Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732253

RESUMO

Diabetes mellitus (DM) is known as the first non-communicable global epidemic. It is estimated that 537 million people have DM, but the condition has been properly diagnosed in less than half of these patients. Despite numerous preventive measures, the number of DM cases is steadily increasing. The state of chronic hyperglycaemia in the body leads to numerous complications, including diabetic cardiomyopathy (DCM). A number of pathophysiological mechanisms are behind the development and progression of cardiomyopathy, including increased oxidative stress, chronic inflammation, increased synthesis of advanced glycation products and overexpression of the biosynthetic pathway of certain compounds, such as hexosamine. There is extensive research on the treatment of DCM, and there are a number of therapies that can stop the development of this complication. Among the compounds used to treat DCM are antiglycaemic drugs, hypoglycaemic drugs and drugs used to treat myocardial failure. An important element in combating DCM that should be kept in mind is a healthy lifestyle-a well-balanced diet and physical activity. There is also a group of compounds-including coenzyme Q10, antioxidants and modulators of signalling pathways and inflammatory processes, among others-that are being researched continuously, and their introduction into routine therapies is likely to result in greater control and more effective treatment of DM in the future. This paper summarises the latest recommendations for lifestyle and pharmacological treatment of cardiomyopathy in patients with DM.


Assuntos
Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/terapia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Hipoglicemiantes/uso terapêutico , Estresse Oxidativo , Antioxidantes/uso terapêutico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/tratamento farmacológico , Animais
2.
Pharmacol Res Perspect ; 12(2): e1177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407563

RESUMO

Diabetic cardiomyopathy (DCM) is a condition characterized by myocardial dysfunction that occurs in individuals with diabetes, in the absence of coronary artery disease, valve disease, and other conventional cardiovascular risk factors such as hypertension and dyslipidemia. It is considered a significant and consequential complication of diabetes in the field of cardiovascular medicine. The primary pathological manifestations include myocardial hypertrophy, myocardial fibrosis, and impaired ventricular function, which can lead to widespread myocardial necrosis. Ultimately, this can progress to the development of heart failure, arrhythmias, and cardiogenic shock, with severe cases even resulting in sudden cardiac death. Despite several decades of both fundamental and clinical research conducted globally, there are currently no specific targeted therapies available for DCM in clinical practice, and the incidence and mortality rates of heart failure remain persistently high. Thus, this article provides an overview of the current treatment modalities and novel techniques pertaining to DCM, aiming to offer valuable insights and support to researchers dedicated to investigating this complex condition.


Assuntos
Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/terapia , Animais
3.
Ageing Res Rev ; 94: 102182, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38182080

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycaemia that seriously affects human health. Diabetic cardiomyopathy (DCM) is a major cardiovascular complication and one of the main causes of death in patients with DM. Although DCM attracts great attention, and new therapeutic methods are continuously developed, there is a lack of effective treatment strategies. Therefore, exploring and targeting new signalling pathways related to the evolution of DCM becomes a hotspot and difficulty in the prevention and treatment of DCM. Pyroptosis is a newly discovered regulated cell death that is heavily dependent on the formation of plasma membrane pores by members of the gasdermin protein family and is reported to be involved in the occurrence, development, and pathogenesis of DCM. In this review, we focus on the molecular mechanisms of pyroptosis, its involvement in the relevant signalling pathways of DCM, and potential pyroptosis-targeting therapeutic strategies for the treatment of DCM. Our review provides new insights into the use of pyroptosis as a useful tool for the prevention and treatment of DCM and clarifies future research directions.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Hiperglicemia , Humanos , Cardiomiopatias Diabéticas/terapia , Piroptose , Inflamassomos
4.
Curr Probl Cardiol ; 49(1 Pt A): 102052, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37640176

RESUMO

Diabetes mellitus (DM) is considered by many the pandemic of the 21st century and is associated with multiple organ damages. Among these, cardiovascular complications are responsible for an incredible burden of mortality and morbidity in Western Countries. The study of the pathological mechanisms responsible for the cardiovascular complications in DM patients is key for the development of new therapeutic strategies. The metabolic disorders caused by hyperglycemia, insulin resistance, and dyslipidemia, results in a cascade of pathomorphological changes favoring the atherosclerotic process and leading to myocardial remodeling. Parallel to this, oxidative stress, calcium overload, mitochondrial dysfunction, activation of protein kinase C signaling pathways, myocardial lipomatosis, and low-grade inflammation of the myocardium - are the main pathways responsible for the diabetic cardiomyopathy development. This review aims to appraise and discuss the pathogenetic mechanisms behind the diabetic cardiomyopathy development.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/terapia , Miocárdio/metabolismo , Estresse Oxidativo , Transdução de Sinais
5.
Front Endocrinol (Lausanne) ; 15: 1451100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39140033

RESUMO

Diabetic cardiomyopathy (DCM) is a severe secondary complication of type 2 diabetes mellitus (T2DM) that is diagnosed as a heart disease occurring in the absence of any previous cardiovascular pathology in diabetic patients. Although it is still lacking an exact definition as it combines aspects of both pathologies - T2DM and heart failure, more evidence comes forward that declares DCM as one complex disease that should be treated separately. It is the ambiguous pathological phenotype, symptoms or biomarkers that makes DCM hard to diagnose and screen for its early onset. This re-view provides an updated look on the novel advances in DCM diagnosis and treatment in the experimental and clinical settings. Management of patients with DCM proposes a challenge by itself and we aim to help navigate and advice clinicians with early screening and pharmacotherapy of DCM.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/terapia , Cardiomiopatias Diabéticas/diagnóstico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Gerenciamento Clínico , Animais
6.
Stem Cell Res Ther ; 15(1): 120, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659015

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development. This study aimed to investigate the therapeutic effects of intravenous administration of hUC-MSCs on DCM following different durations of hyperglycemia in an experimental male model of diabetes and to determine the effects on expression of candidate miRNAs, target mRNA and inflammatory mediators. METHODS: A male mouse model of diabetes was induced by multiple low-dose streptozotocin injections. The effects on severity of DCM of intravenous injections of hUC-MSCs and saline two weeks previously were compared at 10 and 18 weeks after diabetes induction. At both time-points, biochemical assays, echocardiography, histopathology, polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to analyze blood glucose, body weight, cardiac structure and function, degree of myocardial fibrosis and expression of fibrosis-related mRNA, miRNA and inflammatory mediators. RESULTS: Saline-treated diabetic male mice had impaired cardiac function and increased cardiac fibrosis after 10 and 18 weeks of diabetes. At both time-points, cardiac dysfunction and fibrosis were improved in hUC-MSC-treated mice. Pro-fibrotic indicators (α-SMA, collagen I, collagen III, Smad3, Smad4) were reduced and anti-fibrotic mediators (FGF-1, miRNA-133a) were increased in hearts of diabetic animals receiving hUC-MSCs compared to saline. Increased blood levels of pro-inflammatory cytokines (IL-6, TNF, IL-1ß) and increased cardiac expression of IL-6 were also observed in saline-treated mice and were reduced by hUC-MSCs at both time-points, but to a lesser degree at 18 weeks. CONCLUSION: Intravenous injection of hUC-MSCs ameliorated key functional and structural features of DCM in male mice with diabetes of shorter and longer duration. Mechanistically, these effects were associated with restoration of intra-myocardial expression of miRNA-133a and its target mRNA COL1AI as well as suppression of systemic and localized inflammatory mediators.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Fibrose , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , MicroRNAs , Miocárdio , Cordão Umbilical , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/terapia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/genética , Fibrose/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo
7.
J Exp Zool A Ecol Integr Physiol ; 341(6): 647-657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38594572

RESUMO

Type 1 diabetes stem-cell-based treatment approach is among the leading therapeutic strategies for treating cardiac damage owing to the stem cells' regeneration capabilities. Mesenchymal stem cells derived from adipose tissue (AD-MSCs) have shown great potential in treating diabetic cardiomyopathy (DCM). Herein, we explored the antioxidant-supporting role of N, N'-diphenyl-1,4-phenylenediamine (DPPD) in enhancing the MSCs' therapeutic role in alleviating DCM complications in heart tissues of type 1 diabetic rats. Six male albinos Wistar rat groups have been designed into the control group, DPPD (250 mg/kg, i.p.) group, diabetic-untreated group, and three diabetic rat groups treated with either AD-MSCs (1 × 106 cell/rat, i.v.) or DPPD or both. Interestingly, all three treated diabetic groups exhibited a significant decrease in serum glucose, HbA1c, heart dysfunction markers (lactate dehydrogenase and CK-MP) levels, and lipid profile fractions (except for HDL-C), as well as some cardiac oxidative stress (OS) levels (MDA, AGEs, XO, and ROS). On the contrary, serum insulin, C-peptide, and various cardiac antioxidant levels (GSH, GST, CAT, SOD, TAC, and HO-1), beside viable cardiac cells (G0/G1%), were markedly elevated compared with the diabetic untreated group. In support of these findings, the histological assay reflected a marked enhancement in the cardiac tissues of all diabetic-treated groups, with obvious excellency of the AD-MSCs + DPPD diabetic-treated group. Such results strongly suggested the great therapeutic potentiality of either DPPD or AD-MSCs single injection in enhancing the cardiac function of diabetic rats, with a great noted enhancement superiority of DPPD and AD-MSCs coadministration.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Ratos Wistar , Animais , Cardiomiopatias Diabéticas/terapia , Masculino , Ratos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Fenilenodiaminas/farmacologia , Fenilenodiaminas/administração & dosagem , Tecido Adiposo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Estresse Oxidativo/efeitos dos fármacos
8.
Exp Anim ; 73(3): 246-258, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38447976

RESUMO

Cardiomyopathy is one of complications related to diabetes. Stem cell transplantation shows potential in diabetic cardiomyopathy treatment. Epigallocatechin-3-gallate (EGCG) is one of the major components found in green tea. Although stem cell transplantation and green tea EGCG supplementation show therapeutic effects on cardiomyopathy, the detailed cellular mechanisms in stem cell transplantation coupled with EGCG treatment remain unclear. This study investigates whether adipose-derived stem cells (ADSC) pretreated with EGCG show better protective effect on diabetic cardiomyopathy than ADSC without EGCG pretreatment. A cell model indicated that ADSC pretreated with EGCG increased cell functions including colony formation, migration and survival markers. All of these functions are blocked by small interfering C-X-C motif chemokine receptor 4 (siCXCR4) administration. These findings suggest that ADSC pretreatment with EGCG increases cell functions through CXCR4 expression. A diabetic animal model was designed to verify the above findings, including Sham, DM (diabetes mellitus), DM+ADSC (DM rats receiving autologous transplantation of ADSC) and DM+E-ADSC (DM rats receiving EGCG pretreated ADSC). Compared to the Sham, we found that all of pathophysiological signalings were activated in the DM group, including functional changes (decrease in ejection fraction and fractional shortening), structural changes (disarray and fibrosis) and molecular changes (increases in apoptotic, fibrotic, hypertrophic markers and decreases in survival and longevity markers). E-ADSC (DM+E-ADSC) transplantation shows significant improvement in the above pathophysiological signalings greater than ADSC (DM+ADSC). Therefore, ADSC pretreated with EGCG may contribute to clinical applications for diabetic patients with cardiomyopathy.


Assuntos
Catequina , Cardiomiopatias Diabéticas , Receptores CXCR4 , Chá , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/administração & dosagem , Cardiomiopatias Diabéticas/terapia , Chá/química , Receptores CXCR4/metabolismo , Masculino , Tecido Adiposo/citologia , Ratos Sprague-Dawley , Transplante Autólogo , Ratos , Transplante de Células-Tronco , Modelos Animais de Doenças , Células-Tronco , Regeneração/efeitos dos fármacos , Diabetes Mellitus Experimental/terapia
9.
Rev. clín. esp. (Ed. impr.) ; 222(2): 100-111, feb. 2022. ilus
Artigo em Espanhol | IBECS (Espanha) | ID: ibc-204626

RESUMO

La relación entre la diabetes y la insuficiencia cardiaca es compleja y bidireccional. No obstante, la existencia de una miocardiopatía como entidad propia y atribuible exclusivamente a la diabetes ha sido y es motivo de controversia hoy día. Esto es debido, entre otros motivos, a la ausencia de una definición de consenso. Tampoco existe unanimidad en cuanto a los hallazgos fisiopatogénicos presentes en la miocardiopatía diabética ni en su clasificación. Esto añadido a la ausencia de métodos diagnósticos propios o de tratamientos específicos en la enfermedad, limita el conocimiento general de la patología. Sin embargo, los estudios realizados en miocardiopatía diabética sugieren una fisiopatogenia propia diferenciada de la de otras entidades. De la misma manera, nuevos tratamientos han demostrado tener un papel potencial en esta enfermedad. En la siguiente revisión realizamos una actualización de la miocardiopatía diabética (AU)


The relationship between diabetes and heart failure is complex and bidirectional. Nevertheless, the existence of a cardiomyopathy attributable exclusively to diabetes has been and is still the subject of controversy, due, among other reasons, to a lack of a consensus definition. There is also no unanimous agreement in terms of the physiopathogenic findings that need to be present in the definition of diabetic cardiomyopathy or on its classification, which, added to the lack of diagnostic methods and treatments specific for this disease, limits its general understanding. Studies conducted on diabetic cardiomyopathy, however, suggest a unique physiopathogenesis different from that of other diseases. Similarly, new treatments have been shown to play a potential role in this disease. The following review provides an update on diabetic cardiomyopathy (AU)


Assuntos
Humanos , Cardiomiopatias Diabéticas , Cardiomiopatias Diabéticas/diagnóstico , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/terapia
10.
Rev. Assoc. Med. Bras. (1992, Impr.) ; 65(1): 61-69, Jan. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-985004

RESUMO

SUMMARY Although long ago described, there is no established consensus regarding the real existence of Diabetic Cardiomyopathy (CMPDM). Due to its complex pathophysiology, it has been difficult for clinical and experimental research to establish clear connections between diabetes mellitus (DM) and heart failure (HF), as well as to solve the mechanisms of the underlying myocardial disease. However, the epidemiological evidence of the relationship of these conditions is undisputed. The interest in understanding this disease has intensified due to the recent results of clinical trials evaluating new glucose-lowering drugs, such as sodium-glucose transporter inhibitors 2, which demonstrated favorable responses considering the prevention and treatment of HF in patients with DM. In this review we cover aspects of the epidemiology of CMPDM and its possible pathogenic mechanisms, as well as, present the main cardiac phenotypes of CMPDM (HF with preserved and reduced ejection fraction) and implications of the therapeutic management of this disease.


RESUMO Apesar de há muito tempo descrita, não existe consenso estabelecido quanto à real existência da cardiomiopatia diabética (CMPDM). Devido à sua complexa fisiopatologia, tem sido árduo à pesquisa clínica e experimental estabelecer conexões claras entre diabetes mellitus (DM) e insuficiência cardíaca (IC), assim como solucionar os mecanismos da doença subjacente do miocárdio. No entanto, as evidências epidemiológicas da relação dessas condições são incontestáveis. O interesse em compreender melhor essa doença tem recrudescido devido aos recentes resultados de ensaios clínicos avaliando novos fármacos hipoglicemiantes, como os inibidores do transportador de sódio-glicose 2, que demonstraram respostas favoráveis, considerando-se a prevenção e tratamento da IC em pacientes portadores de DM. Nesta revisão, percorremos aspectos da epidemiologia da CMPDM e de seus possíveis mecanismos patogênicos, além de apresentarmos os principais fenótipos cardíacos da CMPDM (IC com fração de ejeção preservada e reduzida) e implicações do manejo terapêutico desta doença.


Assuntos
Humanos , Cardiomiopatias Diabéticas/diagnóstico por imagem , Fenótipo , Ecocardiografia , Fatores de Risco , Medicina Baseada em Evidências , Cardiomiopatias Diabéticas/terapia , Cardiomiopatias Diabéticas/epidemiologia
11.
Rev. urug. cardiol ; 32(3): 264-276, dic. 2017. tab
Artigo em Espanhol | LILACS | ID: biblio-903594

RESUMO

La enfermedad coronaria, la hipertensión arterial y la diabetes son factores de riesgo independientes para el desarrollo de insuficiencia cardíaca y muerte. La cardiomiopatía diabética (CMD) es una de las etiologías frecuentes de cardiopatía en pacientes con diabetes tipo 1 y tipo 2. Si bien se suele plantear la CMD como la causa de la cardiopatía cuando se excluyen la hipertensión arterial, las valvulopatías y la enfermedad arterial coronaria aterotrombótica, estas coexisten con frecuencia e incluso también con la neuropatía autónoma cardiovascular. En los pacientes con CMD se puede demostrar mediante tests serológicos y por imagen alteraciones a nivel molecular, metabólico, mitocondrial, celular y tisular con infiltración grasa del músculo cardíaco, vinculadas a hiperglicemia, hiperinsulinemia y resistencia a la insulina, así como a lipotoxicidad por ácidos grasos libres, que son responsables del desarrollo de la CMD. Esta entidad primero determina disfunción diastólica del ventrículo izquierdo, más tarde disfunción sistólica e insuficiencia cardíaca. Se diagnostica mediante estudios serológicos de marcadores biológicos múltiples y por técnicas de imagen que evidencian la disfunción ventricular y mejoran la predicción pronóstica de enfermedad cardiovascular en diabéticos. En base a dichas pruebas se ha propuesto una clasificación por estadios o fenotipos clínicos de la CMD, que apunta a su diagnóstico precoz. Puede ser asintomática o ser responsable de síntomas y manifestaciones severas tales como insuficiencia cardíaca, arritmias y muerte súbita. Se puede asociar a hipertensión arterial, a enfermedad coronaria, a otras manifestaciones de microangiopatía y macroangiopatía aterotrombótica y a mortalidad cardiovascular. La prevención y el tratamiento intensivo multifactorial y personalizado de la diabetes, de todas sus alteraciones metabólicas y de la cardiopatía, mejoran la calidad y prolongan la vida. Se espera que investigaciones recientes, en proceso y futuras, determinen portentosos avances en la prevención y en el tratamiento de la CMD, que constituye una de las serias amenazas a la salud de la humanidad.


Coronary heart disease, hypertension and diabetes mellitus are independent risk factors for heart failure and death. Diabetic cardiomyopathy (DCM) is one of the common etiologies of cardiac disease in patients with diabetes type 1 or 2. Although DCM is often considered as the cause of heart disease when arterial hypertension, valvulopathies and atherothrombotic coronary artery are excluded, they coexist frequently, as well as with cardiovascular neuropathy. In patients with DCM, serological and imaging tests can show alterations at the molecular, metabolic, mitochondrial, cellular and tissue levels with fatty infiltration of the heart muscle, linked to hyperglycemia, hyperinsulinemia, insulin resistance, and lipotoxicity by fatty free acids, which are responsible for the development of the cardiomyopathy. The DCM first determines left ventricular diastolic dysfunction, later systolic dysfunction and heart failure. It is diagnosed by serological tests of multiple biological markers and by imaging tests that demonstrate ventricular dysfunction and improve the prognostic prediction of cardiovascular disease in diabetics. Based on these tests, a classification by stages or clinical phenotypes of DCM, which aims at its early diagnosis, has been proposed. It can be asymptomatic or be responsible for symptoms and severe manifestations such as heart failure, arrhythmias and sudden death, and may associate hypertension, coronary disease, other manifestations of microangiopathy and atherothrombotic macroangiopathy and cardiovascular mortality. The prevention and intensive multifactorial and personalized treatment of diabetes and all its metabolic and cardiac alterations, improve quality and prolong life. It is expected that ongoing and future research will determine breakthroughs in the prevention and treatment of DCM, which is one of the serious threats to the health of mankind.


Assuntos
Humanos , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/diagnóstico , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/terapia , Técnicas e Procedimentos Diagnósticos , Diabetes Mellitus Tipo 1/complicações
12.
Biol. Res ; 46(3): 251-255, 2013. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-692191

RESUMO

Obesity is a major global health issue. Obese patients develop metabolic syndrome, which is a cluster of clinical features characterized by insulin resistance and dyslipidemia. Its cardiac manifestation, diabetic cardiomyopathy, leads to heart failure. Bone marrow-derived multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSC) are envisioned as a therapeutic tool not only for cardiovascular diseases but also for other degenerative conditions. Our aim was to evaluate whether the intravenous administration of MSC modifies cardiac dysfunction in obese mice. To this end, C57BL/6 mice were fed a regular (normal) or high-fat diet (obese). Obese animals received the vehicle (obese), a single dose (obese + 1x MSC) or three doses (obese + 3x MSC) of 0.5x10(6) syngeneic MSC. Two to three months following MSC administration, cardiac function was assessed by cardiac catheterization, at basal condition and after a pharmacological stress. Compared to normal mice, obese mice presented hyperglycemia, hyperinsulinemia, hypercholesterolemia and cardiac dysfunction after stress condition. Exogenous MSC neither improved nor impaired this cardiac dysfunction. Thus, intravenous administration of MSC has neutral effect on obesity-induced diabetic cardiomyopathy.


Assuntos
Animais , Masculino , Camundongos , Cardiomiopatias Diabéticas/terapia , Células-Tronco Mesenquimais , Transplante de Células-Tronco Mesenquimais/métodos , Obesidade/complicações , Administração Intravenosa , Dieta Hiperlipídica , Cardiomiopatias Diabéticas/etiologia
13.
Rev. méd. Chile ; 140(5): 640-648, mayo 2012. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-648593

RESUMO

Background: Diabetic patients are a group of primary interest in the study of myocardial revascularization. Aim: To compare coronary artery bypass grafting surgery (CABG) and percutaneous angioplasty with stents (PCI-S) in diabetic patients with coronary three-vessel or left main coronary artery disease. Material and Methods: Meta-analysis of MEDLINE randomized controlled studies comparing CABG and PCI-S in diabetic patients. The primary outcome measure was major adverse cardiovascular events (MACCE), death, myocardial infarction, cerebrovascular accident (CVA) and coronary re-intervention. Secondary outcomes were the individual components of MACCE. Results: Three studies comparing CABG and PCI-S met the inclusion criteria. One thousand sixty two patients were studied: 565 in the CABG group and 597 in the PCI-S group. At one year follow up MACCE occurred in 24.9 and 12.7% of patients in PCI-S and CABG groups, respectively (Odds ratio (OR) 2.27; 95% confidence intervals (CI) 1.66-3.09). There were no differences in death or myocardial infarction. Strokes were less common in the PCI-S group (OR 0.25, 95% CI0.09-0.68) and coronary re-intervention was required with higher frequency in the PCI-S group (OR 5.32, 95% CI 3.27-8.67). Conclusions: In diabetic patients with three-vessel coronary disease or left main coronary artery, revascularization with CABG had significantly less MACCE at one year than those treated with PCI-S. Stroke frequency was higher in CABG, coronary re-intervention was higher in PCI-S. These results must be interpreted cautiously.


Assuntos
Humanos , Angioplastia , Ponte de Artéria Coronária , Doença da Artéria Coronariana/terapia , Cardiomiopatias Diabéticas/terapia , Stents , Ensaios Clínicos Controlados como Assunto , Razão de Chances
14.
J. physiol. biochem ; 73(1): 111-120, feb. 2017. tab, graf, ilus
Artigo em Inglês | IBECS (Espanha) | ID: ibc-168398

RESUMO

It has been shown that diabetes modifies the myocardial responses to ischemia/reperfusion (I/R) and to cardioprotective agents. In this study, we aimed to investigate the effects of combined treatment with ischemic postconditioning (IPostC) and cyclosporine A (CsA) on inflammation and apoptosis of the diabetic myocardium injured by I/R. Eight weeks after induction of diabetes in Wistar rats, hearts were mounted on a Langendorff apparatus and were subsequently subjected to a 30-min regional ischemia followed by 45-min reperfusion. IPostC was induced at the onset of reperfusion, by 3 cycles of 30-s reperfusion/ischemia (R/I). The concentration of creatine kinase (CK), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were determined; the levels of total and phosphorylated glycogen synthase kinase 3 beta (p-GSK3β) and B-cell lymphoma 2 (Bcl-2) were quantified by western blotting, and the rate of apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. Administration of either IPostC or CsA alone in nondiabetic animals significantly reduced CK, TNF-α, IL-1β, and IL-6 concentrations, increased the p-GSK3β and Bcl-2, and decreased the level of apoptosis (P < 0.05) but had no effect on diabetic hearts. However, in diabetic animals, after administration of CsA, the cardioprotective effects of IPostC in increasing the p-GSK3β and Bcl-2 and decreasing apoptosis and inflammation were restored in comparison with nonpostconditioned diabetic hearts. IPostC or CsA failed to affect apoptosis and inflammation and failed to protect the diabetic myocardium against I/R injury. However, combined administration of IPostC and CsA at reperfusion can protect the diabetic myocardium by decreasing the inflammatory response and apoptosis (AU)


No disponible


Assuntos
Animais , Masculino , Ratos , Ciclosporina/uso terapêutico , Diabetes Mellitus Tipo 1/complicações , Cardiomiopatias Diabéticas/terapia , Imunossupressores/uso terapêutico , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Pós-Condicionamento Isquêmico , Apoptose , Biomarcadores/metabolismo , Técnicas In Vitro , Distribuição Aleatória , Ratos Wistar , Estreptozocina/toxicidade , Terapia Combinada , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA