RESUMO
The chloroplast chaperonin system is indispensable for the biogenesis of Rubisco, the key enzyme in photosynthesis. Using Chlamydomonas reinhardtii as a model system, we found that in vivo the chloroplast chaperonin consists of CPN60α, CPN60ß1 and CPN60ß2 and the co-chaperonin of the three subunits CPN20, CPN11 and CPN23. In Escherichia coli, CPN20 homo-oligomers and all possible other chloroplast co-chaperonin hetero-oligomers are functional, but only that consisting of CPN11/20/23-CPN60αß1ß2 can fully replace GroES/GroEL under stringent stress conditions. Endogenous CPN60 was purified and its stoichiometry was determined to be 6:2:6 for CPN60α:CPN60ß1:CPN60ß2. The cryo-EM structures of endogenous CPN60αß1ß2/ADP and CPN60αß1ß2/co-chaperonin/ADP were solved at resolutions of 4.06 and 3.82 Å, respectively. In both hetero-oligomeric complexes the chaperonin subunits within each ring are highly symmetric. Through hetero-oligomerization, the chloroplast co-chaperonin CPN11/20/23 forms seven GroES-like domains, which symmetrically interact with CPN60αß1ß2. Our structure also reveals an uneven distribution of roof-forming domains in the dome-shaped CPN11/20/23 co-chaperonin and potentially diversified surface properties in the folding cavity of the CPN60αß1ß2 chaperonin that might enable the chloroplast chaperonin system to assist in the folding of specific substrates.
Assuntos
Chaperonina 60/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Chaperoninas do Grupo I/metabolismo , Chaperonina 60/química , Chaperonina 60/ultraestrutura , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/ultraestrutura , Cloroplastos/ultraestrutura , Microscopia Crioeletrônica/métodos , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/ultraestrutura , Fotossíntese , Dobramento de Proteína , Multimerização Proteica , Subunidades Proteicas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismoRESUMO
Chaperonins are ubiquitous chaperones found in Eubacteria, eukaryotic organelles (group I), Archaea and the eukaryotic cytosol (group II). They all share a common structure and a basic functional mechanism. Although a large amount of information has been gathered for the simpler group I, much less is known about group II chaperonins. Recent crystallographic and electron microscopy structures have provided new insights into the mechanism of these chaperonins and revealed important differences between group I and II chaperonins, mainly in the molecular rearrangements that take place during the functional cycle. These differences are evident for the most complex chaperonin, the eukaryotic cytosolic CCT, which highlights the uniqueness of this important molecular machine.
Assuntos
Chaperonina com TCP-1/química , Chaperoninas do Grupo I/química , Chaperoninas do Grupo II/química , Modelos Moleculares , Humanos , Conformação Proteica , Dobramento de ProteínaRESUMO
External stress disrupts the balance of protein homeostasis, necessitating the involvement of heat shock proteins (Hsps) in restoring equilibrium and ensuring cellular survival. The thermoacidophilic crenarchaeon Sulfolobus acidocaldarius, lacks the conventional Hsp100, Hsp90, and Hsp70, relying solely on a single ATP-dependent Group II chaperonin, Hsp60, comprising three distinct subunits (α, ß, and γ) to refold unfolded substrates and maintain protein homeostasis. Hsp60 forms three different complexes, namely Hsp60αßγ, Hsp60αß, and Hsp60ß, at temperatures of 60 °C, 75 °C, and 90 °C, respectively. This study delves into the intricacies of Hsp60 complexes in S. acidocaldarius, uncovering their ability to form oligomeric structures in the presence of ATP. The recognition of substrates by Hsp60 involves hydrophobic interactions, and the subsequent refolding process occurs in an ATP-dependent manner through charge-driven interactions. Furthermore, the Hsp60ß homo-oligomeric complex can protect the archaeal and eukaryotic membrane from stress-induced damage. Hsp60 demonstrates nested cooperativity in ATP hydrolysis activity, where MWC-type cooperativity is nested within KNF-type cooperativity. Remarkably, during ATP hydrolysis, Hsp60ß, and Hsp60αß complexes exhibit a mosaic behavior, aligning with characteristics observed in both Group I and Group II chaperonins, adding a layer of complexity to their functionality.
Assuntos
Trifosfato de Adenosina , Chaperonina 60 , Chaperonina 60/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Trifosfato de Adenosina/metabolismo , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Chaperoninas do Grupo II/química , Chaperoninas do Grupo II/metabolismo , Chaperoninas do Grupo II/genética , Chaperoninas do Grupo I/metabolismo , Chaperoninas do Grupo I/genética , Chaperoninas do Grupo I/química , Hidrólise , Dobramento de ProteínaRESUMO
Many insect groups have coevolved with bacterial endosymbionts that live within specialized host cells. As a salient example, ants in the tribe Camponotini rely on Blochmannia, an intracellular bacterial mutualist that synthesizes amino acids and recycles nitrogen for the host. We performed a shotgun, label-free, LC/MS/MS quantitative proteomic analysis to investigate the proteome of Blochmannia associated with Camponotus chromaiodes. We identified more than 330 Blochmannia proteins, or 54% coverage of the predicted proteome, as well as 244 Camponotus proteins. Using the average intensity of the top 3 "best flier" peptides along with spiking of a surrogate standard at a known concentration, we estimated the concentration (fmol/µg) of those proteins with confident identification. The estimated dynamic range of Blochmannia protein abundance spanned 3 orders of magnitude and covered diverse functional categories, with particularly high representation of metabolism, information transfer, and chaperones. GroEL, the most abundant protein, totaled 6% of Blochmannia protein abundance. Biosynthesis of essential amino acids, fatty acids, and nucleotides, and sulfate assimilation had disproportionately high coverage in the proteome, further supporting a nutritional role of the symbiosis. This first quantitative proteomic analysis of an ant endosymbiont illustrates a promising approach to study the functional basis of intimate symbioses.
Assuntos
Proteínas de Bactérias/isolamento & purificação , Enterobacteriaceae/metabolismo , Chaperoninas do Grupo I/isolamento & purificação , Proteínas de Insetos/isolamento & purificação , Proteômica , Aminoácidos/metabolismo , Animais , Formigas/metabolismo , Formigas/microbiologia , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Enterobacteriaceae/genética , Ácidos Graxos/metabolismo , Chaperoninas do Grupo I/metabolismo , Proteínas de Insetos/metabolismo , Nucleotídeos/metabolismo , Sulfatos/metabolismo , Simbiose/fisiologia , Espectrometria de Massas em TandemRESUMO
The chloroplast chaperonin system of plants and green algae is a curiosity as both the chaperonin cage and its lid are encoded by multiple genes, in contrast to the single genes encoding the two components of the bacterial and mitochondrial systems. In the green alga Chlamydomonas reinhardtii (Cr), three genes encode chaperonin cofactors, with cpn10 encoding a single â¼10-kDa domain and cpn20 and cpn23 encoding tandem cpn10 domains. Here, we characterized the functional interaction of these proteins with the Escherichia coli chaperonin, GroEL, which normally cooperates with GroES, a heptamer of â¼10-kDa subunits. The C. reinhardtii cofactor proteins alone were all unable to assist GroEL-mediated refolding of bacterial ribulose-bisphosphate carboxylase/oxygenase but gained this ability when CrCpn20 and/or CrCpn23 was combined with CrCpn10. Native mass spectrometry indicated the formation of hetero-oligomeric species, consisting of seven â¼10-kDa domains. The cofactor "heptamers" interacted with GroEL and encapsulated substrate protein in a nucleotide-dependent manner. Different hetero-oligomer arrangements, generated by constructing cofactor concatamers, indicated a preferential heptamer configuration for the functional CrCpn10-CrCpn23 complex. Formation of heptamer Cpn10/Cpn20 hetero-oligomers was also observed with the Arabidopsis thaliana (At) cofactors, which functioned with the chloroplast chaperonin, AtCpn60α(7)ß(7). It appears that hetero-oligomer formation occurs more generally for chloroplast chaperonin cofactors, perhaps adapting the chaperonin system for the folding of specific client proteins.
Assuntos
Proteínas de Algas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Chaperonina 10/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Chaperoninas do Grupo I/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Algas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Chaperonina 10/genética , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Chaperoninas do Grupo I/genética , Complexos Multiproteicos/genética , Dobramento de Proteína/efeitos dos fármacosRESUMO
Previous study showed that the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR) positively regulates abscisic acid (ABA) signaling. Here, we investigated the functions of a CHLH/ABAR interaction protein, the chloroplast co-chaperonin 20 (CPN20) in ABA signaling in Arabidopsis thaliana. We showed that down-expression of the CPN20 gene increases, but overexpression of the CPN20 gene reduces, ABA sensitivity in the major ABA responses including ABA-induced seed germination inhibition, postgermination growth arrest, promotion of stomatal closure and inhibition of stomatal opening. Genetic evidence supports that CPN20 functions downstream or at the same node of CHLH/ABAR, but upstream of the WRKY40 transcription factor. The other CPN20 interaction partners CPN10 and CPN60 are not involved in ABA signaling. Our findings show that CPN20 functions negatively in the ABAR-WRKY40 coupled ABA signaling independently of its co-chaperonin role, and provide a new insight into the role of co-chaperones in the regulation of plant responses to environmental cues.
Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Chaperoninas do Grupo I/fisiologia , Transdução de Sinais , Proteínas de Arabidopsis/genética , Regulação para Baixo , Chaperoninas do Grupo I/genética , Liases/metabolismoRESUMO
Iron superoxide dismutases (FeSODs; FSDs) are primary antioxidant enzymes in Arabidopsis thaliana chloroplasts. The stromal FSD1 conferred the only detectable FeSOD activity, whereas the thylakoid membrane- and nucleoid-co-localized FSD2 and FSD3 double mutant showed arrested chloroplast development. FeSOD requires cofactor Fe for its activity, but its mechanism of activation is unclear. We used reversed-phase high-performance liquid chromatography (HPLC), gel filtration chromatography, LC-MS/MS, protoplast transient expression and virus-induced gene silencing (VIGS) analyses to identify and characterize a factor involved in FeSOD activation. We identified the chloroplast-localized co-chaperonin CHAPERONIN 20 (CPN20) as a mediator of FeSOD activation by direct interaction. The relationship between CPN20 and FeSOD was confirmed by in vitro experiments showing that CPN20 alone could enhance FSD1, FSD2 and FSD3 activity. The in vivo results showed that CPN20-overexpressing mutants and mutants with defective co-chaperonin activity increased FSD1 activity, without changing the chaperonin CPN60 protein level, and VIGS-induced downregulation of CPN20 also led to decreased FeSOD activity. Our findings reveal that CPN20 can mediate FeSOD activation in chloroplasts, a role independent of its known function in the chaperonin system.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cloroplastos/enzimologia , Chaperoninas do Grupo I/metabolismo , Superóxido Dismutase/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Chaperoninas do Grupo I/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/genética , Transfecção , Técnicas do Sistema de Duplo-HíbridoRESUMO
The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. In plant chloroplasts and cyanobacteria, the essential constitutive Clp protease consists of the Hsp100/ClpC chaperone partnering a proteolytic core of catalytic ClpP and noncatalytic ClpR subunits. In the present study, we have examined putative determinants conferring the highly specific association between ClpC and the ClpP3/R core from the model cyanobacterium Synechococcus elongatus. Two conserved sequences in the N-terminus of ClpR (tyrosine and proline motifs) and one in the N-terminus of ClpP3 (MPIG motif) were identified as being crucial for the ClpC-ClpP3/R association. These N-terminal domains also influence the stability of the ClpP3/R core complex itself. A unique C-terminal sequence was also found in plant and cyanobacterial ClpC orthologues just downstream of the P-loop region previously shown in Escherichia coli to be important for Hsp100 association to ClpP. This R motif in Synechococcus ClpC confers specificity for the ClpP3/R core and prevents association with E. coli ClpP; its removal from ClpC reverses this core specificity.
Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Chaperoninas do Grupo I/metabolismo , Proteínas de Choque Térmico/metabolismo , Subunidades Proteicas/metabolismo , Synechococcus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Caseínas/metabolismo , Sequência Conservada , Endopeptidase Clp/química , Endopeptidase Clp/genética , Estabilidade Enzimática , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de SequênciaRESUMO
An analysis of the apical domain of the Group-I and Group-II chaperonins shows that they have structural similarities to two different protein folds: a "swivel-domain" phosphotransferase and a thioredoxin-like peroxiredoxin. There is no significant sequence similarity that supports either similarity and the degree of similarity based on structure is comparable but weak for both relationships. Based on possible evolutionary transitions, we deduced that a phosphotransferase origin would require both a large insertion and deletion of structure whereas a peroxiredoxin origin requires only a peripheral rearrangement, similar to an internal domain-swap. We postulate that this change could have been triggered by the insertion of a peroxiredoxin into the ATPase domain that led to the modern chaperonin domain arrangement. The peroxidoxin fold is the most highly embellished member of the thioredoxin super-family and the insertion event may have "overloaded" the core, leading to a rearrangement. A peroxiredoxin origin for the domain also provides a functional explanation, as the peroxiredoxins can act as chaperones when they adopt a multimeric ring complex, similar to the chaperonin subunit configuration. In addition, several of the GroEL apical domain hydrophobic residues which interact with the unfolded protein are located in a position that corresponds to the protein substrate binding region of the peroxiredoxin fold. We suggest that the origin of the ur-chaperonin from a thioredoxin/peroxiredoxin fold might also account for the number of thioredoxin-fold containing proteins that interact with chaperonins, such as tubulin and phosducin-like proteins.
Assuntos
Biologia Computacional/métodos , Evolução Molecular , Chaperoninas do Grupo I/química , Chaperoninas do Grupo II/química , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas de Bactérias/química , Bases de Dados de Proteínas , Modelos Moleculares , Dados de Sequência Molecular , Estresse Oxidativo , Peroxirredoxinas/química , Fosfotransferases/química , Dobramento de Proteína , Alinhamento de SequênciaRESUMO
The involvement of type I chaperonins in bacterial and organellar protein folding has been well-documented. In E. coli and mitochondria, these ubiquitous and highly conserved proteins form chaperonin oligomers of identical 60 kDa subunits (cpn60), while in chloroplasts, two distinct cpn60 α and ß subunit types co-exist together. The primary sequence of α and ß subunits is ~50% identical, similar to their respective homologies to the bacterial GroEL. Moreover, the A. thaliana genome contains two α and four ß genes. The functional significance of this variability in plant chaperonin proteins has not yet been elucidated. In order to gain insight into the functional variety of the chloroplast chaperonin family members, we reconstituted ß homo-oligomers from A. thaliana following their expression in bacteria and subjected them to a structure-function analysis. Our results show for the first time, that A. thaliana ß homo-oligomers can function in vitro with authentic chloroplast co-chaperonins (ch-cpn10 and ch-cpn20). We also show that oligomers made up of different ß subunit types have unique properties and different preferences for co-chaperonin partners. We propose that chloroplasts may contain active ß homo-oligomers in addition to hetero-oligomers, possibly reflecting a variety of cellular roles.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Chaperoninas do Grupo I/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Genoma de Planta , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/genética , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologiaRESUMO
Chaperonins are macromolecular machines that assist in protein folding. The archaeon Methanosarcina mazei has acquired numerous bacterial genes by horizontal gene transfer. As a result, both the bacterial group I chaperonin, GroEL, and the archaeal group II chaperonin, thermosome, coexist. A proteome-wide analysis of chaperonin interactors was performed to determine the differential substrate specificity of GroEL and thermosome. At least 13% of soluble M. mazei proteins interact with chaperonins, with the two systems having partially overlapping substrate sets. Remarkably, chaperonin selectivity is independent of phylogenetic origin and is determined by distinct structural and biochemical features of proteins. GroEL prefers well-conserved proteins with complex alpha/beta domains. In contrast, thermosome substrates comprise a group of faster-evolving proteins and contain a much wider range of different domain folds, including small all-alpha and all-beta modules, and a greater number of large multidomain proteins. Thus, the group II chaperonins may have facilitated the evolution of the highly complex proteomes characteristic of eukaryotic cells.
Assuntos
Proteínas Arqueais/metabolismo , Chaperoninas do Grupo I/metabolismo , Chaperoninas do Grupo II/metabolismo , Methanosarcina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/análise , Proteínas Arqueais/química , Proteínas Arqueais/genética , Chaperonina 60/genética , Chaperonina 60/metabolismo , Células Eucarióticas/metabolismo , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/genética , Chaperoninas do Grupo II/química , Chaperoninas do Grupo II/genética , Methanosarcina/genética , Modelos Moleculares , Filogenia , Ligação Proteica/genética , Dobramento de Proteína , Proteoma/análise , Especificidade por Substrato , Termossomos/química , Termossomos/genética , Termossomos/metabolismoRESUMO
Improving the performance of the key photosynthetic enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) by protein engineering is a critical strategy for increasing crop yields. The extensive chaperone requirement of plant Rubisco for folding and assembly has long been an impediment to this goal. Production of plant Rubisco in Escherichia coli requires the coexpression of the chloroplast chaperonin and four assembly factors. Here, we demonstrate that simultaneous expression of Rubisco and chaperones from a T7 promotor produces high levels of functional enzyme. Expressing the small subunit of Rubisco with a C-terminal hexahistidine-tag further improved assembly, resulting in a ~ 12-fold higher yield than the previously published procedure. The expression system described here provides a platform for the efficient production and engineering of plant Rubisco.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Clonagem Molecular/métodos , Chaperoninas do Grupo I/genética , Chaperonas Moleculares/genética , Proteínas de Ligação a Fosfato/genética , Ribulose-Bifosfato Carboxilase/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Chaperoninas do Grupo I/metabolismo , Histidina/genética , Histidina/metabolismo , Cinética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fotossíntese/genética , Dobramento de Proteína , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Ribulose-Bifosfato Carboxilase/isolamento & purificação , Ribulose-Bifosfato Carboxilase/metabolismoRESUMO
Nearly all bacterial species express two or more chaperonin genes. Recent data indicate that type I chaperonins may be key players in bacterial infections. This is partly due to the well-known contribution of chaperonins in cellular proteostasis, the latter being compromised during bacterial host infection. In addition to their protein-folding activity, it has been revealed that certain chaperonins also exhibit moonlighting functions that can contribute in different ways to bacterial pathogenicity. Examples range from inducing adhesion molecules in Chlamydophila pneumoniae to supporting intracellular survival in Mycobacterium tuberculosis and Leishmania donovani, to inducing cytokines in Helicobacter pylori to promoting antimicrobial resistance in Escherichia coli, amongst others. This article provides a thorough reviews of our current understanding of the different mechanisms involving type I chaperonins during bacteria-host interactions, and suggests new areas to be explored and the potential of finding new targets for fighting bacterial infections.
Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Chaperoninas do Grupo I/metabolismo , Proteostase , Animais , Bactérias/genética , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/genética , Chaperoninas do Grupo I/genética , HumanosRESUMO
Plant RuBisCo, a complex of eight large and eight small subunits, catalyzes the fixation of CO2 in photosynthesis. The low catalytic efficiency of RuBisCo provides strong motivation to reengineer the enzyme with the goal of increasing crop yields. However, genetic manipulation has been hampered by the failure to express plant RuBisCo in a bacterial host. We achieved the functional expression of Arabidopsis thaliana RuBisCo in Escherichia coli by coexpressing multiple chloroplast chaperones. These include the chaperonins Cpn60/Cpn20, RuBisCo accumulation factors 1 and 2, RbcX, and bundle-sheath defective-2 (BSD2). Our structural and functional analysis revealed the role of BSD2 in stabilizing an end-state assembly intermediate of eight RuBisCo large subunits until the small subunits become available. The ability to produce plant RuBisCo recombinantly will facilitate efforts to improve the enzyme through mutagenesis.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Escherichia coli/enzimologia , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cloroplastos/metabolismo , Cristalografia por Raios X , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/genética , Chaperoninas do Grupo I/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagênese , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genéticaRESUMO
Higher plant chloroplasts contain a 21-kDa protein, chaperonin 21 (Cpn21), that is a functional homolog of the chaperonin 10 (Cpn10). The chloroplast Cpn21 polypeptide consists of two Cpn10-like domains fused together in tandem. We describe here the cDNA sequence of the Cpn21 (AtCpn21) precursor protein from Arabidopsis thaliana. The deduced amino acid sequence of the AtCpn21 precursor protein, 253 amino acids long, shows 61% identity with the spinach Cpn21 protein. The AtCpn21 precursor protein contains the typical chloroplast transit peptide of 51 amino acids at its aminoterminus and the two Cpn10-like domains which exhibits 46% sequence identity to each other. The predicted mature-sized polypeptide of AtCpn21 was expressed in Escherichia coli as a soluble 21-kDa protein. Gel-filtration and chemical cross-linking analyses showed that the recombinant mature AtCpn21 protein forms a stable homo-oligomer composed of three or four polypeptides.
Assuntos
Arabidopsis/genética , Chaperoninas/genética , DNA Complementar/química , Precursores de Proteínas/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis , Sequência de Bases , Chaperoninas/biossíntese , Chaperoninas/química , Cloroplastos/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Chaperoninas do Grupo I , Dados de Sequência Molecular , Alinhamento de SequênciaRESUMO
Type I chaperonins are fundamental protein folding machineries that function in eubacteria, mitochondria and chloroplasts. Eubacteria and mitochondria contain chaperonin systems comprised of homo-oligomeric chaperonin 60 tetradecamers and co-chaperonin 10 heptamers. In contrast, the chloroplast chaperonins are heterooligomeric tetradecamers that are composed of two subunit types, alpha and beta. Additionally, chloroplasts contain two structurally distinct co-chaperonins. One, ch-cpn10, is probably similar to the mitochondrial and bacterial co-chaperonins, and is composed of 10 kDa subunits. The other, termed ch-cpn20 is composed of two cpn10-like domains that are held together by a short linker. While the oligomeric structure of ch-cpn10 remains to be elucidated, it was previously suggested that ch-cpn20 forms tetramers in solution, and that this is the functional oligomer. In the present study, we investigated the properties of purified ch-cpn10 and ch-cpn20. Using bifunctional cross-linking reagents, gel filtration chromatography and analytical ultracentrifugation, we show that ch-cpn10 is a heptamer in solution. In contrast, ch-cpn20 forms multiple oligomers that are in dynamic equilibrium with each other and cover a broad spectrum of molecular weights in a concentration-dependent manner. However, upon association with GroEL, only one type of co-chaperonin-GroEL complex is formed.
Assuntos
Proteínas de Arabidopsis/metabolismo , Chaperonina 10/metabolismo , Chaperoninas/metabolismo , Cloroplastos/metabolismo , Subunidades Proteicas/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 60/química , Chaperonina 60/metabolismo , Chaperoninas/genética , Cloroplastos/química , Reagentes de Ligações Cruzadas/química , Chaperoninas do Grupo I , Substâncias Macromoleculares , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Polímeros/química , Polímeros/metabolismo , Dobramento de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , SuínosRESUMO
Chaperonins are large ring shaped oligomers that facilitate protein folding by encapsulation within a central cavity. All chaperonins possess flexible C-termini which protrude from the equatorial domain of each subunit into the central cavity. Biochemical evidence suggests that the termini play an important role in the allosteric regulation of the ATPase cycle, in substrate folding and in complex assembly and stability. Despite the tremendous wealth of structural data available for numerous orthologous chaperonins, little structural information is available regarding the residues within the C-terminus. Herein, molecular dynamics simulations are presented which localize the termini throughout the nucleotide cycle of the group I chaperonin, GroE, from Escherichia coli. The simulation results predict that the termini undergo a heretofore unappreciated conformational cycle which is coupled to the nucleotide state of the enzyme. As such, these results have profound implications for the mechanism by which GroE utilizes nucleotide and folds client proteins.
Assuntos
Chaperoninas do Grupo I/química , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Chaperoninas do Grupo I/metabolismo , Modelos Moleculares , Ligação ProteicaRESUMO
The specific cochaperonin, chloroplast chaperonin (Cpn)20, consisting of two tandem GroES-like domains, is present abundantly in plant and algal chloroplasts, in addition to Cpn10, which is similar in size to GroES. How Cpn20 oligomers, containing six or eight 10-kDa domains, cooperate with the heptameric ring of chaperonin at the same time as encountering symmetry mismatch is unclear. In the present study, we characterized the functional cooperation of cochaperonins, including two plastidic Cpn20 homo-oligomers from Arabidopsis (AtCpn20) and Chlamydomonas (CrCPN20), and one algal CrCPNs hetero-oligomer, consisting of three cochaperonins, CrCPN11, CrCPN20 and CrCPN23, with two chaperonins, Escherichia coli GroEL and Chlamydomonas CrCPN60. AtCpn20 and CrCPNs were functional for assisting both chaperonins in folding model substrates ribulose bisphosphate carboxylase oxygenase from Rhodospirillum rubrum (RrRubisco) in vitro and complementing GroES function in E. coli. CrCPN20 cooperated only with CrCPN60 (and not GroEL) to refold RrRubisco in vitro and showed differential complementation with the two chaperonins in E. coli. Cochaperonin concatamers, consisting of six to eight covalently linked 10-kDa domains, were functionally similar to their respective native forms. Our results indicate that symmetrical match between chaperonin and cochaperonin is not an absolute requisite for functional cooperation.
Assuntos
Proteínas de Algas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Chaperoninas do Grupo I/metabolismo , Modelos Moleculares , Ribulose-Bifosfato Carboxilase/metabolismo , Proteínas de Algas/agonistas , Proteínas de Algas/química , Proteínas de Algas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/agonistas , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chaperonina 10/agonistas , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/agonistas , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chlamydomonas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/agonistas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Chaperoninas do Grupo I/agonistas , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/genética , Peso Molecular , Multimerização Proteica , Redobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rhodospirillum rubrum/enzimologia , Rhodospirillum rubrum/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genéticaRESUMO
The A. thaliana genome encodes five co-chaperonin homologs, three of which are destined to the chloroplast. Two of the proteins, Cpn10(2) and Cpn20, form functional homo-oligomers in vitro. In the current work, we present data on the structure and function of the third A. thaliana co-chaperonin, which exhibits unique properties. We found that purified recombinant Cpn10(1) forms inactive dimers in solution, in contrast to the active heptamers that are formed by canonical Cpn10s. Additionally, our data demonstrate that Cpn10(1) is capable of assembling into active hetero-oligomers together with Cpn20. This finding was reinforced by the formation of active co-chaperonin species upon mixing an inactive Cpn20 mutant with the inactive Cpn10(1). The present study constitutes the first report of a higher plant Cpn10 subunit that is able to function only upon formation of hetero-oligomers with other co-chaperonins.
Assuntos
Proteínas de Arabidopsis/química , Chaperoninas/química , Chaperoninas do Grupo I/química , Multimerização Proteica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Chaperoninas/genética , Chaperoninas/metabolismo , Eletroforese em Gel de Poliacrilamida , Chaperoninas do Grupo I/genética , Chaperoninas do Grupo I/metabolismo , Modelos Moleculares , Mutação , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismoRESUMO
Our previous study demonstrated that a chloroplast co-chaperonin 20 (CPN20), one of the interaction partners of the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR), negatively regulates ABA signaling at the same node with ABAR but upstream of WRKY40 transcription repressor in Arabidopsis thaliana. In the present experiment, we showed that ABA directly inhibits the ABAR-CPN20 interaction, and also represses expression of CPN20, which depends on ABAR. CPN20 inhibits ABAR-WRKY40 interaction by competitively binding to ABAR. ABAR downregulates, but CPN20 upregulates, WRKY40 expression. The cpn20-1 mutation induces downregulation of WRKY40, and suppresses the upregulated level of WRKY40 due to the cch mutation in the ABAR gene. ABA-induced repressive effect of the WRKY40 gene is strengthened by downregulation of CPN20 but reduced by upregulation of CPN20. Together with our previously reported genetic data, we provide evidence that CPN20 functions through antagonizing the ABAR-WRKY40 coupled pathway, and ABA relieves this pathway of repression by inhibiting the ABAR-CPN20 interaction to activate ABAR-WRKY40 interaction.