Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Dev Biol ; 507: 20-33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154769

RESUMO

The neural tube, the embryonic precursor to the brain and spinal cord, begins as a flat sheet of epithelial cells, divided into non-neural and neural ectoderm. Proper neural tube closure requires that the edges of the neural ectoderm, the neural folds, to elevate upwards and fuse along the dorsal midline of the embryo. We have previously shown that members of the claudin protein family are required for the early phases of chick neural tube closure. Claudins are transmembrane proteins, localized in apical tight junctions within epithelial cells where they are essential for regulation of paracellular permeability, strongly involved in apical-basal polarity, cell-cell adhesion, and bridging the tight junction to cytoplasmic proteins. Here we explored the role of Claudin-3 (Cldn3), which is specifically expressed in the non-neural ectoderm. We discovered that depletion of Cldn3 causes folic acid-insensitive primarily spinal neural tube defects due to a failure in neural fold fusion. Apical cell surface morphology of Cldn3-depleted non-neural ectodermal cells exhibited increased membrane blebbing and smaller apical surfaces. Although apical-basal polarity was retained, we observed altered Par3 and Pals1 protein localization patterns within the apical domain of the non-neural ectodermal cells in Cldn3-depleted embryos. Furthermore, F-actin signal was reduced at apical junctions. Our data presents a model of spina bifida, and the role that Cldn3 is playing in regulating essential apical cell processes in the non-neural ectoderm required for neural fold fusion.


Assuntos
Ectoderma , Crista Neural , Embrião de Galinha , Animais , Ectoderma/metabolismo , Crista Neural/metabolismo , Galinhas/metabolismo , Claudina-3/metabolismo , Tubo Neural , Claudinas/genética , Claudinas/metabolismo , Junções Íntimas/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542338

RESUMO

Claudins are one of the major components of tight junctions (TJs) that polymerize within the cell membrane and form interactions between cells. Some claudins seal the paracellular space, limiting paracellular flux, while others form selectively permeable ion channels that control the paracellular permeability of small ions. Claudin strands are known to be dynamic and reshape within TJs to accommodate large-scale movements and rearrangements of epithelial tissues. Here, we summarize the recent computational and modeling studies on claudin assembly into tetrameric ion channels and their polymerization into µm long strands within the membrane. Computational studies ranging from all-atom molecular dynamics, coarse-grained simulations, and hybrid-resolution simulations elucidate the molecular nature of claudin assembly and function and provide a framework that describes the lateral flexibility of claudin strands.


Assuntos
Claudinas , Junções Íntimas , Claudinas/metabolismo , Junções Íntimas/metabolismo , Canais Iônicos/metabolismo , Simulação de Dinâmica Molecular , Epitélio/metabolismo , Claudina-3/metabolismo
3.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928261

RESUMO

Consumption of a high-fat diet (HFD) has been suggested as a contributing factor behind increased intestinal permeability in obesity, leading to increased plasma levels of microbial endotoxins and, thereby, increased systemic inflammation. We and others have shown that HFD can induce jejunal expression of the ketogenic rate-limiting enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS). HMGCS is activated via the free fatty acid binding nuclear receptor PPAR-α, and it is a key enzyme in ketone body synthesis that was earlier believed to be expressed exclusively in the liver. The function of intestinal ketogenesis is unknown but has been described in suckling rats and mice pups, possibly in order to allow large molecules, such as immunoglobulins, to pass over the intestinal barrier. Therefore, we hypothesized that ketone bodies could regulate intestinal barrier function, e.g., via regulation of tight junction proteins. The primary aim was to compare the effects of HFD that can induce intestinal ketogenesis to an equicaloric carbohydrate diet on inflammatory responses, nutrition sensing, and intestinal permeability in human jejunal mucosa. Fifteen healthy volunteers receiving a 2-week HFD diet compared to a high-carbohydrate diet were compared. Blood samples and mixed meal tests were performed at the end of each dietary period to examine inflammation markers and postprandial endotoxemia. Jejunal biopsies were assessed for protein expression using Western blotting, immunohistochemistry, and morphometric characteristics of tight junctions by electron microscopy. Functional analyses of permeability and ketogenesis were performed in Caco-2 cells, mice, and human enteroids. Ussing chambers were used to analyze permeability. CRP and ALP values were within normal ranges and postprandial endotoxemia levels were low and did not differ between the two diets. The PPARα receptor was ketone body-dependently reduced after HFD. None of the tight junction proteins studied, nor the basal electrical parameters, were different between the two diets. However, the ketone body inhibitor hymeglusin increased resistance in mucosal biopsies. In addition, the tight junction protein claudin-3 was increased by ketone inhibition in human enteroids. The ketone body ß-Hydroxybutyrate (ßHB) did not, however, change the mucosal transition of the large-size molecular FD4-probe or LPS in Caco-2 and mouse experiments. We found that PPARα expression was inhibited by the ketone body ßHB. As PPARα regulates HMGCS expression, the ketone bodies thus exert negative feedback signaling on their own production. Furthermore, ketone bodies were involved in the regulation of permeability on intestinal mucosal cells in vitro and ex vivo. We were not, however, able to reproduce these effects on intestinal permeability in vivo in humans when comparing two weeks of high-fat with high-carbohydrate diet in healthy volunteers. Further, neither the expression of inflammation markers nor the aggregate tight junction proteins were changed. Thus, it seems that not only HFD but also other factors are needed to permit increased intestinal permeability in vivo. This indicates that the healthy gut can adapt to extremes of macro-nutrients and increased levels of intestinally produced ketone bodies, at least during a shorter dietary challenge.


Assuntos
Dieta Hiperlipídica , Mucosa Intestinal , Jejuno , Corpos Cetônicos , Permeabilidade , Humanos , Masculino , Mucosa Intestinal/metabolismo , Dieta Hiperlipídica/efeitos adversos , Corpos Cetônicos/metabolismo , Adulto , Jejuno/metabolismo , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Feminino , Animais , Camundongos , Claudina-3/metabolismo
4.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338705

RESUMO

This study investigates the intricate composition and spatial distribution of tight junction complex proteins during early mouse neurulation. The analyses focused on the cranial neural tube, which gives rise to all head structures. Neurulation brings about significant changes in the neuronal and non-neuronal ectoderm at a cellular and tissue level. During this process, precise coordination of both epithelial integrity and epithelial dynamics is essential for accurate tissue morphogenesis. Tight junctions are pivotal for epithelial integrity, yet their complex composition in this context remains poorly understood. Our examination of various tight junction proteins in the forebrain region of mouse embryos revealed distinct patterns in the neuronal and non-neuronal ectoderm, as well as mesoderm-derived mesenchymal cells. While claudin-4 exhibited exclusive expression in the non-neuronal ectoderm, we demonstrated a neuronal ectoderm specific localization for claudin-12 in the developing cranial neural tube. Claudin-5 was uniquely present in mesenchymal cells. Regarding the subcellular localization, canonical tight junction localization in the apical junctions was predominant for most tight junction complex proteins. ZO-1 (zona occludens protein-1), claudin-1, claudin-4, claudin-12, and occludin were detected at the apical junction. However, claudin-1 and occludin also appeared in basolateral domains. Intriguingly, claudin-3 displayed a non-canonical localization, overlapping with a nuclear lamina marker. These findings highlight the diverse tissue and subcellular distribution of tight junction proteins and emphasize the need for their precise regulation during the dynamic processes of forebrain development. The study can thereby contribute to a better understanding of the role of tight junction complex proteins in forebrain development.


Assuntos
Proteínas de Junções Íntimas , Junções Íntimas , Camundongos , Animais , Proteínas de Junções Íntimas/metabolismo , Claudina-4/metabolismo , Claudina-1/metabolismo , Ocludina/metabolismo , Claudina-3/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Claudinas/metabolismo
5.
Bull Exp Biol Med ; 176(4): 442-446, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38488962

RESUMO

We performed a comparative study of the effects of X-ray irradiation and bleomycin on the mRNA levels of E-cadherin and tight junction proteins (claudin-3, claudin-4, claudin-18, ZO-2, and occludin) in an alveolar epithelial cell line L2. Irradiation decreased claudin-4 levels and increased occludin levels, while the levels of other mRNAs remained unchanged. Bleomycin increased the expression levels of all proteins examined except claudin-3. Irradiation and bleomycin have different effects on the expression level of intercellular junction proteins, indicating different reactions triggered in alveolar epithelial cells and a great prospects of further comparative studies.


Assuntos
Células Epiteliais Alveolares , Junções Íntimas , Células Epiteliais Alveolares/metabolismo , Junções Íntimas/metabolismo , Ocludina/genética , Ocludina/metabolismo , Claudina-4/metabolismo , Claudina-3/metabolismo , Bleomicina/farmacologia , Bleomicina/metabolismo , Junções Intercelulares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Células Epiteliais
6.
J Biol Chem ; 298(9): 102357, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952760

RESUMO

Strains of Clostridium perfringens produce a two-domain enterotoxin (CpE) that afflicts humans and domesticated animals, causing prevalent gastrointestinal illnesses. CpE's C-terminal domain (cCpE) binds cell surface receptors, followed by a restructuring of its N-terminal domain to form a membrane-penetrating ß-barrel pore, which is toxic to epithelial cells of the gut. The claudin family of membrane proteins are known receptors for CpE and also control the architecture and function of cell-cell contacts (tight junctions) that create barriers to intercellular molecular transport. CpE binding and assembly disables claudin barrier function and induces cytotoxicity via ß-pore formation, disrupting gut homeostasis; however, a structural basis of this process and strategies to inhibit the claudin-CpE interactions that trigger it are both lacking. Here, we used a synthetic antigen-binding fragment (sFab) library to discover two sFabs that bind claudin-4 and cCpE complexes. We established these sFabs' mode of molecular recognition and binding properties and determined structures of each sFab bound to claudin-4-cCpE complexes using cryo-EM. The structures reveal that the sFabs bind a shared epitope, but conform distinctly, which explains their unique binding equilibria. Mutagenesis of antigen/sFab interfaces observed therein result in binding changes, validating the structures, and uncovering the sFab's targeting mechanism. From these insights, we generated a model for CpE's claudin-bound ß-pore that predicted sFabs would not prevent cytotoxicity, which we then verified in vivo. Taken together, this work demonstrates the development and mechanism of claudin/cCpE-binding sFabs that provide a framework and strategy for obstructing claudin/CpE assembly to treat CpE-linked gastrointestinal diseases.


Assuntos
Claudinas , Enterotoxinas , Animais , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Claudinas/metabolismo , Clostridium perfringens , Enterotoxinas/metabolismo , Epitopos/metabolismo , Humanos , Ligação Proteica
7.
J Nutr ; 153(12): 3360-3372, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806357

RESUMO

BACKGROUND: Claudins (CLDNs), major components of tight junctions, control paracellular permeabilities of mineral ions and wastes. The absorption of nutrients including glucose and amino acids (AAs) is regulated by intestinal epithelial cells. However, the role of CLDNs is not fully understood. OBJECTIVES: The purpose of this study was to clarify the effect of AA deprivation on the expression of AA transporters and CLDNs, as well as the role of CLDNs in the regulation of paracellular AA fluxes. METHODS: The messenger RNA and protein expression of various CLDNs were examined by real-time quantitative polymerase chain reaction and Western blot analyses, respectively. The AA selectivity of CLDNs was estimated using liquid chromatography-tandem mass spectrometry (LC-MS) analysis. RESULTS: The expression levels of some AA transporters, CLDN4, and CLDN15 were increased by AA deprivation in normal mouse colon-derived MCE301 cells. The expression of AA transporters and CLDN15 in the mouse colon was positively correlated with aging but the expression of CLDN4 was not. The AA deprivation-induced elevation of CLDN4 expression was inhibited by MHY1485, a mammalian target of rapamycin (mTOR) activator. Furthermore, CLDN4 expression was increased by rapamycin, an mTOR inhibitor. mTOR may be involved in the transcriptional activation of CLDN4. The fluxes of AAs from the basal to apical compartments were decreased and increased by CLDN4 overexpression and silencing, respectively. LC-MS analysis showed that the fluxes of all AAs, especially Lys, His, and Arg, were enhanced by CLDN4 silencing. CONCLUSIONS: CLDN4 is suggested to form a paracellular barrier to AAs, especially alkaline AAs, which is attenuated with aging.


Assuntos
Aminoácidos , Claudinas , Animais , Camundongos , Aminoácidos/metabolismo , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Claudinas/genética , Claudinas/metabolismo , Mamíferos/metabolismo , Junções Íntimas , Serina-Treonina Quinases TOR/metabolismo
8.
Ecotoxicol Environ Saf ; 264: 115404, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625335

RESUMO

Radiation therapy and unwanted radiological or nuclear exposure, such as nuclear plant accidents, terrorist attacks, and military conflicts, pose serious health issues to humans. Dysfunction of the intestinal epithelial barrier and the leakage of luminal antigens and bacteria across the barrier have been linked to various human diseases. Intestinal permeability is regulated by intercellular structures, termed tight junctions (TJs), which are disrupted after radiation exposure. In this study, we investigated radiation-induced alterations in TJ-related proteins in an intestinal epithelial cell model. Caco-2 cells were irradiated with 2, 5, and 10 Gy and harvested 1 and 24 h after X-ray exposure. The trypan blue assay revealed that cell viability was reduced in a dose-dependent manner 24 h after X-ray exposure compared to that of non-irradiated cells. However, the WST-8 assay revealed that cell proliferation was significantly reduced only 24 h after radiation exposure to 10 Gy compared to that of non-irradiated cells. In addition, a decreased growth rate and increased doubling time were observed in cells irradiated with X-rays. Intestinal permeability was significantly increased, and transepithelial electrical resistance values were remarkably reduced in Caco-2 cell monolayers irradiated with X-rays compared to non-irradiated cells. X-ray irradiation significantly decreased the mRNA and protein levels of ZO-1, occludin, claudin-3, and claudin-4, with ZO-1 and claudin-3 protein levels decreasing in a dose-dependent manner. Overall, the present study reveals that exposure to X-ray induces dysfunction of the human epithelial intestinal barrier and integrity via the downregulation of TJ-related genes, which may be a key factor contributing to intestinal barrier damage and increased intestinal permeability.


Assuntos
Enteropatias , Mucosa Intestinal , Humanos , Células CACO-2 , Mucosa Intestinal/metabolismo , Raios X , Claudina-3/genética , Claudina-3/metabolismo , Intestinos , Células Epiteliais/metabolismo , Enteropatias/metabolismo , Permeabilidade
9.
Chem Biodivers ; 20(6): e202300572, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37218365

RESUMO

This study aims to explore the protective effects of Picroside III, an active ingredient of Picrorhiza scrophulariiflora, on the intestinal epithelial barrier in tumor necrosis factor-α (TNF-α) induced Caco-2 cells and dextran sulfate sodium (DSS) induced colitis in mice. Results show that Picroside III significantly alleviated clinical signs of colitis including body weight loss, disease activity index increase, colon shortening, and colon tissue damage. It also increased claudin-3, ZO-1 and occludin expressions and decreased claudin-2 expression in the colon tissues of mice with colitis. In vitro, Picroside III also significantly promoted wound healing, decreased the permeability of cell monolayer, upregulated the expressions of claudin-3, ZO-1 and occludin and downregulated the expression of claudin-2 in TNF-α treated Caco-2 cells. Mechanism studies show that Picroside III significantly promoted AMP-activated protein kinase (AMPK) phosphorylation in vitro and in vivo, and blockade with AMPK could significantly attenuate the upregulation of Picroside III in ZO-1 and occludin expressions and the downregulation of claudin-2 expression in TNF-α treated Caco-2 cells. In conclusion, this study demonstrates that Picroside III attenuated DSS-induced colitis by promoting colonic mucosal wound healing and epithelial barrier function recovery via the activation of AMPK.


Assuntos
Colite , Picrorhiza , Humanos , Camundongos , Animais , Picrorhiza/metabolismo , Células CACO-2 , Claudina-2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ocludina/metabolismo , Ocludina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Claudina-3/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Mucosa Intestinal , Modelos Animais de Doenças
10.
Biol Reprod ; 107(4): 984-997, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863769

RESUMO

The composition of cell contacts in the endometrium plays an important role in the process of embryo implantation and the establishment of pregnancy. In previous studies, we showed an induction of the tight junction protein claudin-3 in the developing decidua from day 6.5 of pregnancy onward. To evaluate the role of this specific claudin-3 distribution, we here evaluated the effect of an endometrial claudin-3 deletion in implantation and embryo development in claudin-3 knockout mice. Claudin-3 knockout mice were fertile but revealed a slightly reduced amount of implantation sites as well as of litter size. Though implantation sites showed morphologically regularly developed embryos and deciduas, depth of ectoplacental cone invasion was reduced in tendency compared to controls. The weight of the implantation sites on day 6.5 and 8.5 of pregnancy as well as the weight of the embryos on day 17.5 of pregnancy, but not of the placentas, was significantly reduced in claudin-3 knockout mice due to a maternal effect. This could be due to an impairment of decidualization as substantiated by a downregulation of the transcription of various decidua-associated genes in the early implantation sites of claudin-3 knockout mice. The fact that claudin-3 knockout mice are nevertheless fertile possibly may be compensated by the presence of other claudins like claudin-4 and claudin-10.


Assuntos
Decídua , Implantação do Embrião , Animais , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/metabolismo , Claudinas/genética , Claudinas/metabolismo , Decídua/metabolismo , Implantação do Embrião/genética , Endométrio/metabolismo , Feminino , Camundongos , Camundongos Knockout , Gravidez , Células Estromais/metabolismo
11.
Exp Cell Res ; 409(2): 112938, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800541

RESUMO

In lactating mammary glands, alveolar mammary epithelial cells (MECs) produce milk and form less-permeable tight junctions (TJs). However, alveolar TJs are weakened with a reduction in milk production in mammary glands due to mastitis or weaning in the presence of high levels of IL-1ß, IL-6, or TNF-α. In this study, using in vitro cultured model of MECs with milk-producing ability and lactation-specific TJs, we investigated whether the aforementioned cytokines affect MEC TJs. The results showed that TNF-α, IL-1ß, and IL-6 affected lactation-specific TJs in different ways. In particular, upon activation of p38 and JNK signalling, IL-1ß caused rapid disruption of TJs at tricellular contact points. IL-1ß treatment led to decreased CLDN3, CLDN4, and OCLN levels and a weakened TJ barrier. The adverse effects of IL-1ß on TJs were mimicked by anisomycin, which is an activator of p38 and JNK signalling, and were blocked by MEC pretreatment with a p38 inhibitor but not a JNK inhibitor. The mislocalization of tricellulin at tricellular contact areas was confirmed in MECs treated with IL-1ß or anisomycin. These results indicate that IL-1ß is a key cytokine that adversely affects the TJs between MECs by activating p38.


Assuntos
Anisomicina/farmacologia , Claudina-3/metabolismo , Claudina-4/metabolismo , Interleucina-1beta/farmacologia , Lactação , Glândulas Mamárias Animais/patologia , Junções Íntimas/patologia , Animais , Claudina-3/genética , Claudina-4/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Glândulas Mamárias Animais/metabolismo , Camundongos , Leite/química , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
12.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233211

RESUMO

Psychological stress is associated with increased risk of gastrointestinal (GI) tract diseases. Evidence indicated that platelets facilitate GI tissue repair in intestinal anastomosis models. However, whether platelets are involved in native mechanism of the rescue of stress-induced GI injury for maintaining the GI homeostasis remains elusive. Because P-selectin-deficient (Selp-/-) mice displayed higher stress-induced GI injury compared to the wild-type (Selp+/+) mice, and P-selectin is specifically expressed in platelets, we hypothesize that P-selectin-expressing platelets play a protective role in the rescue of stress-induced GI injury. Our goal is to clarify the putative protective role of platelets in a GI system, thereby develop a feasible intervention strategy, such as platelet transfer, to overcome stress-induced GI injury. Through monitoring the plasma levels of GI-nonabsorbable Evans blue dye to reveal the progression course of GI injury in live mice, we found that intravenous treatments of purified platelets ameliorated stress-induced GI leakage. The transfer of platelets from wild-type mice was more potent than from Selp-/- mice in the rescue of stress-induced-GI leakage in the recipients. As such, platelet transfer-mediated rescue was conducted in a P-selectin dependent manner. Additionally, platelet-mediated protection is associated with corrections of stress-induced aberrant GI mRNA expressions, including tight junctions claudin 3 and occludin, as well as stress-induced genes activating transcription factor 3 and AMP-activated protein kinase, after the transfer of wild-type platelets into wild-type and Selp-/- mice. Furthermore, the stress-induced apoptosis of CD326+ GI epithelial cells was rescued by the transfer of wild type, but not P-selectin-deficient platelets. These results suggest that platelet plays a protective role for maintaining the GI homeostasis during stress in vivo, and that P-selectin is a molecular target for managing stress-induced GI tract injury.


Assuntos
Proteínas Quinases Ativadas por AMP , Fator 3 Ativador da Transcrição , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Animais , Plaquetas/metabolismo , Claudina-3/metabolismo , Azul Evans , Camundongos , Camundongos Endogâmicos C57BL , Ocludina/metabolismo , RNA Mensageiro/metabolismo
13.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293400

RESUMO

Zearalenone (ZEN) is a widespread contaminant of cereals and agricultural products which causes food safety issues. Ingesting food or feed contaminated with ZEN can disrupt the intestinal epithelial barrier function. The RhoA/ROCK signaling pathway plays a key role in regulating the epithelial barrier function, but studies on such roles have rarely focused on the intestine. The aim of this experiment was to investigate the exact mechanism of ZEN-induced intestinal barrier damage and whether the RhoA/ROCK signaling pathway is involved. The results showed that ZEN significantly induced alkaline phosphatase (AP) activity and FITC-dextran (4 kDa) passage across the epithelial barrier, which significantly reduced the transepithelial resistance (TEER). Meanwhile, ZEN could induce the significantly down-regulated mRNA expression of tight junction proteins (occludin, claudin-1, ZO-1, and claudin-3) and redistribution of ZO-1 immunofluorescence. Further studies demonstrated that ZEN exposure activated the RhoA/ROCK signaling pathway, significantly up-regulated the mRNA expression of ROCK1, the main effector of the signaling pathway, the protein expression of phosphorylated myosin light chain (MLC) and myosin light chain kinase (MLCK), and relatively increased the activity of ATP in cells, simultaneously remodeling the cytoskeleton (F-actin). Overall, our study indicated that ZEN induced intestinal barrier dysfunction by activating the RhoA/ROCK signaling pathway.


Assuntos
Quinase de Cadeia Leve de Miosina , Zearalenona , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Zearalenona/metabolismo , Ocludina/metabolismo , Claudina-1/metabolismo , Actinas/metabolismo , Claudina-3/metabolismo , Fosfatase Alcalina/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Intestinos , Transdução de Sinais , RNA Mensageiro/metabolismo , Trifosfato de Adenosina/metabolismo
14.
J Anim Physiol Anim Nutr (Berl) ; 106(3): 664-670, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35014099

RESUMO

Soybean agglutinin (SBA) is an anti-nutritional factor which decreases the mechanical barrier function in intestinal porcine jejunum epithelial cells (IPEC-J2). Eleutheroside E (EE) is a key part of Acanthopanax senticosus to exert pharmacological effects. This study aims to investigate the effects of EE on the barrier function in IPEC-J2 cells and to determine the ability of EE to enhance the protective effect of barrier function against SBA exposure. The IPEC-J2 cells were cultured in mediums with concentration of 0.1 mg/ml EE, 0.5 ml/ml SBA and 0.1 mg/ml EE pre-treated then treated with 0.5 mg/ml SBA. Then, the transepithelial electric resistance (TEER) value, inflammatory cytokines mRNA expression, tight junction mRNA and protein expression were tested by epithelial Voltohm meter, q-PCR and Western blot method respectively. The results showed that cells treated with 0.1 mg/ml EE had lower permeability (p < 0.05) while 0.5 mg/ml SBA treatment had higher permeability through tested TEER, and higher tight junction proteins (Claudin-3 and ZO-1) expressions and genes (Claudin-3, Occludin and ZO-1) expressions (p < 0.05) in 0.1 mg/ml EE group. IPEC-J2 cells pre-treated with 0.1 mg/ml EE could significantly improve the inflammatory response caused by 0.5 mg/ml SBA by up-regulation for IL-10, TGF-ß, and down-regulation gene expression of IL-6, TNF-α and IFN-γ (p < 0.05). In conclusion, 0.1 mg/ml EE can improve the mechanical barrier function and could protect the effects while 0.5 mg/ml of SBA-induced barrier dysfunction in IPEC-J2.


Assuntos
Células Epiteliais , Mucosa Intestinal , Animais , Linhagem Celular , Claudina-3/metabolismo , Glucosídeos , Lignanas , Lectinas de Plantas , RNA Mensageiro/metabolismo , Proteínas de Soja , Suínos
15.
Am J Physiol Cell Physiol ; 320(4): C495-C508, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439776

RESUMO

Claudins are essential for tight junction formation and paracellular transport, and they affect key cellular events including proliferation and migration. The properties of tight junctions are dynamically modulated by a variety of inputs. We previously showed that the inflammatory cytokine tumor necrosis factor-α (TNFα), a major pathogenic factor in kidney disease, alters epithelial permeability by affecting the expression of claudin-1, -2, and -4 in kidney tubular cells. Here, we explored the effect of TNFα on claudin-3 (Cldn-3), a ubiquitous barrier-forming protein. We found that TNFα elevated Cldn-3 protein expression in tubular epithelial cells (LLC-PK1 and IMCD3) as early as 3 h post treatment. Bafilomycin A and bortezomib, inhibitors of lysosomal and proteasomes, respectively, reduced Cldn-3 degradation. However, TNFα caused a strong upregulation of Cldn-3 in the presence of bafilomycin, suggesting an effect independent from lysosomes. Blocking protein synthesis using cycloheximide prevented Cldn-3 upregulation by TNFα, verifying the contribution of de novo Cldn-3 synthesis. Indeed, TNFα elevated Cldn-3 mRNA levels at early time points. Using pharmacological inhibitors and siRNA-mediated silencing, we determined that the effect of TNFα on Cldn-3 was mediated by extracellular signal regulated kinase (ERK)-dependent activation of NF-κB and PKA-induced activation of CREB1. These two pathways were turned on by TNFα in parallel and both were required for the upregulation of Cldn-3. Because Cldn-3 was suggested to modulate cell migration and epithelial-mesenchymal transition (EMT), and TNFα was shown to affect these processes, Cldn-3 upregulation may modulate regeneration of the tubules following injury.


Assuntos
Claudina-3/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Células CACO-2 , Movimento Celular/efeitos dos fármacos , Claudina-3/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Células LLC-PK1 , Masculino , Camundongos , Transdução de Sinais , Suínos , Regulação para Cima
16.
Pflugers Arch ; 473(2): 287-311, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33386991

RESUMO

TGF-ß1 is a major mediator of airway tissue remodelling during atopic asthma and affects tight junctions (TJs) of airway epithelia. However, its impact on TJs of ciliated epithelia is sparsely investigated. Herein we elaborated effects of TGF-ß1 on TJs of primary human bronchial epithelial cells. We demonstrate that TGF-ß1 activates TGF-ß1 receptors TGFBR1 and TGFBR2 resulting in ALK5-mediated phosphorylation of SMAD2. We observed that TGFBR1 and -R2 localize specifically on motile cilia. TGF-ß1 activated accumulation of phosphorylated SMAD2 (pSMAD2-C) at centrioles of motile cilia and at cell nuclei. This triggered an increase in paracellular permeability via cellular redistribution of claudin 3 (CLDN3) from TJs into cell nuclei followed by disruption of epithelial integrity and formation of epithelial lesions. Only ciliated cells express TGF-ß1 receptors; however, nuclear accumulations of pSMAD2-C and CLDN3 redistribution were observed with similar time course in ciliated and non-ciliated cells. In summary, we demonstrate a role of motile cilia in TGF-ß1 sensing and showed that TGF-ß1 disturbs TJ permeability of conductive airway epithelia by redistributing CLDN3 from TJs into cell nuclei. We conclude that the observed effects contribute to loss of epithelial integrity during atopic asthma.


Assuntos
Brônquios/efeitos dos fármacos , Cílios/efeitos dos fármacos , Claudina-3/metabolismo , Células Epiteliais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Brônquios/metabolismo , Células Cultivadas , Cílios/metabolismo , Claudina-3/genética , Impedância Elétrica , Células Epiteliais/metabolismo , Humanos , Permeabilidade , Fosforilação , Transporte Proteico , Receptor do Fator de Crescimento Transformador beta Tipo I/agonistas , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/agonistas , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Junções Íntimas/genética , Junções Íntimas/metabolismo
17.
Cancer Sci ; 112(9): 3569-3584, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34251747

RESUMO

The abundance and type of immune cells in the tumor microenvironment (TME) significantly influence immunotherapy and tumor progression. However, the role of immune cells in the TME of gastric cancer (GC) is poorly understood. We studied the correlations, proportion, and infiltration of immune and stromal cells in GC tumors. Data analyses showed a significant association of infiltration levels of specific immune cells with the pathological characteristics and clinical outcomes of GC. Furthermore, based on the difference in infiltration levels of immune and stromal cells, GC patients were divided into two categories, those with "immunologically hot" (hot) tumors and those with "immunologically cold" (cold) tumors. The assay for transposase-accessible chromatin using sequencing and RNA sequencing analyses revealed that the hot and cold tumors had altered epigenomic and transcriptional profiles. Claudin-3 (CLDN3) was found to have high expression in the cold tumors and negatively correlated with CD8+ T cells in GC. Overexpression of CLDN3 in GC cells inhibited the expression of MHC-I and CXCL9. Finally, the differentially expressed genes between hot and cold tumors were utilized to generate a prognostic model, which predicted the overall survival of GC as well as patients with immunotherapy. Overall, we undertook a comprehensive analysis of the immune cell infiltration pattern in GC and provided an accurate model for predicting the prognosis of GC patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Claudina-3/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Transdução de Sinais/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Quimiocina CXCL9/metabolismo , Claudina-3/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , RNA-Seq , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transcriptoma , Transfecção
18.
Exp Eye Res ; 213: 108836, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774487

RESUMO

Retinal vascular development is a very tightly regulated and organized process of vessel formation and regression to generate the mature vasculature system. Claudin-3 has been found to be required for the normal development of the neural retina and its vessels in zebrafish in our recent study. In this study, we investigated whether Claudin-3 played a role in the development of mouse retinal vasculature. Immunofluorescent staining was performed to detect the expression and localization of Claudin-3 in the mouse retina. Intravitreal injection of a recombinant adeno-associated virus (AAV) expressing a short hairpin RNA targeting Claudin-3 mRNA was performed to down-regulate Claudin-3 expression in retina in neonatal (Postnatal Day 3, P3) C57BL/6J mice. Retinal vessels were examined by isolectin B4 immunofluorescent staining on the whole-mount retinas and frozen retinal sections at P10. The apoptotic retinal ganglion cells (RGCs) were measured by TdT-mediated dUTP nick-end labelling (TUNEL) staining. Vascular endothelial growth factor A (VEGF-A) expression was detected by immunofluorescent staining. The protein levels of Claudin-3, VEGF-A and B cell lymphoma 2 (Bcl-2) were evaluated by Western blot at P7, P10 and P14. We found that Claudin-3 mainly expressed in the RGCs and progressively increased during the retinal development. The AAV-mediated downregulation of Claudin-3 at P3 impeded the development of retinal deep vascularization of P10 mouse, but without effect on the development of the retinal superficial plexus. Claudin-3 knockdown increased RGC apoptosis and reduced the expression of VEGF-A and Bcl-2 in the retinas. These results suggested that the downregulation of Claudin-3 induced RGC apoptosis and impeded the mouse retinal vascular development by downregulating the levels of VEGF-A and Bcl-2.


Assuntos
Claudina-3/metabolismo , Dependovirus/genética , Neovascularização Fisiológica/fisiologia , Vasos Retinianos/fisiologia , Animais , Animais Recém-Nascidos , Apoptose , Western Blotting , Regulação para Baixo/fisiologia , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo , Células Ganglionares da Retina/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
J Gastroenterol Hepatol ; 36(5): 1208-1215, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32926748

RESUMO

BACKGROUND AND AIM: Portal hypertensive gastropathy (PHG) is characterized by noninflammatory edema and vasodilatation of the lamina propria of the mucosal epithelium. In addition, the alterations of intercellular junction proteins and dilatation of the endothelial gaps have been reported. In this study, we examined whether irsogladine maleate (IM), a gastric mucosal protective agent, has the potential to improve PHG by restoration of tight junctions (TJs). METHODS: Twenty-four patients with PHG were registered and randomly assigned into two groups: 12 patients in the IM-administration group and 12 patients in the non-administration group. In the administration group, IM (4 mg/day) was administered orally for 12 weeks. Gastric mucosa with a red color in patients with PHG were obtained endoscopically on the registration day and 12 weeks later. The endoscopic findings were evaluated, an immunohistochemical analysis of claudin-3 (a TJ protein) expression in gastric mucosal tissues by a laser microscope was performed, and claudin-3 expression was quantified by western blot analysis. RESULTS: Irsogladine maleate improved the degree of PHG in 2/12 patients endoscopically, in contrast to none of the 12 patients in the non-administration group. Immunohistochemical analysis showed that expression of claudin-3 increased in 8/12 patients in the IM-administration group and 2/12 patients in the non-administration group (P = 0.036). Western blot analysis revealed that the increase in claudin-3 after 12 weeks was significantly higher in the IM-administration group than in the non-administration group (P = 0.010). CONCLUSIONS: The present pilot study suggested that IM might improve the gastric mucosa in PHG through restoration of TJ-protein claudin-3.


Assuntos
Claudina-3/genética , Claudina-3/metabolismo , Edema/tratamento farmacológico , Edema/etiologia , Mucosa Gástrica/metabolismo , Expressão Gênica/efeitos dos fármacos , Hipertensão Portal/complicações , Gastropatias/tratamento farmacológico , Gastropatias/etiologia , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Triazinas/administração & dosagem , Triazinas/farmacologia , Adulto , Idoso , Western Blotting/métodos , Edema/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Gastropatias/genética
20.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008712

RESUMO

Aflatoxin M1 (AFM1), the only toxin with maximum residue levels in milk, has adverse effects on the intestinal barrier, resulting in intestinal inflammatory disease. Lactoferrin (LF), one of the important bioactive proteins in milk, performs multiple biological functions, but knowledge of the protective effects of LF on the compromised intestinal barrier induced by AFM1 has not been investigated. In the present study, results using Balb/C mice and differentiated Caco-2 cells showed that LF intervention decreased AFM1-induced increased intestinal permeability, improved the protein expression of claudin-3, occludin and ZO-1, and repaired the injured intestinal barrier. The transcriptome and proteome were used to clarify the underlying mechanisms. It was found that LF reduced the intestinal barrier dysfunction caused by AFM1 and was associated with intestinal cell survival related pathways, such as cell cycle, apoptosis and MAPK signaling pathway and intestinal integrity related pathways including endocytosis, tight junction, adherens junction and gap junction. The cross-omics analysis suggested that insulin receptor (INSR), cytoplasmic FMR1 interacting protein 2 (CYFIP2), dedicator of cytokinesis 1 (DOCK1) and ribonucleotide reductase regulatory subunit M2 (RRM2) were the potential key regulators as LF repaired the compromised intestinal barrier. These findings indicated that LF may be an alternative treatment for the compromised intestinal barrier induced by AFM1.


Assuntos
Aflatoxina M1/toxicidade , Intestinos/patologia , Lactoferrina/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Claudina-3/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ocludina/metabolismo , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA