Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.357
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 17(2): 140-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657003

RESUMO

Innate sensing of pathogens initiates inflammatory cytokine responses that need to be tightly controlled. We found here that after engagement of Toll-like receptors (TLRs) in myeloid cells, deficient sumoylation caused increased secretion of transcription factor NF-κB-dependent inflammatory cytokines and a massive type I interferon signature. In mice, diminished sumoylation conferred susceptibility to endotoxin shock and resistance to viral infection. Overproduction of several NF-κB-dependent inflammatory cytokines required expression of the type I interferon receptor, which identified type I interferon as a central sumoylation-controlled hub for inflammation. Mechanistically, the small ubiquitin-like modifier SUMO operated from a distal enhancer of the gene encoding interferon-ß (Ifnb1) to silence both basal and stimulus-induced activity of the Ifnb1 promoter. Therefore, sumoylation restrained inflammation by silencing Ifnb1 expression and by strictly suppressing an unanticipated priming by type I interferons of the TLR-induced production of inflammatory cytokines.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica , Imunidade Inata , Imunomodulação , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Sumoilação , Animais , Cromatina/genética , Cromatina/metabolismo , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Loci Gênicos , Inflamação/virologia , Mediadores da Inflamação/metabolismo , Interferon beta/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Ligação Proteica , Receptor de Interferon alfa e beta/metabolismo , Elementos Reguladores de Transcrição , Proteína SUMO-1/metabolismo , Choque Séptico/genética , Choque Séptico/imunologia , Choque Séptico/metabolismo , Transdução de Sinais , Sumoilação/genética , Sumoilação/imunologia , Receptores Toll-Like/metabolismo
2.
Nat Immunol ; 17(9): 1046-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27478939

RESUMO

Single-nucleotide variations in C13orf31 (LACC1) that encode p.C284R and p.I254V in a protein of unknown function (called 'FAMIN' here) are associated with increased risk for systemic juvenile idiopathic arthritis, leprosy and Crohn's disease. Here we set out to identify the biological mechanism affected by these coding variations. FAMIN formed a complex with fatty acid synthase (FASN) on peroxisomes and promoted flux through de novo lipogenesis to concomitantly drive high levels of fatty-acid oxidation (FAO) and glycolysis and, consequently, ATP regeneration. FAMIN-dependent FAO controlled inflammasome activation, mitochondrial and NADPH-oxidase-dependent production of reactive oxygen species (ROS), and the bactericidal activity of macrophages. As p.I254V and p.C284R resulted in diminished function and loss of function, respectively, FAMIN determined resilience to endotoxin shock. Thus, we have identified a central regulator of the metabolic function and bioenergetic state of macrophages that is under evolutionary selection and determines the risk of inflammatory and infectious disease.


Assuntos
Artrite Juvenil/genética , Doença de Crohn/genética , Infecções/genética , Hanseníase/genética , Macrófagos/imunologia , Proteínas/genética , Choque Séptico/genética , Trifosfato de Adenosina/metabolismo , Animais , Bacteriólise , Células Cultivadas , Metabolismo Energético , Ácido Graxo Sintase Tipo I/metabolismo , Predisposição Genética para Doença , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/metabolismo , Oxirredução , Polimorfismo de Nucleotídeo Único , Risco
3.
Immunity ; 50(2): 418-431.e6, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30770245

RESUMO

Sepsis is a bi-phasic inflammatory disease that threatens approximately 30 million lives and claims over 14 million annually, yet little is known regarding the molecular switches and pathways that regulate this disease. Here, we have described ABCF1, an ATP-Binding Cassette (ABC) family member protein, which possesses an E2 ubiquitin enzyme activity, through which it controls the Lipopolysaccharide (LPS)- Toll-like Receptor-4 (TLR4) mediated gram-negative insult by targeting key proteins for K63-polyubiquitination. Ubiquitination by ABCF1 shifts the inflammatory profile from an early phase MyD88-dependent to a late phase TRIF-dependent signaling pathway, thereby regulating TLR4 endocytosis and modulating macrophage polarization from M1 to M2 phase. Physiologically, ABCF1 regulates the shift from the inflammatory phase of sepsis to the endotoxin tolerance phase, and modulates cytokine storm and interferon-ß (IFN-ß)-dependent production by the immunotherapeutic mediator, SIRT1. Consequently, ABCF1 controls sepsis induced mortality by repressing hypotension-induced renal circulatory dysfunction.


Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Macrófagos/imunologia , Sepse/imunologia , Choque Séptico/imunologia , Enzimas de Conjugação de Ubiquitina/imunologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Interferon beta/imunologia , Interferon beta/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/classificação , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Interferência de RNA , Sepse/genética , Sepse/metabolismo , Choque Séptico/genética , Choque Séptico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/imunologia
4.
Nat Immunol ; 16(3): 246-57, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25642822

RESUMO

Immune responses need to be tightly controlled to avoid excessive inflammation and prevent unwanted host damage. Here we report that germinal center kinase MST4 responded dynamically to bacterial infection and acted as a negative regulator of inflammation. We found that MST4 directly interacted with and phosphorylated the adaptor TRAF6 to prevent its oligomerization and autoubiquitination. Accordingly, MST4 did not inhibit lipopolysaccharide-induced cytokine production in Traf6(-/-) embryonic fibroblasts transfected to express a mutant form of TRAF6 that cannot be phosphorylated at positions 463 and 486 (with substitution of alanine for threonine at those positions). Upon developing septic shock, mice in which MST4 was knocked down showed exacerbated inflammation and reduced survival, whereas heterozygous deletion of Traf6 (Traf6(+/-)) alleviated such deleterious effects. Our findings reveal a mechanism by which TRAF6 is regulated and highlight a role for MST4 in limiting inflammatory responses.


Assuntos
Inflamação/metabolismo , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Pessoa de Meia-Idade , Sepse/sangue , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo
5.
Immunity ; 49(1): 42-55.e6, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021146

RESUMO

The execution of shock following high dose E. coli lipopolysaccharide (LPS) or bacterial sepsis in mice required pro-apoptotic caspase-8 in addition to pro-pyroptotic caspase-11 and gasdermin D. Hematopoietic cells produced MyD88- and TRIF-dependent inflammatory cytokines sufficient to initiate shock without any contribution from caspase-8 or caspase-11. Both proteases had to be present to support tumor necrosis factor- and interferon-ß-dependent tissue injury first observed in the small intestine and later in spleen and thymus. Caspase-11 enhanced the activation of caspase-8 and extrinsic cell death machinery within the lower small intestine. Neither caspase-8 nor caspase-11 was individually sufficient for shock. Both caspases collaborated to amplify inflammatory signals associated with tissue damage. Therefore, combined pyroptotic and apoptotic signaling mediated endotoxemia independently of RIPK1 kinase activity and RIPK3 function. These observations bring to light the relevance of tissue compartmentalization to disease processes in vivo where cytokines act in parallel to execute diverse cell death pathways.


Assuntos
Caspase 8/metabolismo , Caspases/metabolismo , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/fisiopatologia , Choque Séptico/enzimologia , Choque Séptico/fisiopatologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 8/genética , Caspases/genética , Caspases Iniciadoras , Células Cultivadas , Feminino , Inflamação/metabolismo , Inflamação/patologia , Fator Regulador 3 de Interferon/genética , Interferon beta/sangue , Interferon beta/metabolismo , Intestino Delgado/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Baço/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
6.
Semin Immunol ; 70: 101844, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778179

RESUMO

Sepsis remains one of the most common and lethal conditions globally. Currently, no proposed target specific to sepsis improves survival in clinical trials. Thus, an in-depth understanding of the pathogenesis of sepsis is needed to propel the discovery of effective treatment. Recently attention to sepsis has intensified because of a growing recognition of a non-canonical inflammasome-triggered lytic mode of cell death termed pyroptosis upon sensing cytosolic lipopolysaccharide (LPS). Although the consequences of activation of the canonical and non-canonical inflammasome are similar, the non-canonical inflammasome formation requires caspase-4/5/11, which enzymatically cleave the pore-forming protein gasdermin D (GSDMD) and thereby cause pyroptosis. The non-canonical inflammasome assembly triggers such inflammatory cell death by itself; or leverages a secondary activation of the canonical NLRP3 inflammasome pathway. Excessive cell death induced by oligomerization of GSDMD and NINJ1 leads to cytokine release and massive tissue damage, facilitating devastating consequences and death. This review summarized the updated mechanisms that initiate and regulate non-canonical inflammasome activation and pyroptosis and highlighted various endogenous or synthetic molecules as potential therapeutic targets for treating sepsis.


Assuntos
Sepse , Choque Séptico , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspases/metabolismo , Caspases/farmacologia , Fatores de Crescimento Neural/farmacologia , Moléculas de Adesão Celular Neuronais/farmacologia
7.
J Biol Chem ; 300(7): 107455, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852884

RESUMO

Menstrual toxic shock syndrome (mTSS) is a rare but severe disorder associated with the use of menstrual products such as high-absorbency tampons and is caused by Staphylococcus aureus strains that produce the toxic shock syndrome toxin-1 (TSST-1) superantigen. Herein, we screened a library of 3920 small bioactive molecules for the ability to inhibit transcription of the TSST-1 gene without inhibiting the growth of S. aureus. The dominant positive regulator of TSST-1 is the SaeRS two-component system (TCS), and we identified phenazopyridine hydrochloride (PP-HCl) that repressed the production of TSST-1 by inhibiting the kinase function of SaeS. PP-HCl competed with ATP for binding of the kinase SaeS leading to decreased phosphorylation of SaeR and reduced expression of TSST-1 as well as several other secreted virulence factors known to be regulated by SaeRS. PP-HCl targets the virulence of S. aureus, and it also decreases the impact of TSST-1 on human lymphocytes without affecting the healthy vaginal microbiota. Our findings demonstrate the promising potential of PP-HCl as a therapeutic strategy against mTSS.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Enterotoxinas , Staphylococcus aureus , Superantígenos , Superantígenos/metabolismo , Superantígenos/genética , Enterotoxinas/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Humanos , Toxinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/antagonistas & inibidores , Feminino , Choque Séptico/tratamento farmacológico , Choque Séptico/metabolismo , Choque Séptico/microbiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Virulência/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/efeitos dos fármacos , Produtos de Higiene Menstrual
8.
N Engl J Med ; 386(26): 2459-2470, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35709019

RESUMO

BACKGROUND: Intravenous fluids are recommended for the treatment of patients who are in septic shock, but higher fluid volumes have been associated with harm in patients who are in the intensive care unit (ICU). METHODS: In this international, randomized trial, we assigned patients with septic shock in the ICU who had received at least 1 liter of intravenous fluid to receive restricted intravenous fluid or standard intravenous fluid therapy; patients were included if the onset of shock had been within 12 hours before screening. The primary outcome was death from any cause within 90 days after randomization. RESULTS: We enrolled 1554 patients; 770 were assigned to the restrictive-fluid group and 784 to the standard-fluid group. Primary outcome data were available for 1545 patients (99.4%). In the ICU, the restrictive-fluid group received a median of 1798 ml of intravenous fluid (interquartile range, 500 to 4366); the standard-fluid group received a median of 3811 ml (interquartile range, 1861 to 6762). At 90 days, death had occurred in 323 of 764 patients (42.3%) in the restrictive-fluid group, as compared with 329 of 781 patients (42.1%) in the standard-fluid group (adjusted absolute difference, 0.1 percentage points; 95% confidence interval [CI], -4.7 to 4.9; P = 0.96). In the ICU, serious adverse events occurred at least once in 221 of 751 patients (29.4%) in the restrictive-fluid group and in 238 of 772 patients (30.8%) in the standard-fluid group (adjusted absolute difference, -1.7 percentage points; 99% CI, -7.7 to 4.3). At 90 days after randomization, the numbers of days alive without life support and days alive and out of the hospital were similar in the two groups. CONCLUSIONS: Among adult patients with septic shock in the ICU, intravenous fluid restriction did not result in fewer deaths at 90 days than standard intravenous fluid therapy. (Funded by the Novo Nordisk Foundation and others; CLASSIC ClinicalTrials.gov number, NCT03668236.).


Assuntos
Hidratação , Choque Séptico , Administração Intravenosa , Adulto , Cuidados Críticos/métodos , Hidratação/efeitos adversos , Hidratação/métodos , Humanos , Unidades de Terapia Intensiva , Choque Séptico/mortalidade , Choque Séptico/terapia
9.
N Engl J Med ; 386(9): 861-868, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35235727

RESUMO

Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an uncommon infection that is typically associated with exposure to soil and water in tropical and subtropical environments. It is rarely diagnosed in the continental United States. Patients with melioidosis in the United States commonly report travel to regions where melioidosis is endemic. We report a cluster of four non-travel-associated cases of melioidosis in Georgia, Kansas, Minnesota, and Texas. These cases were caused by the same strain of B. pseudomallei that was linked to an aromatherapy spray product imported from a melioidosis-endemic area.


Assuntos
Aromaterapia/efeitos adversos , Burkholderia pseudomallei/isolamento & purificação , Surtos de Doenças , Melioidose/epidemiologia , Aerossóis , Encéfalo/microbiologia , Encéfalo/patologia , Burkholderia pseudomallei/genética , COVID-19/complicações , Pré-Escolar , Evolução Fatal , Feminino , Genoma Bacteriano , Humanos , Pulmão/microbiologia , Pulmão/patologia , Masculino , Melioidose/complicações , Pessoa de Meia-Idade , Filogenia , Choque Séptico/microbiologia , Estados Unidos/epidemiologia
10.
Nat Immunol ; 14(9): 901-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872679

RESUMO

Type I interferons are important in regulating immune responses to pathogens and tumors. All interferons are considered to signal via the heterodimeric IFNAR1-IFNAR2 complex, yet some subtypes such as interferon-ß (IFN-ß) can exhibit distinct functional properties, although the molecular basis of this is unclear. Here we demonstrate IFN-ß can uniquely and specifically ligate to IFNAR1 in an IFNAR2-independent manner, and we provide the structural basis of the IFNAR1-IFN-ß interaction. The IFNAR1-IFN-ß complex transduced signals that modulated expression of a distinct set of genes independently of Jak-STAT pathways. Lipopolysaccharide-induced sepsis was ameliorated in Ifnar1(-/-) mice but not Ifnar2(-/-) mice, suggesting that IFNAR1-IFN-ß signaling is pathologically relevant. Thus, we provide a molecular basis for understanding specific functions of IFN-ß.


Assuntos
Interferon beta/química , Interferon beta/metabolismo , Receptor de Interferon alfa e beta/química , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos/efeitos adversos , Camundongos , Camundongos Knockout , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Receptor de Interferon alfa e beta/genética , Choque Séptico/induzido quimicamente , Choque Séptico/genética , Choque Séptico/metabolismo , Choque Séptico/mortalidade
11.
Nat Immunol ; 14(1): 34-40, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23142774

RESUMO

Acute inflammatory responses are important in host defense, whereas dysregulated inflammation results in life-threatening complications. Here we found that paired immunoglobulin-like type 2 receptor alpha (PILRα), an inhibitory receptor containing immunoreceptor tyrosine-based inhibitory motifs (ITIMs), negatively regulated neutrophil infiltration during inflammation. Pilra(-/-) mice had increased neutrophil recruitment to inflammatory sites and were highly susceptible to endotoxin shock. Pilra(-/-) neutrophils showed enhanced transmigration ability and increased adhesion to the ß(2) integrin ligand ICAM-1. PILRα expressed on neutrophils constitutively associated in cis with its ligands, resulting in clustering of PILRα during stimulation with a chemoattractant. Clustering of PILRα enhanced ITIM-mediated signaling, thus modulating ß(2) integrin inside-out activation. These data demonstrate that neutrophil recruitment in inflammatory responses is regulated by PILRα via modulation of integrin activation.


Assuntos
Inflamação/imunologia , Integrinas/metabolismo , Neutrófilos/imunologia , Receptores Imunológicos/fisiologia , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Adesão Celular/imunologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Movimento Celular/imunologia , Células Cultivadas , Predisposição Genética para Doença , Inflamação/genética , Integrinas/genética , Integrinas/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Camundongos Knockout , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/efeitos dos fármacos , Agregação de Receptores/efeitos dos fármacos , Agregação de Receptores/genética , Receptores Imunológicos/genética , Choque Séptico/genética , Choque Séptico/imunologia
12.
EMBO Rep ; 24(8): e57615, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37358010

RESUMO

Sepsis is the result of a dysregulated host response to an infection and causes high morbidity and mortality at the intensive care units worldwide. Despite intensive research, the current management of sepsis is supportive rather than curative. Therefore, new therapeutic interventions for sepsis and septic shock patients are urgently needed. In this issue of EMBO Reports, Fang et al have used rat sepsis models to show that macrophage-expressed SPNS2, a major transporter of S1P, is a crucial mediator of metabolic reprogramming of macrophages during sepsis which regulates inflammation via the lactate-ROS axis.


Assuntos
Sepse , Choque Séptico , Animais , Ratos , Inflamação , Macrófagos/metabolismo , Esfingosina/metabolismo
13.
J Immunol ; 210(6): 807-819, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36705532

RESUMO

Thousands of long noncoding RNAs are encoded in mammalian genomes, yet most remain uncharacterized. In this study, we functionally characterized a mouse long noncoding RNA named U90926. Analysis of U90926 RNA levels revealed minimal expression across multiple tissues at steady state. However, the expression of this gene was highly induced in macrophages and dendritic cells by TLR activation, in a p38 MAPK- and MyD88-dependent manner. To study the function of U90926, we generated U90926-deficient (U9-KO) mice. Surprisingly, we found minimal effects of U90926 deficiency in cultured macrophages. Given the lack of macrophage-intrinsic effect, we investigated the subcellular localization of U90926 transcript and its protein-coding potential. We found that U90926 RNA localizes to the cytosol, associates with ribosomes, and contains an open reading frame that encodes a novel glycosylated protein (termed U9-ORF), which is secreted from the cell. An in vivo model of endotoxic shock revealed that, in comparison with wild type mice, U9-KO mice exhibited increased sickness responses and mortality. Mechanistically, serum levels of IL-6 were elevated in U9-KO mice, and IL-6 neutralization improved endotoxemia outcomes in U9-KO mice. Taken together, these results suggest that U90926 expression is protective during endotoxic shock, potentially mediated by the paracrine and/or endocrine actions of the novel U9-ORF protein secreted by activated myeloid cells.


Assuntos
RNA Longo não Codificante , Choque Séptico , Camundongos , Animais , RNA Longo não Codificante/genética , Interleucina-6 , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Choque Séptico/genética , Choque Séptico/metabolismo , Mamíferos/genética
14.
J Immunol ; 210(9): 1351-1362, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36961438

RESUMO

Studies have shown that elevated plasma levels of platelet-derived soluble TREM-like transcript-1 (sTLT-1) are associated with an unfavorable outcome in patients with septic shock. However, the underlying molecular mechanisms are not well defined. This research aimed to study the role of sTLT-1 in mediating immune dysfunction during the development of sepsis. Our study demonstrated that patients with septic shock have significantly higher plasma concentrations of sTLT-1, whereas sTLT-1 is not detectable in healthy subjects. Plasma concentrations of sTLT-1 were correlated with the degree of immunosuppressive parameters in monocytes from patients with septic shock. sTLT-1 can first activate monocytes by binding to the TLR4/MD2 complex but subsequently induce immunosuppressive phenotypes in monocytes. Blocking Abs against TLR4 and MD2 led to a significant decrease in sTLT-1-induced activation. Treatment with an anti-TLT-1 Ab also significantly reduces sTLT-1 binding to monocytes and proinflammatory cytokine secretion in a mouse model of endotoxemia. sTLT-1 acts as an endogenous damage-associated molecular pattern molecule, triggering the activation of monocytes through the TLR4/MD2 complex followed by sustained immune suppression. This process plays a crucial role in the development of sepsis-associated pathophysiology. Our findings outline, to our knowledge, a novel pathway whereby platelets counteract immune dynamics against infection through sTLT-1.


Assuntos
Sepse , Choque Séptico , Animais , Camundongos , Receptor 4 Toll-Like/metabolismo , Alarminas , Receptores Imunológicos/metabolismo
15.
Mol Cell ; 68(1): 185-197.e6, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28943315

RESUMO

Many infections and stress signals can rapidly activate the NLRP3 inflammasome to elicit robust inflammatory responses. This activation requires a priming step, which is thought to be mainly for upregulating NLRP3 transcription. However, recent studies report that the NLRP3 inflammasome can be activated independently of transcription, suggesting that the priming process has unknown essential regulatory steps. Here, we report that JNK1-mediated NLRP3 phosphorylation at S194 is a critical priming event and is essential for NLRP3 inflammasome activation. We show that NLRP3 inflammasome activation is disrupted in NLRP3-S194A knockin mice. JNK1-mediated NLRP3 S194 phosphorylation is critical for NLRP3 deubiquitination and facilitates its self-association and the subsequent inflammasome assembly. Importantly, we demonstrate that blocking S194 phosphorylation prevents NLRP3 inflammasome activation in cryopyrin-associated periodic syndromes (CAPS). Thus, our study reveals a key priming molecular event that is a prerequisite for NLRP3 inflammasome activation. Inhibiting NLRP3 phosphorylation could be an effective treatment for NLRP3-related diseases.


Assuntos
Inflamassomos/genética , Macrófagos/imunologia , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Choque Séptico/genética , Sequência de Aminoácidos , Animais , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/imunologia , Escherichia coli/química , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Inflamassomos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase 8 Ativada por Mitógeno/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fosforilação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Choque Séptico/induzido quimicamente , Choque Séptico/mortalidade , Choque Séptico/patologia , Transdução de Sinais , Análise de Sobrevida
16.
Am J Respir Crit Care Med ; 209(10): 1219-1228, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271488

RESUMO

Rationale: The use of hydrocortisone in adult patients with septic shock is controversial, and the effectiveness of adding fludrocortisone to hydrocortisone remains uncertain. Objectives: To assess the comparative effectiveness and safety of fludrocortisone plus hydrocortisone, hydrocortisone alone, and placebo or usual care in adults with septic shock. Methods: A systematic review and a Bayesian network meta-analysis of peer-reviewed randomized trials were conducted. The primary outcome was all-cause mortality at last follow-up. Treatment effects are presented as relative risks (RRs) with 95% credible intervals (CrIs). Placebo or usual care was the reference treatment. Measurements and Main Results: Among 7,553 references, we included 17 trials (7,688 patients). All-cause mortality at last follow-up was lowest with fludrocortisone plus hydrocortisone (RR, 0.85; 95% CrI, 0.72-0.99; 98.3% probability of superiority, moderate-certainty evidence), followed by hydrocortisone alone (RR, 0.97; 95% CrI, 0.87-1.07; 73.1% probability of superiority, low-certainty evidence). The comparison of fludrocortisone plus hydrocortisone versus hydrocortisone alone was based primarily on indirect evidence (only two trials with direct evidence). Fludrocortisone plus hydrocortisone was associated with a 12% lower risk of all-cause mortality compared with hydrocortisone alone (RR, 0.88; 95% CrI, 0.74-1.03; 94.2% probability of superiority, moderate-certainty evidence). Conclusions: In adult patients with septic shock, fludrocortisone plus hydrocortisone was associated with lower risk of all-cause mortality at last follow-up than placebo and hydrocortisone alone. The scarcity of head-to-head trials comparing fludrocortisone plus hydrocortisone versus hydrocortisone alone led our network meta-analysis to rely primarily on indirect evidence for this comparison. Although we undertook several sensitivity analyses and assessments, these findings should be considered while also acknowledging the heterogeneity of included trials.


Assuntos
Anti-Inflamatórios , Quimioterapia Combinada , Fludrocortisona , Hidrocortisona , Ensaios Clínicos Controlados Aleatórios como Assunto , Choque Séptico , Humanos , Fludrocortisona/uso terapêutico , Fludrocortisona/administração & dosagem , Hidrocortisona/uso terapêutico , Hidrocortisona/administração & dosagem , Choque Séptico/tratamento farmacológico , Choque Séptico/mortalidade , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/administração & dosagem , Metanálise em Rede , Resultado do Tratamento , Masculino , Teorema de Bayes , Feminino , Adulto , Pessoa de Meia-Idade
17.
Am J Respir Crit Care Med ; 209(5): 517-528, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38259196

RESUMO

Rationale: Sepsis management relies on fluid resuscitation avoiding fluid overload and its related organ congestion. Objectives: To explore the influence of country income group on risk-benefit balance of fluid management strategies in sepsis. Methods: We searched e-databases for all randomized controlled trials on fluid resuscitation in patients with sepsis or septic shock up to January 2023, excluding studies on hypertonic fluids, colloids, and depletion-based interventions. The effect of fluid strategies (higher versus lower volumes) on mortality was analyzed per income group (i.e., low- and middle-income countries [LMICs] or high-income countries [HICs]). Measurements and Main Results: Twenty-nine studies (11,798 patients) were included in the meta-analysis. There was a numerically higher mortality in studies of LMICs as compared with those of HICs: median, 37% (interquartile range [IQR]: 26-41) versus 29% (IQR: 17-38; P = 0.06). Income group significantly interacted with the effect of fluid volume on mortality: Higher fluid volume was associated with higher mortality in LMICs but not in HICs: odds ratio (OR), 1.47; 95% confidence interval (95% CI): 1.14-1.90 versus 1.00 (95% CI: 0.87-1.16), P = 0.01 for subgroup differences. Higher fluid volume was associated with increased need for mechanical ventilation in LMICs (OR, 1.24 [95% CI: 1.08-1.43]) but not in HICs (OR, 1.02 [95% CI: 0.80-1.29]). Self-reported access to mechanical ventilation also significantly influenced the effect of fluid volume on mortality, which increased with higher volumes only in settings with limited access to mechanical ventilation (OR: 1.45 [95% CI: 1.09-1.93] vs. 1.09 [95% CI: 0.93-1.28], P = 0.02 for subgroup differences). Conclusions: In sepsis trials, the effect of fluid resuscitation approach differed by setting, with higher volume of fluid resuscitation associated with increased mortality in LMICs and in settings with restricted access to mechanical ventilation. The precise reason for these differences is unclear and may be attributable in part to resource constraints, participant variation between trials, or other unmeasured factors.


Assuntos
Sepse , Choque Séptico , Humanos , Bases de Dados Factuais , Hidratação , Renda , Sepse/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto
18.
Am J Respir Crit Care Med ; 209(7): 852-860, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261986

RESUMO

Rationale: Shorter time-to-antibiotics improves survival from sepsis, particularly among patients in shock. There may be other subgroups for whom faster antibiotics are particularly beneficial.Objectives: Identify patient characteristics associated with greater benefit from shorter time-to-antibiotics.Methods: Observational cohort study of patients hospitalized with community-onset sepsis at 173 hospitals and treated with antimicrobials within 12 hours. We used three approaches to evaluate heterogeneity of benefit from shorter time-to-antibiotics: 1) conditional average treatment effects of shorter (⩽3 h) versus longer (>3-12 h) time-to-antibiotics on 30-day mortality using multivariable Poisson regression; 2) causal forest to identify characteristics associated with greatest benefit from shorter time-to-antibiotics; and 3) logistic regression with time-to-antibiotics modeled as a spline.Measurements and Main Results: Among 273,255 patients with community-onset sepsis, 131,094 (48.0%) received antibiotics within 3 hours. In Poisson models, shorter time-to-antibiotics was associated with greater absolute mortality reduction among patients with metastatic cancer (5.0% [95% confidence interval; CI: 4.3-5.7] vs. 0.4% [95% CI: 0.2-0.6] for patients without cancer, P < 0.001); patients with shock (7.0% [95% CI: 5.8-8.2%] vs. 2.8% [95% CI: 2.7-3.5%] for patients without shock, P = 0.005); and patients with more acute organ dysfunctions (4.8% [95% CI: 3.9-5.6%] for three or more dysfunctions vs. 0.5% [95% CI: 0.3-0.8] for one dysfunction, P < 0.001). In causal forest, metastatic cancer and shock were associated with greatest benefit from shorter time-to-antibiotics. Spline analysis confirmed differential nonlinear associations of time-to-antibiotics with mortality in patients with metastatic cancer and shock.Conclusions: In patients with community-onset sepsis, the mortality benefit of shorter time-to-antibiotics varied by patient characteristics. These findings suggest that shorter time-to-antibiotics for sepsis is particularly important among patients with cancer and/or shock.


Assuntos
Neoplasias , Sepse , Choque Séptico , Humanos , Antibacterianos/uso terapêutico , Sepse/terapia , Estudos de Coortes , Estudos Retrospectivos , Mortalidade Hospitalar
20.
J Bacteriol ; 206(3): e0044723, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334326

RESUMO

Menstrual toxic shock syndrome (mTSS) is a rare but life-threatening disease associated with the use of high-absorbency tampons. The production of the Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1) superantigen is involved in nearly all cases of mTSS and is tightly controlled by regulators responding to the environment. In the prototypic mTSS strain S. aureus MN8, the major repressor of TSST-1 is the carbon catabolite protein A (CcpA), which responds to glucose concentrations in the vaginal tract. Healthy vaginal Lactobacillus species also depend on glucose for both growth and acidification of the vaginal environment through lactic acid production. We hypothesized that interactions between the vaginal microbiota [herein referred to as community state types (CSTs)] and S. aureus MN8 depend on environmental cues and that these interactions subsequently affect TSST-1 production. Using S. aureus MN8 ΔccpA growing in various glucose concentrations, we demonstrate that the supernatants from different CSTs grown in vaginally defined medium (VDM) could significantly decrease tst expression. When co-culturing CST species with MN8 ∆ccpA, we show that Lactobacillus jensenii completely inhibits TSST-1 production in conditions mimicking healthy menstruation or mTSS. Finally, we show that growing S. aureus in "unhealthy" or "transitional" CST supernatants results in higher interleukin 2 (IL-2) production from T cells. These findings suggest that dysbiotic CSTs may encourage TSST-1 production in the vaginal tract and further indicate that the CSTs are likely important for the protection from mTSS.IMPORTANCEIn this study, we investigate the impact of the vaginal microbiota against Staphylococcus aureus in conditions mimicking the vaginal environment at various stages of the menstrual cycle. We demonstrate that Lactobacillus jensenii can inhibit toxic shock syndrome toxin-1 (TSST-1) production, suggesting the potential for probiotic activity in treating and preventing menstrual toxic shock syndrome (mTSS). On the other side of the spectrum, "unhealthy" or "transient" bacteria such as Gardnerella vaginalis and Lactobacillus iners support more TSST-1 production by S. aureus, suggesting that community state types are important in the development of mTSS. This study sets forward a model for examining contact-independent interactions between pathogenic bacteria and the vaginal microbiota. It also demonstrates the necessity of replicating the environment when studying one as dynamic as the vagina.


Assuntos
Toxinas Bacterianas , Lactobacillus , Choque Séptico , Infecções Estafilocócicas , Feminino , Humanos , Staphylococcus aureus/metabolismo , Choque Séptico/microbiologia , Sinais (Psicologia) , Enterotoxinas/metabolismo , Superantígenos/metabolismo , Vagina/microbiologia , Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA