an autosomal recessive hypo/dysmyelinating mutant mouse which has a 1-Mbp deletion on chromosome 17. The mutation exhibits pleiotrophy and does not include genes encoding characterized myelin proteins. The levels of the 67-kD isoform of the myelin-associated glycoprotein (S-MAG) relative to those of the 72-kD isoform (L-MAG) are increased in the quaking CNS, but not in other dysmyelinating mutants. Abnormal expression of MAG isoforms in quaking may result from altered transcription of the MAG gene or from abnormal sorting, transport, or targeting of L-MAG or S-MAG. To test these hypotheses, we have determined the distribution of L-MAG and S-MAG in cervical spinal cord of 7-, 14-, 21-, 28-, and 35-d-old quaking mice. In 7-d-old quaking and control spinal cord, L- and S-MAG was detectable in periaxonal regions of myelinated fibers and in the perinuclear cytoplasm of oligodendrocytes. Between 7 and 35 d, L-MAG was removed from the periaxonal membrane of quaking but not control mice. Compared to control mice, a significant increase in MAG labeling of endosomes occurred within oligodendrocyte cytoplasm of 35-d-old quaking mice. S-MAG remained in periaxonal membranes of both quaking and control mice. Analysis of the cytoplasmic domain of L-MAG identifies amino acid motifs at tyrosine 35 and tyrosine 65 which meet the criteria for "tyrosine internalization signals" that direct transmembrane glycoproteins into the endocytic pathway. These results establish that L-MAG is selectively removed from the periaxonal membrane of CNS-myelinated fibers by receptor-mediated endocytosis. The loss of L-MAG from quaking periaxonal membranes results from increased endocytosis of L-MAG and possibly a decrease in L-MAG production.


Assuntos
Endocitose/fisiologia , Camundongos Quaking/fisiologia , Bainha de Mielina/química , Glicoproteína Associada a Mielina/análise , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Axônios/química , Axônios/ultraestrutura , Imuno-Histoquímica , Isomerismo , Camundongos , Microscopia Confocal , Dados de Sequência Molecular , Proteína Proteolipídica de Mielina/análise , Proteína Proteolipídica de Mielina/imunologia , Glicoproteína Associada a Mielina/imunologia , Glicoproteína Associada a Mielina/metabolismo , Medula Espinal/química , Frações Subcelulares/química
14.
J Cell Biol ; 149(3): 707-18, 2000 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-10791983

RESUMO

Whereas the physiological significance of microsomal fatty acid elongation is generally appreciated, its molecular nature is poorly understood. Here, we describe tissue-specific regulation of a novel mouse gene family encoding components implicated in the synthesis of very long chain fatty acids. The Ssc1 gene appears to be ubiquitously expressed, whereas Ssc2 and Cig30 show a restricted expression pattern. Their translation products are all integral membrane proteins with five putative transmembrane domains. By complementing the homologous yeast mutants, we found that Ssc1 could rescue normal sphingolipid synthesis in the sur4/elo3 mutant lacking the ability to synthesize cerotic acid (C(26:0)). Similarly, Cig30 reverted the phenotype of the fen1/elo2 mutant that has reduced levels of fatty acids in the C(20)-C(24) range. Further, we show that Ssc1 mRNA levels were markedly decreased in the brains of myelin-deficient mouse mutants known to have very low fatty acid chain elongation activity. Conversely, the dramatic induction of Cig30 expression during brown fat recruitment coincided with elevated elongation activity. Our results strongly implicate this new mammalian gene family in tissue-specific synthesis of very long chain fatty acids and sphingolipids.


Assuntos
Ácidos Graxos/biossíntese , Proteínas de Membrana/genética , Esfingolipídeos/biossíntese , Acetiltransferases , Tecido Adiposo Marrom/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Regulação para Baixo , Elongases de Ácidos Graxos , Teste de Complementação Genética , Proteínas de Membrana/química , Camundongos , Camundongos Jimpy , Camundongos Quaking , Microssomos/metabolismo , Dados de Sequência Molecular , Mutação , Bainha de Mielina/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Leveduras/genética
15.
Mol Biol Cell ; 17(10): 4179-86, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16855020

RESUMO

Microtubule-associated protein 1B (MAP1B) is essential for neural development. Besides the abundant expression in neurons, MAP1B recently was found in myelinating oligodendroglia. Moreover, MAP1B deficiency causes delayed myelin development, suggesting the functional importance of MAP1B in oligodendroglia. However, molecular mechanisms that control MAP1B expression in oligodendroglia remain elusive. We report here that MAP1B mRNA is markedly up-regulated in the oligodendroglia cell line CG4 upon induced differentiation, leading to elevated MAP1B protein production. A coordinated regulation of homeoprotein transcription factors was observed during CG4 cell differentiation, which recapitulates the regulation in neurons that promotes MAP1B transcription. Hence, transcriptional regulation of MAP1B appears to be a common mechanism in both neurons and oligodendroglia. In addition, we found posttranscriptional regulation of MAP1B mRNA by the selective RNA-binding protein QKI in oligodendroglia. The 3'UTR of MAP1B mRNA interacts with QKI, and oligodendroglia-specific QKI-deficiency in the quakingviable mutant mice resulted in reduced MAP1B mRNA expression. Moreover, RNAi-mediated QKI-knockdown caused destabilization of the MAP1B mRNA in CG4 cells. Furthermore, forced expression of exogenous QKI was sufficient for promoting MAP1B expression. Because QKI is absent in neurons, QKI-dependent stabilization of MAP1B mRNA provides a novel mechanism for advancing MAP1B expression specifically in oligodendroglia during brain development.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Oligodendroglia/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulação para Cima , Animais , Tronco Encefálico/metabolismo , Diferenciação Celular , Linhagem Celular , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Quaking , Interferência de RNA , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Ratos , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transfecção
16.
Nat Neurosci ; 8(1): 27-33, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15568022

RESUMO

The quaking (Qk) locus expresses a family of RNA binding proteins, and the expression of several alternatively spliced isoforms coincides with the development of oligodendrocytes and the onset of myelination. Quaking viable (Qk(v)) mice harboring an autosomal recessive mutation in this locus have uncompacted myelin in the central nervous system owing to the inability of oligodendrocytes to properly mature. Here we show that the expression of two QKI isoforms, absent from oligodendrocytes of Qk(v) mice, induces cell cycle arrest of primary rat oligodendrocyte progenitor cells and differentiation into oligodendrocytes. Injection of retroviruses expressing QKI into the telencephalon of mouse embryos induced differentiation and migration of multipotential neural progenitor cells into mature oligodendrocytes localized in the corpus callosum. The mRNA encoding the cyclin-dependent kinase (CDK)-inhibitor p27(Kip1) was bound and stabilized by QKI, leading to an increased accumulation of p27(Kip1) protein in oligodendrocytes. Our findings demonstrate that QKI is upstream of p27(Kip1) during oligodendrocyte differentiation.


Assuntos
Proteínas de Ciclo Celular/genética , Genes Recessivos , Mutação , Oligodendroglia/citologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Ciclo Celular , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Corpo Caloso/citologia , Inibidor de Quinase Dependente de Ciclina p27 , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Camundongos , Camundongos Quaking , Mutação/fisiologia , Proteína Básica da Mielina/metabolismo , Neurônios/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade de RNA , Ratos , Células-Tronco/citologia , Células-Tronco/fisiologia , Telencéfalo/embriologia
17.
Neuron ; 36(5): 815-29, 2002 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-12467586

RESUMO

Quaking viable (qk(v)) mice fail to properly compact myelin in their central nervous systems. Although the defect in the qk(v) mice involves a mutation affecting the expression of the alternatively spliced qk gene products, their roles in myelination are unknown. We show that the QKI RNA binding proteins regulate the nuclear export of MBP mRNAs. Disruption of the QKI nucleocytoplasmic equilibrium in oligodendrocytes results in nuclear and perikaryal retention of the MBP mRNAs and lack of export to cytoplasmic processes, as it occurs in qk(v) mice. MBP mRNA export defect leads to a reduction in the MBP levels and their improper cellular targeting to the periphery. Our findings suggest that QKI participates in myelination by regulating the mRNA export of key protein components.


Assuntos
Proteína Básica da Mielina/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Processamento Alternativo , Animais , Sítios de Ligação , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Doenças Desmielinizantes/fisiopatologia , Éxons/genética , Humanos , Camundongos , Camundongos Quaking , Proteína Básica da Mielina/genética , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Mutação Puntual , Ligação Proteica , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
18.
J Neurosci Res ; 86(2): 233-42, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17787018

RESUMO

The use of spontaneously occurring mouse models has proved to be a valuable tool throughout the years to delineate the signals required for nervous system development. This is especially true in the field of myelin biology, with a large number of different models available. The quaking viable mouse models dysmyelination in the nervous system and links the QUAKING RNA binding proteins to myelination and cell fate decisions. In this Mini-Review, we highlight the biological functions attributed to this KH-type RNA binding protein and the recent achievements linking it to human disorders.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Esquizofrenia/genética , Animais , Neoplasias Encefálicas/metabolismo , Modelos Animais de Doenças , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Quaking , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Esquizofrenia/metabolismo
20.
J Neurosci ; 26(44): 11278-86, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17079655

RESUMO

Alternative splicing of the qkI transcript generates multiple isoforms of the selective RNA-binding protein QKI, which play key roles in controlling the homeostasis of their mRNA targets. QKI deficiency in oligodendrocytes of homozygous quakingviable (qkV/qkV) mutant mice results in severe hypomyelination, indicating the essential function of QKI in myelinogenesis. However, the molecular mechanisms by which QKI controls myelination remain elusive. We report here that QKI-6 is the most abundant isoform in brain and is preferentially reduced in the qkV/qkV mutant during normal myelinogenesis. To test whether QKI-6 is the predominant isoform responsible for advancing CNS myelination, we developed transgenic mice that express Flag-QKI-6 specifically in the oligodendroglia lineage, driven by the proteolipid protein (PLP) promoter. When introduced into the qkV/qkV mutant, the QKI-6 transgene rescues the severe tremor and hypomyelination phenotype. Electron microscopic studies further revealed that the Flag-QKI-6 transgene is sufficient for restoring compact myelin formation with normal lamellar periodicity and thickness. Interestingly, Flag-QKI-6 preferentially associates with the mRNA encoding the myelin basic protein (MBP) and rescues MBP expression from the beginning of myelinogenesis. In contrast, Flag-QKI-6 binds the PLP mRNA with lower efficiency and has a minimal impact on PLP expression until much later, when the expression level of QKI-6 in the transgenic animal significantly exceeds what is needed for normal myelination. Together, our results demonstrate that QKI-6 is the major isoform responsible for CNS myelination, which preferentially promotes MBP expression in oligodendrocytes.


Assuntos
Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Feminino , Camundongos , Camundongos Quaking , Camundongos Transgênicos , Proteínas da Mielina/biossíntese , Proteínas da Mielina/genética , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Ligação Proteica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA