Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(2): e0247821, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35377232

RESUMO

Verticillium dahliae could cause destructive vascular wilt disease on hundreds of plant species around the world, including cotton. In this study, we characterized the function of a hydrophobin gene VdHP1 in pathogen development and pathogenicity. Results showed that VdHP1 could induce cell death and activate plant immune responses. The VdHP1 deletion mutants (ΔVdHP1) and the complement mutants (C-ΔVdHP1) were obtained by the homologous recombination method. The VdHP1 deletion mutants exhibited increased hydrophilicity, inhibited microsclerotial formation, and reduced spore smoothness. In addition, the deletion mutants were more sensitive to NaCl, while relatively insensitive to KCl and sorbitol. Mutants also had greater resistance to Congo red, UV radiation, and high temperature, which suggested that ΔVdHP1 strains have stronger resistance to abiotic stress in general. Different carbon source assays showed that the utilization ability of skim milk, cellulose, and starch was greatly enhanced in ΔVdHP1, compared with that of WT and complemented strains. Furthermore, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The pathogenicity test found that the crude toxin content, colonization, and dispersal of ΔVdHP1 was significantly increased compared with the WT and complementary strains. In addition, cotton seedlings showed more severe wilting symptoms after inoculation with ΔVdHP1 strains. These results suggested that the hydrophobin VdHP1 negatively regulated the virulence of V. dahliae, and played an important role in development, adaptability, and pathogenicity in V. dahliae, which maybe provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence. IMPORTANCE Verticillium dahliae is a soilborne fungal pathogen that causes a destructive vascular disease on a large number of plant hosts, resulting in great threat to agricultural production. In this study, it was illustrated that the hydrophobin VdHP1 could induce cell death and activate plant immune responses. VdHP1 affected the hydrophobicity of V. dahliae, and negatively regulated the strains resistant to stress, and the utilization ability of different carbon sources. In addition, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The VdHP1 gene negatively regulated the total virulence, colonization, and dispersal of V. dahliae, with enhanced pathogenicity of mutant strains in this gene. These results suggested that the hydrophobin VdHP1 played an importance in development, adaptability, and pathogenicity in V. dahliae, and would provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence.


Assuntos
Verticillium , Acremonium , Carbono/metabolismo , Celofane/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Doenças das Plantas/microbiologia , Plantas/metabolismo , Verticillium/genética
2.
Mol Microbiol ; 74(2): 480-96, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19775249

RESUMO

NADPH oxidases are enzymes that produce reactive oxygen species. Studies in mammals, plants and fungi have shown that they play important roles in differentiation, defence, host/pathogen interaction and mutualistic symbiosis. In this paper, we have identified a Podospora anserina mutant strain impaired for processes controlled by PaNox1 and PaNox2, the two Nox isoforms characterized in this model ascomycete. We show that the gene mutated is PaNoxR, the homologue of the gene encoding the regulatory subunit p67(phox), conserved in mammals and fungi, and that PaNoxR regulates both PaNox1 and PaNox2. Genome sequence analysis of P. anserina reveals that this fungus posses a third Nox isoform, PaNox3, related to human Nox5/Duox and plant Rboh. We have generated a knock-out mutant of PaNox3 and report that PaNox3 plays a minor role in P. anserina, if any. We show that PaNox1 and PaNox2 play antagonist roles in cellulose degradation. Finally, we report for the first time that a saprobic fungus, P. anserina, develops special cell structures dedicated to breach and to exploit a solid cellulosic substrate, cellophane. Importantly, as for similar structures present in some plant pathogens, their proper differentiation requires PaNox1, PaNox2, PaNoxR and the tetraspanin PaPls1.


Assuntos
Celofane/metabolismo , Proteínas Fúngicas/metabolismo , NADPH Oxidases/metabolismo , Podospora/genética , Biodegradação Ambiental , Proteínas Fúngicas/genética , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , NADPH Oxidases/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Podospora/enzimologia , Podospora/crescimento & desenvolvimento , RNA Fúngico/genética
3.
Int J Pharm ; 327(1-2): 6-11, 2006 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-16959447

RESUMO

In this study, natural membranes such as the outer membrane of Prunus persica (peach) and Lycopersicon esculentum (tomato), the inner layer of the egg of Gallus domesticus (hen) and the middle membrane of the Allium cepa (onion) were used as controlling barriers for permeation of some model drugs with different MW and lipophilicities. Drug permeation studies were done by using modified Franz diffusion cell. The permeation of drugs through these natural membranes was compared to permeation of them through human skin and synthetic cellophane membrane. Results showed that the rate and amount of diclofenac permeated through onion membrane was not significantly different from that with tomato (p>0.17), egg (p>0.29) and human skin (p>0.93). Permeation of diclofenac through tomato skin and cellophane was not significantly different (p>0.35). Permeation of diclofenac through all studied membranes except for human skin that follows the Fickian kinetic followed non-Fickian mechanism and their permeabilities were not significantly different from each other (p>0.05). Permeation of metronidazole through onion membrane and tomato skin were not significantly different from human skin (p>0.053 and 0.38, respectively). All membranes were significantly different from each other (p<0.0001) for permeation of erythromycin as a relatively large molecular weight and lipohilic molecule through human skin and other studied membranes. Permeation of diclofenac through human skin and metronidazole through egg and tomato skin followed Fick's first law. Diffusion of diclofenac through onion, tomato, egg, cellophane, and peach; metronidazole through onion, peach, cellophane, and human skin, and erythromycin through all studied membranes followed non-Fickian mechanism for diffusion. Statistical analysis showed the most similarity between onion and human skin for diclofenac, tomato and human skin for metronidazole, onion and cellophane for erythromycin.


Assuntos
Diclofenaco/metabolismo , Eritromicina/metabolismo , Membranas , Metronidazol/metabolismo , Absorção Cutânea , Animais , Celofane/metabolismo , Galinhas , Feminino , Frutas/metabolismo , Humanos , Solanum lycopersicum/metabolismo , Peso Molecular , Cebolas/metabolismo , Óvulo/metabolismo , Permeabilidade , Prunus/metabolismo , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA