Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.027
Filtrar
1.
Nature ; 608(7923): 552-557, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948636

RESUMO

As the climate changes, warmer spring temperatures are causing earlier leaf-out1-3 and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a tendency towards increased growing season length3 and annual CO2 uptake1,3-7. However, less is known about how spring temperatures affect tree stem growth8,9, which sequesters carbon in wood that has a long residence time in the ecosystem10,11. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO2 uptake in years with warmer spring temperatures4,5 does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models1,12, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO2 sink of temperate deciduous forests.


Assuntos
Aquecimento Global , Estações do Ano , Temperatura , Árvores , Aclimatação , Biomassa , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Modelos Climáticos , Florestas , Aquecimento Global/estatística & dados numéricos , América do Norte , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Fatores de Tempo , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Madeira/crescimento & desenvolvimento , Madeira/metabolismo
2.
Nature ; 584(7819): 109-114, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32669710

RESUMO

The size of plants is largely determined by growth of the stem. Stem elongation is stimulated by gibberellic acid1-3. Here we show that internode stem elongation in rice is regulated antagonistically by an 'accelerator' and a 'decelerator' in concert with gibberellic acid. Expression of a gene we name ACCELERATOR OF INTERNODE ELONGATION 1 (ACE1), which encodes a protein of unknown function, confers cells of the intercalary meristematic region with the competence for cell division, leading to internode elongation in the presence of gibberellic acid. By contrast, upregulation of DECELERATOR OF INTERNODE ELONGATION 1 (DEC1), which encodes a zinc-finger transcription factor, suppresses internode elongation, whereas downregulation of DEC1 allows internode elongation. We also show that the mechanism of internode elongation that is mediated by ACE1 and DEC1 is conserved in the Gramineae family. Furthermore, an analysis of genetic diversity suggests that mutations in ACE1 and DEC1 have historically contributed to the selection of shorter plants in domesticated populations of rice to increase their resistance to lodging, and of taller plants in wild species of rice for adaptation to growth in deep water. Our identification of these antagonistic regulatory factors enhances our understanding of the gibberellic acid response as an additional mechanism that regulates internode elongation and environmental fitness, beyond biosynthesis and gibberellic acid signal transduction.


Assuntos
Giberelinas/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Aclimatação , Mutação , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Locos de Características Quantitativas , Transdução de Sinais
3.
Plant J ; 119(4): 2080-2095, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38860937

RESUMO

Stem is important for assimilating transport and plant strength; however, less is known about the genetic basis of its structural characteristics. In this study, a high-throughput method, "LabelmeP rice" was developed to generate 14 traits related to stem regions and vascular bundles, which allows the establishment of a stem cross-section phenotype dataset containing anatomical information of 1738 images from hand-cut transections of stems collected from 387 rice germplasm accessions grown over two successive seasons. Then, the phenotypic diversity of the rice accessions was evaluated. Genome-wide association studies identified 94, 83, and 66 significant single nucleotide polymorphisms (SNPs) for the assayed traits in 2 years and their best linear unbiased estimates, respectively. These SNPs can be integrated into 29 quantitative trait loci (QTL), and 11 of them were common in 2 years, while correlated traits shared 19. In addition, 173 candidate genes were identified, and six located at significant SNPs were repeatedly detected and annotated with a potential function in stem development. By using three introgression lines (chromosome segment substitution lines), four of the 29 QTLs were validated. LOC_Os01g70200, located on the QTL uq1.4, is detected for the area of small vascular bundles (SVB) and the rate of large vascular bundles number to SVB number. Besides, the CRISPR/Cas9 editing approach has elucidated the function of the candidate gene LOC_Os06g46340 in stem development. In conclusion, the results present a time- and cost-effective method that provides convenience for extracting rice stem anatomical traits and the candidate genes/QTL, which would help improve rice.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Fenótipo , Caules de Planta , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Oryza/genética , Oryza/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Genoma de Planta/genética
4.
Plant J ; 118(6): 2003-2019, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38536089

RESUMO

Plant height (PH) is an important factor affecting bast fiber yield in jute. Here, we report the mechanism of dwarfism in the 'Guangbaai' (gba) of jute. The mutant gba had shorter internode length and cell length compared to the standard cultivar 'TaiZi 4' (TZ4). Exogenous GA3 treatment indicated that gba is a GA-insensitive dwarf mutant. Quantitative trait locus (QTL) analysis of three PH-related traits via a high-density genetic linkage map according to re-seq showed that a total of 25 QTLs were identified, including 13 QTLs for PH, with phenotypic variation explained ranging from 2.42 to 74.16%. Notably, the functional mechanism of the candidate gene CoGID1a, the gibberellic acid receptor, of the major locus qPHIL5 was evaluated by transgenic analysis and virus-induced gene silencing. A dwarf phenotype-related single nucleotide mutation in CoGID1a was identified in gba, which was also unique to the dwarf phenotype of gba among 57 cultivars. Cogid1a was unable to interact with the growth-repressor DELLA even in the presence of highly accumulated gibberellins in gba. Differentially expressed genes between transcriptomes of gba and TZ4 after GA3 treatment indicated up-regulation of genes involved in gibberellin and cellulose synthesis in gba. Interestingly, it was found that up-regulation of CoMYB46, a key transcription factor in the secondary cell wall, by the highly accumulated gibberellins in gba promoted the expression of cellulose synthase genes CoCesA4 and CoCesA7. These findings provide valuable insights into fiber development affected by endogenous gibberellin accumulation in plants.


Assuntos
Celulose , Corchorus , Proteínas de Plantas , Caules de Planta , Celulose/metabolismo , Clonagem Molecular , Corchorus/genética , Corchorus/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Giberelinas/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Locos de Características Quantitativas/genética
5.
Plant J ; 120(2): 699-711, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39240190

RESUMO

The lenticel is a channel-like structure that facilitates oxygen, carbon dioxide, and water vapor exchange on secondary growth tissue, such as a tree stem. Although the structure of lenticel has been described, there is limited understanding regarding the impact of this secondary structure on secondary growth as well as the cellular and metabolic processes underlying its formation. The study reveals the essential role of the lenticel in the process of tree secondary growth and the cellular and metabolic processes that take place during its formation. Under the stomata, lenticel development occurs when cells divide and differentiate into a structure of disconnected cells with air spaces between them. During lenticel formation, specific metabolic pathways and wax biosynthesis are activated. The SERK (somatic embryogenesis receptor kinase) gene controls lenticel density, and serk1serk3serk5 triple mutants enhance lenticel initiation. The findings shed light on the cellular and metabolic processes involved in lenticel formation, laying the groundwork for further mechanistic elucidation of their development, function, and genetic regulation in trees.


Assuntos
Caules de Planta , Árvores , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/metabolismo , Árvores/genética , Árvores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ceras/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Estômatos de Plantas/citologia
6.
Plant J ; 119(2): 1014-1029, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805573

RESUMO

Cassava, a pivotal tropical crop, exhibits rapid growth and possesses a substantial biomass. Its stem is rich in cellulose and serves as a crucial carbohydrate storage organ. The height and strength of stems restrict the mechanised operation and propagation of cassava. In this study, the triple helix transcription factor MeGT2.6 was identified through yeast one-hybrid assay using MeCesA1pro as bait, which is critical for cellulose synthesis. Over-expression and loss-of-function lines were generated, and results revealed that MeGT2.6 could promote a significant increase in the plant height, stem diameter, cell size and thickness of SCW of cassava plant. Specifically, MeGT2.6 upregulated the transcription activity of MeGA20ox1 and downregulated the expression level of MeGA2ox1, thereby enhancing the content of active GA3, resulting in a large cell size, high plant height and long stem diameter in cassava. Moreover, MeGT2.6 upregulated the transcription activity of MeCesA1, which promoted the synthesis of cellulose and hemicellulose and produced a thick secondary cell wall. Finally, MeGT2.6 could help supply additional substrates for the synthesis of cellulose and hemicellulose by upregulating the invertase genes (MeNINV1/6). Thus, MeGT2.6 was found to be a multiple regulator; it was involved in GA metabolism and sucrose decomposition and the synthesis of cellulose and hemicellulose.


Assuntos
Celulose , Regulação da Expressão Gênica de Plantas , Giberelinas , Manihot , Proteínas de Plantas , Manihot/genética , Manihot/metabolismo , Celulose/metabolismo , Celulose/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Giberelinas/metabolismo , Parede Celular/metabolismo , Crescimento Celular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Polissacarídeos/metabolismo
7.
Plant J ; 119(2): 1039-1058, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38804740

RESUMO

Plant stems constitute the most abundant renewable resource on earth. The function of lysine (K)-2-hydroxyisobutyrylation (Khib), a novel post-translational modification (PTM), has not yet been elucidated in plant stem development. Here, by assessing typical pepper genotypes with straight stem (SS) and prostrate stem (PS), we report the first large-scale proteomics analysis for protein Khib to date. Khib-modifications influenced central metabolic processes involved in stem development, such as glycolysis/gluconeogenesis and protein translation. The high Khib level regulated gene expression and protein accumulation associated with cell wall formation in the pepper stem. Specially, we found that CaMYB61 knockdown lines that exhibited prostrate stem phenotypes had high Khib levels. Most histone deacetylases (HDACs, e.g., switch-independent 3 associated polypeptide function related 1, AFR1) potentially function as the "erasing enzymes" involved in reversing Khib level. CaMYB61 positively regulated CaAFR1 expression to erase Khib and promote cellulose and hemicellulose accumulation in the stem. Therefore, we propose a bidirectional regulation hypothesis of "Khib modifications" and "Khib erasing" in stem development, and reveal a novel epigenetic regulatory network in which the CaMYB61-CaAFR1 molecular module participating in the regulation of Khib levels and biosynthesis of cellulose and hemicellulose for the first time.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Lisina , Proteínas de Plantas , Caules de Planta , Proteômica , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Parede Celular/metabolismo , Parede Celular/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
8.
Annu Rev Genet ; 51: 335-359, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28892639

RESUMO

Understanding the development of vascular tissues in plants is crucial because the evolution of vasculature enabled plants to thrive on land. Various systems and approaches have been used to advance our knowledge about the genetic regulation of vasculature development, from the scale of single genes to networks. In this review, we provide a perspective on the major approaches used in studying plant vascular development, and we cover the mechanisms and genetic networks underlying vascular tissue specification, patterning, and differentiation.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Floema/genética , Proteínas de Plantas/genética , Plantas/genética , Xilema/genética , Regulação da Expressão Gênica no Desenvolvimento , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Morfogênese/genética , Floema/crescimento & desenvolvimento , Floema/metabolismo , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas/metabolismo , Transcrição Gênica , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
9.
Plant Physiol ; 196(1): 153-163, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38757896

RESUMO

Microcomputed tomography (µCT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, the impact on plant physiological processes such as carbon (C) uptake, transport, and use is unknown. Yet, these damages could be particularly relevant for studies that track embolism and C fluxes over time. We examined the physiological consequences of µCT scanning for xylem embolism over 3 mo by monitoring net photosynthesis (Anet), diameter growth, chlorophyll (Chl) concentration, and foliar nonstructural carbohydrate (NSC) content in 4 deciduous tree species: hedge maple (Acer campestre), ash (Fraxinus excelsior), European hornbeam (Carpinus betulus), and sessile oak (Quercus petraea). C transport from the canopy to the roots was also assessed through 13C labeling. Our results show that monthly X-ray application did not impact foliar Anet, Chl, NSC content, and C transport. Although X-ray effects did not vary between species, the most pronounced impact was observed in sessile oak, marked by stopped growth and stem deformations around the irradiated area. The absence of adverse impacts on plant physiology for all the tested treatments indicates that laboratory-based µCT systems can be used with different beam energy levels and doses without threatening the integrity of plant physiology within the range of tested parameters. However, the impacts of repetitive µCT on the stem radial growth at the irradiated zone leading to deformations in sessile oak might have lasting implications for studies tracking plant embolism in the longer-term.


Assuntos
Acer , Folhas de Planta , Caules de Planta , Quercus , Microtomografia por Raio-X , Microtomografia por Raio-X/métodos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Acer/crescimento & desenvolvimento , Acer/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Fotossíntese , Xilema/crescimento & desenvolvimento , Xilema/fisiologia , Xilema/metabolismo , Carbono/metabolismo , Clorofila/metabolismo , Fraxinus/crescimento & desenvolvimento , Fraxinus/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Transporte Biológico , Betulaceae/crescimento & desenvolvimento
10.
Plant Cell Physiol ; 65(5): 770-780, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38424724

RESUMO

Sulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined. Therefore, we analyzed the sulfate transport, S-containing metabolite accumulation and plant growth using Arabidopsis SULTR2;1 disruption lines, sultr2;1-1 and sultr2;1-2, from seedling to mature growth stages to clarify the metabolic and physiological roles of SULTR2;1. We observed that sulfate distribution to the stems was affected in sultr2;1 mutants, resulting in decreased levels of sulfate, cysteine, glutathione (GSH) and total S in the stems, flowers and siliques; however, the GSH levels increased in the rosette leaves. This suggested the essential role of SULTR2;1 in sulfate transport from rosette leaves to the primary stem. In addition, sultr2;1 mutants unexpectedly bolted earlier than the wild-type without affecting the plant biomass. Correlation between GSH levels in rosette leaves and the bolting timing suggested that the rosette leaf GSH levels or limited sulfate transport to the early stem can trigger bolting. Overall, this study demonstrated the critical roles of SULTR2;1 in maintaining the S metabolite levels in the aerial part and transitioning from the vegetative to the reproductive growth phase.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glutationa , Folhas de Planta , Caules de Planta , Sulfatos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Sulfatos/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glutationa/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Transporte Biológico , Enxofre/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo
11.
BMC Plant Biol ; 24(1): 382, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724900

RESUMO

The highly unique zigzag-shaped stem phenotype in tea plants boasts significant ornamental value and is exceptionally rare. To investigate the genetic mechanism behind this trait, we developed BC1 artificial hybrid populations. Our genetic analysis revealed the zigzag-shaped trait as a qualitative trait. Utilizing whole-genome resequencing, we constructed a high-density genetic map from the BC1 population, incorporating 5,250 SNP markers across 15 linkage groups, covering 3,328.51 cM with an average marker interval distance of 0.68 cM. A quantitative trait locus (QTL) for the zigzag-shaped trait was identified on chromosome 4, within a 61.2 to 97.2 Mb range, accounting for a phenotypic variation explained (PVE) value of 13.62%. Within this QTL, six candidate genes were pinpointed. To better understand their roles, we analyzed gene expression in various tissues and individuals with erect and zigzag-shaped stems. The results implicated CsXTH (CSS0035625) and CsCIPK14 (CSS0044366) as potential key contributors to the zigzag-shaped stem formation. These discoveries lay a robust foundation for future functional genetic mapping and tea plant genetic enhancement.


Assuntos
Camellia sinensis , Caules de Planta , Camellia sinensis/genética , Camellia sinensis/crescimento & desenvolvimento , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Proteínas de Plantas/genética , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Genes de Plantas , Locos de Características Quantitativas
12.
BMC Plant Biol ; 24(1): 629, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961339

RESUMO

Twisted trunks are not uncommon in trees, but their effects on tree growth are still unclear. Among coniferous tree species, the phenomenon of trunk distortion is more prominent in Pinus yunnanensis. To expand the germplasm of genetic resources, we selected families with excellent phenotypic traits to provide material for advanced generation breeding. The progeny test containing 93 superior families (3240 trees) was used as the research material. Phenotypic measurements and estimated genetic parameters (family heritability, realistic gain and genetic gain) were performed at 9, 15, and 18 years of age, respectively. The genetic evaluation yielded the following results (1) The intra-family variance component of plant height (PH) was greater than that of the inter-family, while the inter-family variance components of other traits (diameter at breast height (DBH), crown diameter (CD), height under branches (HUB), degree of stem-straightness (DS)) were greater than that of the intra-family, indicating that there was abundant variation among families and potential for selection. (2) At half rotation period (18 years old), there was a significant correlation among the traits. The proportion of trees with twisted trunks (level 1-3 straightness) reached 48%. The DS significantly affected growth traits, among which PH and DBH were the most affected. The volume loss rate caused by twisted trunk was 18.06-56.75%, implying that trunk distortion could not be completely eliminated after an artificial selection. (3) The influence of tree shape, crown width, and trunk on volume increased, and the early-late correlation between PH, DBH and volume was extremely significant. The range of phenotypic coefficient of variation, genetic variation coefficient and family heritability of growth traits (PH, DBH, and volume) were 44.29-127.13%, 22.88-60.87%, and 0.79-0.83, respectively. (4) A total of 21 superior families were selected by the method of membership function combined with independent selection. Compared with the mid-term selection (18 years old), the accuracy of early selection (9 years old) reached 77.5%. The selected families' genetic gain and realistic gain range were 5.79-19.82% and 7.12-24.27%, respectively. This study can provide some useful reference for the breeding of coniferous species.


Assuntos
Fenótipo , Pinus , Pinus/genética , Pinus/crescimento & desenvolvimento , Pinus/fisiologia , Árvores/crescimento & desenvolvimento , Árvores/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/anatomia & histologia , Melhoramento Vegetal
13.
BMC Plant Biol ; 24(1): 414, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760680

RESUMO

BACKGROUND: Variations in hydraulic conductivity may arise from species-specific differences in the anatomical structure and function of the xylem, reflecting a spectrum of plant strategies along a slow-fast resource economy continuum. Spruce (Picea spp.), a widely distributed and highly adaptable tree species, is crucial in preventing soil erosion and enabling climate regulation. However, a comprehensive understanding of the variability in anatomical traits of stems and their underlying drivers in the Picea genus is currently lacking especially in a common garden. RESULTS: We assessed 19 stem economic properties and hydraulic characteristics of 17 Picea species grown in a common garden in Tianshui, Gansu Province, China. Significant interspecific differences in growth and anatomical characteristics were observed among the species. Specifically, xylem hydraulic conductivity (Ks) and hydraulic diameter exhibited a significant negative correlation with the thickness to span ratio (TSR), cell wall ratio, and tracheid density and a significant positive correlation with fiber length, and size of the radial tracheid. PCA revealed that the first two axes accounted for 64.40% of the variance, with PC1 reflecting the trade-off between hydraulic efficiency and mechanical support and PC2 representing the trade-off between high embolism resistance and strong pit flexibility. Regression analysis and structural equation modelling further confirmed that tracheid size positively influenced Ks, whereas the traits DWT, D_r, and TSR have influenced Ks indirectly. All traits failed to show significant phylogenetic associations. Pearson's correlation analysis demonstrated strong correlations between most traits and longitude, with the notable influence of the mean temperature during the driest quarter, annual precipitation, precipitation during the wettest quarter, and aridity index. CONCLUSIONS: Our results showed that xylem anatomical traits demonstrated considerable variability across phylogenies, consistent with the pattern of parallel sympatric radiation evolution and global diversity in spruce. By integrating the anatomical structure of the stem xylem as well as environmental factors of origin and evolutionary relationships, our findings provide novel insights into the ecological adaptations of the Picea genus.


Assuntos
Clima , Picea , Madeira , Xilema , Picea/anatomia & histologia , Picea/fisiologia , Picea/crescimento & desenvolvimento , Madeira/anatomia & histologia , Xilema/anatomia & histologia , Xilema/fisiologia , China , Especificidade da Espécie , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento
14.
BMC Plant Biol ; 24(1): 581, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898382

RESUMO

Asparagus is a nutritionally dense stem vegetable whose growth and development are correlated with its quality and yield. To investigate the dynamic changes and underlying mechanisms during the elongation and growth process of asparagus stems, we documented the growth pattern of asparagus and selected stem segments from four consecutive elongation stages using physiological and transcriptome analyses. Notably, the growth rate of asparagus accelerated at a length of 25 cm. A significant decrease in the concentration of sucrose, fructose, glucose, and additional sugars was observed in the elongation region of tender stems. Conversely, the levels of auxin and gibberellins(GAs) were elevated along with increased activity of enzymes involved in sucrose degradation. A significant positive correlation existed between auxin, GAs, and enzymes involved in sucrose degradation. The ABA content gradually increased with stem elongation. The tissue section showed that cell elongation is an inherent manifestation of stem elongation. The differential genes screened by transcriptome analysis were enriched in pathways such as starch and sucrose metabolism, phytohormone synthesis metabolism, and signal transduction. The expression levels of genes such as ARF, GA20ox, NCED, PIF4, and otherswere upregulated during stem elongation, while DAO, GA2ox, and other genes were downregulated. The gene expression level was consistent with changes in hormone content and influenced the cell length elongation. Additionally, the expression results of RT-qPCR were consistent with RNA-seq. The observed variations in gene expression levels, endogenous hormones and sugar changes during the elongation and growth of asparagus tender stems offer valuable insights for future investigations into the molecular mechanisms of asparagus stem growth and development and provide a theoretical foundation for cultivation and production practices.


Assuntos
Asparagus , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas , Caules de Planta , Asparagus/genética , Asparagus/metabolismo , Asparagus/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Açúcares/metabolismo , Giberelinas/metabolismo
15.
BMC Plant Biol ; 24(1): 453, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789944

RESUMO

BACKGROUND: Impatiens is an important genus with rich species of garden plants, and its distribution is extremely extensive, which is reflected in its diverse ecological environment. However, the specific mechanisms of Impatiens' adaptation to various environments and the mechanism related to lignin remain unclear. RESULTS: Three representative Impatiens species,Impatiens chlorosepala (wet, low degree of lignification), Impatiens uliginosa (aquatic, moderate degree of lignification) and Impatiens rubrostriata (terrestrial, high degree of lignification), were selected and analyzed for their anatomical structures, lignin content and composition, and lignin-related gene expression. There are significant differences in anatomical parameters among the stems of three Impatiens species, and the anatomical structure is consistent with the determination results of lignin content. Furthermore, the thickness of the xylem and cell walls, as well as the ratio of cell wall thickness to stem diameter have a strong correlation with lignin content. The anatomical structure and degree of lignification in Impatiens can be attributed to the plant's growth environment, morphology, and growth rate. Our analysis of lignin-related genes revealed a negative correlation between the MYB4 gene and lignin content. The MYB4 gene may control the lignin synthesis in Impatiens by controlling the structural genes involved in the lignin synthesis pathway, such as HCT, C3H, and COMT. Nonetheless, the regulation pathway differs between species of Impatiens. CONCLUSIONS: This study demonstrated consistency between the stem anatomy of Impatiens and the results obtained from lignin content and composition analyses. It is speculated that MYB4 negatively regulates the lignin synthesis in the stems of three Impatiens species by regulating the expression of structural genes, and its regulation mechanism appears to vary across different Impatiens species. This study analyses the variations among different Impatiens plants in diverse habitats, and can guide further molecular investigations of lignin biosynthesis in Impatiens.


Assuntos
Impatiens , Lignina , Caules de Planta , Lignina/metabolismo , Caules de Planta/genética , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Impatiens/genética , Impatiens/metabolismo , Impatiens/crescimento & desenvolvimento , Ecossistema , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Especificidade da Espécie , Genes de Plantas , Parede Celular/metabolismo , Parede Celular/genética
16.
New Phytol ; 243(2): 662-673, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769735

RESUMO

It is well established that solar irradiance greatly influences tree metabolism and growth through photosynthesis, but its effects acting through individual climate metrics have not yet been well quantified. Understanding these effects is crucial for assessing the impacts of climate change on forest ecosystems. To describe the effects of solar irradiance on tree growth, we installed 110 automatic dendrometers in two old-growth mountain forest reserves in Central Europe, performed detailed terrestrial and aerial laser scanning to obtain precise tree profiles, and used these to simulate the sum of solar irradiance received by each tree on a daily basis. Generalized linear mixed-effect models were applied to simulate the probability of growth and the growth intensity over seven growing seasons. Our results demonstrated various contrasting effects of solar irradiance on the growth of canopy trees. On the one hand, the highest daily growth rates corresponded with the highest solar irradiance potentials (i.e. the longest photoperiod). Intense solar irradiance significantly decreased tree growth, through an increase in the vapor pressure deficit. These effects were consistent for all species but had different magnitude. Tree growth is the most effective on long rainy/cloudy days with low solar irradiance.


Assuntos
Florestas , Caules de Planta , Estações do Ano , Luz Solar , Árvores , Árvores/crescimento & desenvolvimento , Árvores/efeitos da radiação , Árvores/fisiologia , Europa (Continente) , Caules de Planta/efeitos da radiação , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Fotossíntese/efeitos da radiação
17.
New Phytol ; 244(1): 91-103, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39148398

RESUMO

Stem respiration constitutes a substantial proportion of autotrophic respiration in forested ecosystems, but its drivers across different spatial scales and land-use gradients remain poorly understood. This study quantifies and examines the impact of logging disturbance on stem CO2 efflux (EA) in Malaysian Borneo. EA was quantified at tree- and stand-level in nine 1-ha plots over a logging gradient from heavily logged to old-growth using the static chamber method. Tree-level results showed higher EA per unit stem area in logged vs old-growth plots (37.0 ± 1.1 vs 26.92 ± 1.14 g C m-2 month-1). However, at stand-level, there was no difference in EA between logged and old-growth plots (6.7 ± 1.1 vs 6.0 ± 0.7 Mg C ha-1 yr-1) due to greater stem surface area in old-growth plots. Allocation to growth respiration and carbon use efficiency was significantly higher in logged plots. Variation in EA at both tree- and stand-level was driven by tree size, growth and differences in investment strategies between the forest types. These results reflect different resource allocation strategies and priorities, with a priority for growth in response to increased light availability in logged plots, while old-growth plots prioritise maintenance and cell structure.


Assuntos
Dióxido de Carbono , Caules de Planta , Árvores , Dióxido de Carbono/metabolismo , Bornéu , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Agricultura Florestal/métodos , Malásia , Florestas , Respiração Celular
18.
New Phytol ; 242(5): 1981-1995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511237

RESUMO

Understanding the capacity of temperate trees to acclimate to limited soil water has become essential in the face of increasing drought risk due to climate change. We documented seasonal - or phenological - patterns in acclimation to water deficit stress in stems and leaves of tree species spanning the angiosperm phylogeny. Over 3 yr of field observations carried out in two US arboreta, we measured stem vulnerability to embolism (36 individuals of 7 Species) and turgor loss point (119 individuals of 27 species) over the growing season. We also conducted a growth chamber experiment on 20 individuals of one species to assess the mechanistic relationship between soil water restriction and acclimation. In three-quarters of species measured, plants became less vulnerable to embolism and/or loss of turgor over the growing season. We were able to stimulate this acclimatory effect by withholding water in the growth chamber experiment. Temperate angiosperms are capable of acclimation to soil water deficit stress, showing maximum vulnerability to soil water deficits following budbreak and becoming more resilient to damage over the course of the growing season or in response to simulated drought. The species-specific tempo and extent of this acclimatory potential constitutes preadaptive climate change resilience.


Assuntos
Aclimatação , Secas , Magnoliopsida , Filogenia , Estações do Ano , Estresse Fisiológico , Água , Magnoliopsida/fisiologia , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Aclimatação/genética , Madeira/fisiologia , Especificidade da Espécie , Caules de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Desidratação , Solo , Árvores/fisiologia
19.
Plant Cell Environ ; 47(8): 2986-2998, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38644584

RESUMO

The stems of some herbaceous species can undergo basal secondary growth, leading to a continuum in the degree of woodiness along the stem. Whether the formation of secondary growth in the stem base results in differences in embolism resistance between the base and the upper portions of stems is unknown. We assessed the embolism resistance of leaves and the basal and upper portions of stems simultaneously within the same individuals of two divergent herbaceous species that undergo secondary growth in the mature stem bases. The species were Solanum lycopersicum (tomato) and Senecio minimus (fireweed). Basal stem in mature plants of both species displayed advanced secondary growth and greater resistance to embolism than the upper stem. This also resulted in significant vulnerability segmentation between the basal stem and the leaves in both species. Greater embolism resistance in the woodier stem base was found alongside decreases in the pith-to-xylem ratio, increases in the proportion of secondary xylem, and increases in lignin content. We show that there can be considerable variation in embolism resistance across the stem in herbs and that this variation is linked to the degree of secondary growth present. A gradient in embolism resistance across the stem in herbaceous plants could be an adaptation to ensure reproduction or basal resprouting during episodes of drought late in the lifecycle.


Assuntos
Folhas de Planta , Caules de Planta , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Xilema/fisiologia , Xilema/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Lignina/metabolismo , Combretaceae/fisiologia , Combretaceae/crescimento & desenvolvimento
20.
J Exp Bot ; 75(16): 4944-4959, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38779859

RESUMO

Stem CO2 efflux is an important component of the carbon balance in forests. The efflux is considered to principally reflect the net result of two dominating and opposing processes: stem respiration and stem photosynthesis. In addition, transport of CO2 in xylem sap is thought to play an appreciable role in affecting the net flux. This work presents an approach to partition stem CO2 efflux among these processes using sap-flux data and CO2-exchange measurements from dark and transparent chambers placed on mature Scots pine (Pinus sylvestris) trees. Seasonal changes and monthly parameters describing the studied processes were determined. Respiration contributed most to stem net CO2 flux, reaching up to 79% (considering the sum of the absolute values of stem respiration, stem photosynthesis, and flux from CO2 transported in xylem sap to be 100%) in June, when stem growth was greatest. The contribution of photosynthesis accounted for up to 13% of the stem net CO2 flux, increasing over the monitoring period. CO2 transported axially with sap flow decreased towards the end of the growing season. At a reference temperature, respiration decreased starting around midsummer, while its temperature sensitivity increased during the summer. A decline was observed for photosynthetic quantum yield around midsummer together with a decrease in light-saturation point. The proposed approach facilitates modeling net stem CO2 flux at a range of time scales.


Assuntos
Dióxido de Carbono , Respiração Celular , Fotossíntese , Pinus sylvestris , Casca de Planta , Caules de Planta , Estações do Ano , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Pinus sylvestris/metabolismo , Pinus sylvestris/fisiologia , Pinus sylvestris/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Casca de Planta/metabolismo , Casca de Planta/fisiologia , Transporte Biológico , Xilema/metabolismo , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA