Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.163
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(22): 4206-4215.e11, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36206754

RESUMO

Mucus protects the epithelial cells of the digestive and respiratory tracts from pathogens and other hazards. Progress in determining the molecular mechanisms of mucus barrier function has been limited by the lack of high-resolution structural information on mucins, the giant, secreted, gel-forming glycoproteins that are the major constituents of mucus. Here, we report how mucin structures we determined enabled the discovery of an unanticipated protective role of mucus: managing the toxic transition metal copper. Using two juxtaposed copper binding sites, one for Cu2+ and the other for Cu1+, the intestinal mucin, MUC2, prevents copper toxicity by blocking futile redox cycling and the squandering of dietary antioxidants, while nevertheless permitting uptake of this important trace metal into cells. These findings emphasize the value of molecular structure in advancing mucosal biology, while introducing mucins, produced in massive quantities to guard extensive mucosal surfaces, as extracellular copper chaperones.


Assuntos
Cobre , Mucinas , Mucinas/metabolismo , Mucina-2 , Cobre/análise , Cobre/metabolismo , Intestinos , Muco/metabolismo , Mucosa Intestinal/metabolismo
2.
Methods ; 225: 13-19, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438060

RESUMO

A new molecular structure 1 has been developed on naphthalimide motif. The amine and triazole binding groups have been employed at the 4-position of naphthalimide to explore the sensing behavior of molecule 1. Single crystal x-ray diffraction and other spectroscopic techniques confirm the identity of 1. Compound 1 exhibits high selectivity and sensitivity for Cu2+ ions in CH3CN. The binding of Cu2+ shows âˆ¼ 70-fold enhancement in emission at 520 nm. The binding follows 1:1 interaction and the detection limit is determined to be 6.49 × 10-7 M. The amine-triazole binding site in 1 also corroborates the detection of F- through a colour change in CH3CN. Initially H-bonding and then deprotonation of amine -NH- in the presence of F- are the sequential steps involved in F- recognition with a detection limit of 4.13 × 10-7 M. Compound 1 is also sensible to CN- like F- ion and they are distinguished by Fe3+ ion. Cu2+-ensemble of 1 fluorimetrically recognizes F- among the tested anions and vice-versa. The collaborative effect of amine and triazole motifs in the binding of both Cu2+ and F-/CN- has been explained by DFT calculation.


Assuntos
Colorimetria , Cobre , Naftalimidas , Espectrometria de Fluorescência , Naftalimidas/química , Cobre/química , Cobre/análise , Colorimetria/métodos , Espectrometria de Fluorescência/métodos , Cianetos/análise , Cianetos/química , Limite de Detecção , Fluoretos/análise , Fluoretos/química , Corantes Fluorescentes/química , Cristalografia por Raios X/métodos , Ligação de Hidrogênio
3.
Anal Chem ; 96(32): 13131-13139, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39096243

RESUMO

Redox nanozymes have exhibited various applications in recognizing environmental pollutants but not aromatic amines (a type of typical pollutant). Herein, with Cu2+ as a node and tryptophan (Trp) as a linker, Cu-Trp as a specific ascorbic acid oxidase mimic was synthesized, which could catalyze ascorbic acid (AA) oxidation to dehydroascorbic acid (DHAA). Alternatively, with other natural amino acids as linkers to synthesize Cu-based nanozymes, such catalytic performances are also observed. The as-produced DHAA could react with o-phenylenediamine (OPD) and its derivatives (2,3-naphthalene diamine (NDA), 4-nitro-o-phenylenediamine (4-NO2-OPD), 4-fluoro-o-phenylenediamine (4-F-OPD), 4-chloro-o-phenylenediamine(4-Cl-OPD), and 4-bromo-o-phenylenediamine(4-Br-OPD)) to form a Schiff base and emit fluorescence. Based on the results, with Cu-Trp + AA and Cu-Arg (with arginine (Arg) as a linker) + AA as two sensing channels and extracted red, green, and blue (RGB) values from emitted fluorescence as read-out signals, a visual sensor array was constructed to efficiently distinguish OPD, NDA, 4-NO2-OPD, 4-F-OPD, 4-Cl-OPD, and 4-Br-OPD as low as 10 µM. Such detecting performance was further confirmed through discriminating binary, ternary, quinary, and senary mixtures with various concentration ratios, recognizing 18 unknown samples, and even quantitatively analyzing single aromatic amine. Finally, the discriminating ability was further validated in environmental waters, providing an efficient assay for large-scale scanning levels of multiple aromatic amines.


Assuntos
Aminas , Ascorbato Oxidase , Bases de Schiff , Bases de Schiff/química , Aminas/química , Aminas/análise , Ascorbato Oxidase/química , Ascorbato Oxidase/metabolismo , Cobre/química , Cobre/análise , Ácido Ascórbico/química , Ácido Ascórbico/análise , Fenilenodiaminas/química , Oxirredução
4.
Appl Environ Microbiol ; 90(6): e0014324, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38814057

RESUMO

The oxidation of sulfide-bearing mine tailings catalyzed by acidophilic iron and sulfur-oxidizing bacteria releases toxic metals and other contaminants into soil and groundwater as acid mine drainage. Understanding the environmental variables that control the community structure and metabolic activity of microbes indigenous to tailings (especially the abiotic stressors of low pH and high dissolved metal content) is crucial to developing sustainable bioremediation strategies. We determined the microbial community composition along two continuous vertical gradients of Cu/Ni mine tailings at each of two tailings impoundments near Sudbury, Ontario. 16S rRNA amplicon data showed high variability in community diversity and composition between locations, as well as at different depths within each location. A temporal comparison for one tailings location showed low fluctuation in microbial communities across 2 years. Differences in community composition correlated most strongly with pore-water pH, Eh, alkalinity, salinity, and the concentration of several dissolved metals (including iron, but not copper or nickel). The relative abundances of individual genera differed in their degrees of correlation with geochemical factors. Several abundant lineages present at these locations have not previously been associated with mine tailings environments, including novel species predicted to be involved in iron and sulfur cycling.IMPORTANCEMine tailings represent a significant threat to North American freshwater, with legacy tailings areas generating acid mine drainage (AMD) that contaminates rivers, lakes, and aquifers. Microbial activity accelerates AMD formation through oxidative metabolic processes but may also ameliorate acidic tailings by promoting secondary mineral precipitation and immobilizing dissolved metals. Tailings exhibit high geochemical variation within and between mine sites and may harbor many novel extremophiles adapted to high concentrations of toxic metals. Characterizing the unique microbiomes associated with tailing environments is key to identifying consortia that may be used as the foundation for innovative mine-waste bioremediation strategies. We provide an in-depth analysis of microbial diversity at four copper/nickel mine tailings impoundments, describe how communities (and individual lineages) differ based on geochemical gradients, predict organisms involved in AMD transformations, and identify taxonomically novel groups present that have not previously been observed in mine tailings.


Assuntos
Bactérias , Cobre , Ferro , Mineração , Níquel , Enxofre , Enxofre/metabolismo , Ferro/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Cobre/metabolismo , Cobre/análise , Níquel/metabolismo , Ontário , Microbiota , RNA Ribossômico 16S/genética , Microbiologia do Solo , Biodegradação Ambiental
5.
Am J Bot ; 111(2): e16285, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353923

RESUMO

PREMISE: Plants grown at high densities show increased tolerance to heavy metals for reasons that are not clear. A potential explanation is the release of citrate by plant roots, which binds metals and prevents uptake. Thus, pooled exudates at high plant densities might increase tolerance. We tested this exclusion facilitation hypothesis using mutants of Arabidopsis thaliana defective in citrate exudation. METHODS: Wild type Arabidopsis and two allelic mutants for the Ferric Reductase Defective 3 (FRD3) gene were grown at four densities and watered with copper sulfate at four concentrations. Plants were harvested before bolting and dried. Shoot biomass was measured, and shoot material and soil were digested in nitric acid. Copper contents were determined by atomic absorption. RESULTS: In the highest-copper treatment, density-dependent reduction in toxicity was observed in the wild type but not in FRD3 mutants. For both mutants, copper concentrations per gram biomass were up to seven times higher than for wild type plants, depending on density and copper treatment. In all genotypes, total copper accumulation was greater at higher plant densities. Plant size variation increased with density and copper treatment because of heterogeneous distribution of copper throughout the soil. CONCLUSIONS: These results support the hypothesis that citrate exudation is responsible for density-dependent reductions in toxicity of metals. Density-dependent copper uptake and growth in contaminated soils underscores the importance of density in ecotoxicological testing. In soils with a heterogeneous distribution of contaminants, competition for nontoxic soil regions may drive size hierarchies and determine competitive outcomes.


Assuntos
Arabidopsis , Poluentes do Solo , Cobre/toxicidade , Cobre/análise , Cobre/metabolismo , Solo , Plantas/metabolismo , Citratos/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Raízes de Plantas , Biodegradação Ambiental
6.
Int J Legal Med ; 138(2): 685-691, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37347275

RESUMO

Access to better health care anticipates that more medical devices can be found alongside skeletal remains. Those employed in oral rehabilitation, with available brands or batch/series, can prove useful in the identification process. A previous study in the Colecção de Esqueletos Identificados Século XXI described macroscopically the dental prostheses. An unusual case of a dental device with chromatic alterations demonstrated to require a more detailed analysis. The individual, a 53-year-old male, exhibited, at both arches, a fixed tooth-supported rehabilitation, with gold colouring classified initially as a gold-palladium alloy. Simultaneously, a green pigmentation deposit was observable in bone and prosthesis. This investigation aimed to verify the elemental composition of the dental prosthesis alloy. Elemental analysis was performed by X-ray fluorescence in two regions (labial surface of the prosthetic crown and the root surface of the lower right lateral incisor). Both the spectra and the qualitative results found higher levels of copper and aluminium, followed by nickel, iron, zinc, and manganese. No gold or palladium was detected. The most probable assumption is that a copper-aluminium alloy was used, as its elemental concentration corresponds to those measured in similar devices. Dental prostheses of copper-aluminium alloys have been made popular since the 1980s, particularly in the USA, Japan, and Eastern Europe. Apart from the biographical information, it was also known that the individual's place of birth was an Eastern European country, which highlighted the usefulness of this type of information when dealing with missing people cases.


Assuntos
Prótese Dentária , Paládio , Masculino , Humanos , Pessoa de Meia-Idade , Raios X , Portugal , Paládio/análise , Cobre/análise , Alumínio/análise , Fluorescência , Incisivo , Ligas de Ouro/análise
7.
Inorg Chem ; 63(20): 9058-9065, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38720438

RESUMO

Nitrofurans are important synthetic broad-spectrum antibacterial drugs with the basic structure of 5-nitrofuran. Due to their toxicity, it is essential to develop a sensitive sensor with strong anti-interference capabilities for their detection. In this work, two {P4Mo6O31}12--based compounds, [H4(HPTTP)]2{CuI[Mo12O24(OH)6(PO4)3(HPO4)(H2PO4)4]}·xH2O (x = 13 for (1), 7 for (2); HPTTP = 4,4',4″,4‴-(1H-pyrrole-2,3,4,5-tetrayl)tetrapyridine), exhibiting similar coordination but distinct stacking modes. Both compounds were synthesized and used for the electrochemical detection of nitrofuran antibiotics. The tetrapyridine-based ligand was generated in situ during assembly, and its potential mechanism was discussed. Composite electrode materials, formed by mixing graphite powder with compounds 1-2 and physically grinding them, proved to be highly effective in the electrochemical trace detection of furazolidone (FZD) and furaltadone hydrochloride (FTD·HCl) under optimal conditions. Besides, the possible electrochemical detection mechanisms of two nitro-antibiotics were studied.


Assuntos
Antibacterianos , Complexos de Coordenação , Cobre , Nitrofuranos , Polímeros , Antibacterianos/química , Antibacterianos/análise , Ligantes , Nitrofuranos/análise , Nitrofuranos/química , Cobre/química , Cobre/análise , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Polímeros/química , Molibdênio/química , Piridinas/química , Estrutura Molecular , Técnicas Eletroquímicas , Modelos Moleculares
8.
Inorg Chem ; 63(18): 8320-8328, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38660721

RESUMO

Histidine plays an essential role in most biological systems. Changes in the homeostasis of histidine and histidine-rich proteins are connected to several diseases. Herein, we report a water-soluble Cu(II) coordination polymer, labeled CuCP, for the fluorimetric detection of histidine and histidine-rich proteins and peptides. Single-crystal structure determination of CuCP revealed a two-dimensional wavy network structure in which a carboxylate group connects the individual Cu(II) dimer unit in a syn-anti conformation. The weakly luminescent and water-soluble CuCP shows turn-on blue emission in the presence of histidine and histidine-rich peptides and proteins. The polymer can also stain histidine-rich proteins via gel electrophoresis. The limits of quantifications for histidine, glycine-histidine, serine-histidine, human serum albumin (HSA), bovine serum albumin, pepsin, trypsin, and lysozyme were found to be 300, 160, 600, 300, 600, 800, 120, and 290 nM, respectively. Utilizing the fluorescence turn-on property of CuCP, we measured HSA quantitatively in the urine samples. We also validated the present urinary HSA measurement assay with existing analytical techniques. Job's plot, 1H NMR, high-resolution mass spectrometry (HRMS), electron paramagnetic resonance (EPR), fluorescence, and UV-vis studies confirmed the ligand displacement from CuCP in the presence of histidine.


Assuntos
Cobre , Histidina , Peptídeos , Proteínas , Água , Cobre/química , Cobre/análise , Histidina/química , Histidina/análise , Histidina/urina , Humanos , Água/química , Peptídeos/química , Proteínas/química , Proteínas/análise , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Solubilidade , Polímeros/química , Bovinos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Animais
9.
Environ Sci Technol ; 58(32): 14439-14449, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39073989

RESUMO

Organic wastes (OWs) can be a common source of copper (Cu) contamination of agricultural soils. Here we conducted a comprehensive study of 22 raw and treated OWs sampled at 6 different full-scale OW treatment plants. Bulk XANES analysis findings indicated that the Cu oxidation state was subject to changes throughout the OW treatment process, mostly depending on the anaerobic/aerobic conditions prevailing in each treatment stage. These changes were independent of the OW origin (agricultural, urban or industrial). Cu(I) prevailed in raw OWs and digestates (88-100%), whereas Cu(II) dominated in composts (46-100%). Bulk EXAFS analysis confirmed these observations and revealed that Cu(I) species in raw OWs and digestates consisted mainly of Cu(I)-sulfide (76-100%), while Cu(II) species (60-100%) in composts were Cu(II)-citrate, Cu(II)-carbonate and amorphous Cu(II)-phosphate. Interestingly, we observed that anaerobic digestion was conducive to the formation of crystallized Cu(I)-sulfides at the expense of nanosized and poorly crystalline Cu(I)-sulfide species, and that the recalcitrant Cu(I) species in composts was always crystallized Cu(I)-sulfide. XANES imaging analysis revealed Cu(II) species present in low proportions (2-4%) that were not detected using bulk XAS analysis in raw OWs and digestates. This demonstrated the potential of XANES imaging for probing minor species in complex matrices.


Assuntos
Cobre , Cobre/análise , Espectroscopia por Absorção de Raios X , Solo/química , Oxirredução , Poluentes do Solo
10.
Environ Sci Technol ; 58(12): 5606-5615, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470122

RESUMO

Gaps in the United States Environmental Protection Agency (US EPA) Lead and Copper Rule (LCR) leave some consumers and their pets vulnerable to high cuprosolvency in drinking water. This study seeks to help proactive utilities who wish to mitigate cuprosolvency problems through the addition of orthophosphate corrosion inhibitors. The minimum doses of orthophosphate necessary to achieve acceptable cuprosolvency in relatively new copper pipe were estimated as a function of alkalinity via linear regressions for the 90th, 95th, and 100th percentile copper tube segments (R2 > 0.98, n = 4). Orthophosphate was very effective at reducing cuprosolvency in the short term but, in some cases, resulted in higher long-term copper concentrations than the corresponding condition without orthophosphate. Alternatives to predicting "long-term" results for copper tubes using simpler bench tests starting with fresh Cu(OH)2 solids showed promise but would require further vetting to overcome limitations such as maintaining water chemistry and orthophosphate residuals and to ensure comparability to results using copper tube.


Assuntos
Água Potável , Poluentes Químicos da Água , Estados Unidos , Cobre/análise , Fosfatos , Abastecimento de Água , Corrosão
11.
Anal Bioanal Chem ; 416(4): 983-992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127274

RESUMO

Zearalenone (ZEN), produced by Fusarium species, is a potential risk to human health. Traditional enzyme-linked immunosorbent assay (ELISA) is restricted due to low sensitivity for the detection of ZEN. Herein, enzyme nanocomposites (ALP-SA-Bio-ssDNA, ASBD) were prepared with the self-assembly strategy based on streptavidin-labeled alkaline phosphatase (SA-ALP) and dual-biotinylated ssDNA (B2-ssDNA). The enzyme nanocomposites improved the loading amount of ALP and catalyzed more ascorbic acid 2-phosphate to generate ascorbic acid (AA). Subsequently, Cu2+ could be reduced to copper nanoclusters (CuNCs) having strong fluorescence signal by AA with poly T. Benefiting from the high enzyme load of nanocomposites and the strong signal of CuNCs, the fluorescence ELISA was successfully established for the detection of ZEN. The proposed method exhibited lower limit of detection (0.26 ng mL-1) than traditional ELISA (1.55 ng mL-1). The recovery rates ranged from 92.00% to 108.38% (coefficient of variation < 9.50%) for the detection of zearalenone in corn and wheat samples. In addition, the proposed method exhibited no cross reaction with four other mycotoxins. This proposed method could be used in trace detection for food safety.


Assuntos
Nanocompostos , Zearalenona , Humanos , Zearalenona/análise , Cobre/análise , Contaminação de Alimentos/análise , Ensaio de Imunoadsorção Enzimática/métodos , DNA de Cadeia Simples , Limite de Detecção
12.
Anal Bioanal Chem ; 416(11): 2783-2796, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38057634

RESUMO

Innate immune systems alter the concentrations of trace elements in host niches in response to invading pathogens during infection. This work reports the interplay between d-block metal ions and their associated biomolecules using hyphenated elemental techniques to spatially quantify both elemental distributions and the abundance of specific transport proteins. Here, lung tissues were collected for analyses from naïve and Streptococcus pneumoniae-infected mice fed on a zinc-restricted or zinc-supplemented diet. Spatiotemporal distributions of manganese (55Mn), iron (56Fe), copper (63Cu), and zinc (66Zn) were determined by quantitative laser ablation-inductively coupled plasma-mass spectrometry. The murine transport proteins ZIP8 and ZIP14, which are associated with zinc transport, were also imaged by incorporation of immunohistochemistry techniques into the analytical workflow. Collectively, this work demonstrates the potential of a single instrumental platform suitable for multiplex analyses of tissues and labelled antibodies to investigate complex elemental interactions at the host-pathogen interface. Further, these methods have the potential for broad application to investigations of biological pathways where concomitant measurement of elements and biomolecules is crucial to understand the basis of disease and aid in development of new therapeutic approaches.


Assuntos
Infecções Bacterianas , Oligoelementos , Camundongos , Animais , Proteínas de Transporte , Espectrometria de Massas/métodos , Oligoelementos/análise , Zinco/análise , Cobre/análise
13.
Anal Bioanal Chem ; 416(20): 4581-4589, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38935145

RESUMO

Chiral analysis is of high interest in many fields such as chemistry, pharmaceuticals and metabolomics. Mass spectrometry and ion mobility spectrometry are useful analytical tools, although they cannot be used as stand-alone methods. Here, we propose an efficient strategy for the enantiomer characterization of amino acids (AAs) using non-covalent copper complexes. A single ion mobility monitoring (SIM2) method was applied on a TIMS-ToF mass spectrometer to maximize the detection and mobility separation of isomers. Almost all of the 19 pairs of proteinogenic AA enantiomers could be separated with at least one combination with the chiral references L-Phe and L-Pro. Furthermore, we extended the targeted SIM2 method by stitching several mobility ranges, in order to be able to analyze complex mixtures in a single acquisition while maintaining high mobility resolution. Most of the enantiomeric pairs of AAs separated with the SIM2 method were also detected with this approach. The SIM2 stitching method thus opens the way to a more comprehensive chiral analysis with TIMS-ToF instruments.


Assuntos
Aminoácidos , Espectrometria de Mobilidade Iônica , Espectrometria de Mobilidade Iônica/métodos , Estereoisomerismo , Aminoácidos/química , Aminoácidos/análise , Espectrometria de Massas/métodos , Cobre/química , Cobre/análise , Ensaios de Triagem em Larga Escala/métodos
14.
Anal Bioanal Chem ; 416(20): 4591-4604, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960940

RESUMO

From organs to subcellular organelles, trace element (TE) homeostasis is fundamental for many physiological processes. While often overlooked in early stages, manifested TE disbalance can have severe health consequences, particularly in the context of aging or pathological conditions. Monitoring TE concentrations at the mitochondrial level could identify organelle-specific imbalances, contributing to targeted diagnostics and a healthier aging process. However, mitochondria isolation from frozen tissue is challenging, as it poses the risk of TE losses from the organelles due to cryodamage, but would significantly ease routine laboratory work. To address this, a novel method to isolate an enriched mitochondria fraction (EMF) from frozen tissue was adapted from already established protocols. Validation of manganese (Mn), iron (Fe), and copper (Cu) quantification via inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) showed sufficiently low quantification limits for EMF TE analysis. Successful mitochondrial enrichment from frozen liver samples was confirmed via immunoblots and transmission electron microscopy (TEM) revealed sufficient structural integrity of the EMFs. No significant differences in EMF TEs between frozen and fresh tissue were evident for Mn and Cu and only slight decreases in EMF Fe. Consequently, EMF TEs were highly comparable for isolates from both tissue states. In application, this method effectively detected dietary differences in EMF Fe of a murine feeding study and identified the disease status in a Wilson disease rat model based on drastically increased EMF Cu. In summary, the present method is suitable for future applications, facilitating sample storage and high-throughput analyses of mitochondrial TEs.


Assuntos
Fígado , Espectrometria de Massas em Tandem , Oligoelementos , Animais , Fígado/química , Fígado/metabolismo , Oligoelementos/análise , Camundongos , Espectrometria de Massas em Tandem/métodos , Mitocôndrias Hepáticas/metabolismo , Congelamento , Manganês/análise , Camundongos Endogâmicos C57BL , Masculino , Cobre/análise , Cobre/metabolismo , Ferro/análise , Ferro/metabolismo
15.
Macromol Rapid Commun ; 45(14): e2400116, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558468

RESUMO

The maximum permissible concentration (m.p.c.) of Cu2+ ions in drinking water, as set by the World Health Organization (WHO) is m.p.c. (Cu2+)WHO = 30 × 10-6 m, whereas the US Environmental Protection Agency (EPA) establishes a more restrictive value of m.p.c. (Cu2+)EPA = 20 × 10-6 m. Herein, for the first time ever, a family of m.p.c. (Cu2+) "visual" pass/fail sensors is developed based on water-soluble lanthanide-containing single-chain nanoparticles (SCNPs) exhibiting an average hydrodynamic diameter less than 10 nm. Both europium (Eu)- and terbium (Tb)-based SCNPs allow excessive Cu2+ to be readily detected in water, as indicated by the red-to-transparent and green-to-transparent changes, respectively, under UV light irradiation, occurring at 30 × 10-6 m Cu2+ in both cases. Complementary, dysprosium (Dy)-based SCNPs show a yellow color-to-transparent transition under UV light irradiation at ≈15 × 10-6 m Cu2+. Eu-, Tb-, and Dy-containing SCNPs prove to be selective for Cu2+ ions as they do not respond against other metal ions, such as Fe2+, Ag+, Co2+, Ba2+, Ni2+, Hg2+, Pb2+, Zn2+, Fe3+, Ca2+, Mn2+, Mg2+, or Cr3+. These new m.p.c. (Cu2+) "visual" pass/fail sensors are thoroughly characterized by a combination of techniques, including size exclusion chromatography, dynamic light scattering, inductively coupled plasma-mass spectrometry, as well as infrared, UV, and fluorescence spectroscopy.


Assuntos
Cobre , Água Potável , Nanopartículas , Cobre/química , Cobre/análise , Água Potável/análise , Água Potável/química , Nanopartículas/química , Íons/química , Íons/análise , Elementos da Série dos Lantanídeos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Raios Ultravioleta
16.
Biometals ; 37(3): 721-737, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642266

RESUMO

BACKGROUND: In kidney damage, molecular changes can be used as early damage kidney biomarkers, such as Kidney Injury Molecule-1 and Neutrophil gelatinase-associated lipocalin. These biomarkers are associated with toxic metal exposure or disturbed homeostasis of trace elements, which might lead to serious health hazards. This study aimed to evaluate the relationship between exposure to trace elements and early damage kidney biomarkers in a pediatric population. METHODS: In Tlaxcala, a cross-sectional study was conducted on 914 healthy individuals. The participants underwent a medical review and a socio-environmental questionnaire. Five early damage kidney biomarkers were determined in the urine with Luminex, and molybdenum, copper, selenium, nickel, and iodine were measured with ICP-Mass. RESULTS: The eGFR showed a median of 103.75 mL/min/1.73 m2. The median levels for molybdenum, copper, selenium, nickel, and iodine were 24.73 ng/mL, 73.35 ng/mL, 4.78 ng/mL, 83.68 ng/mL, and 361.83 ng/mL, respectively. Except for molybdenum and nickel, the other trace elements had significant associations with the eGFR and the early kidney damage biomarkers. Additionally, we report the association of different exposure scenarios with renal parameters. DISCUSSION: and Conclusions. Among the explored metals, exposure to Cu and iodine impairs renal function. In contrast, Se may manifest as a beneficial metal. Interactions of Mo-Se and Mo-Iodine seem to alter the expression of NGAL; Mo-Cu for CLU; Mo-Cu, Mo-Se, and Mo-iodine for Cys-C and a-1MG; and Mo-Cu and Mo-iodine for KIM-1; were noticed. Our study could suggest that trace element interactions were associated with early kidney damage biomarkers.


Assuntos
Biomarcadores , Exposição Ambiental , Oligoelementos , Humanos , Biomarcadores/urina , Biomarcadores/metabolismo , Criança , Masculino , Feminino , Oligoelementos/análise , Oligoelementos/urina , Exposição Ambiental/efeitos adversos , Estudos Transversais , Adolescente , Lipocalina-2/urina , Taxa de Filtração Glomerular , Cobre/urina , Cobre/análise , Selênio/urina , Selênio/análise , Nefropatias/induzido quimicamente , Nefropatias/urina , Nefropatias/metabolismo , Rim/metabolismo , Pré-Escolar , Níquel/urina
17.
Environ Res ; 250: 118498, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382665

RESUMO

Soil heavy metal pollution is an important issue that affects human health and ecological well-being. In-situ thermal treatment techniques, such as self-sustaining smoldering combustion (SSS), have been widely studied for the treatment of organic pollutants. However, the lack of fuel in heavy metal-contaminated soil has hindered its application. In this study, we used corn straw as fuel to investigate the feasibility of SSS remediation for copper and lead in heavy metal-contaminated soil, as well as to explore the remediation mechanism. The results of the study showed that SSS increased soil pH, electrical conductivity (EC), total phosphorus (TP), total potassium (TK), rapidly available phosphorus (AP), and available potassium (AK), while decreasing total nitrogen (TN), alkali-hydrolyzed nitrogen (AN), and cation exchange capacity (CEC). The oxidation state of copper (Cu) increased from 10% to 21%-40%, and the residual state of lead (Pb) increased from 18% to 51%-73%. The Toxicity characteristic leaching procedure (TCLP) of Cu decreased by a maximum of 81.08%, and the extracted state of Diethylenetriaminepentaacetic acid (DTPA) decreased by 67.63%; the TCLP of Pb decreased by a maximum of 81.87%, and DTPA decreased by a maximum of 85.68%. The study indicates that SSS using corn straw as fuel successfully achieved remediation of heavy metal-contaminated soil. However, SSS does not reduce the content of copper and lead; it only changes their forms in the soil. The main reasons for the fixation of copper and lead during the SSS process are the adsorption of biochar, complexation with -OH functional groups, binding with π electrons, and the formation of crystalline compounds. This research provides a reference for the application of SSS in heavy metal-contaminated soil and has potential practical implications.


Assuntos
Cobre , Recuperação e Remediação Ambiental , Estudos de Viabilidade , Chumbo , Poluentes do Solo , Cobre/química , Cobre/análise , Chumbo/análise , Chumbo/química , Poluentes do Solo/análise , Poluentes do Solo/química , Recuperação e Remediação Ambiental/métodos , Zea mays/química , Solo/química
18.
Environ Res ; 256: 119229, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797465

RESUMO

There has been significant attention on the efficient degradation of pollutants in wastewater using metal-organic frameworks (MOFs) photocatalytic methods over the past decade. Herein, we examined the elimination of two different types of water-contaminating dyes, specifically cationic dye methylene blue (MB) and anionic dye methyl orange (MO), through the application of bimetal Cu/Ni-BTC@SiO2 MOF as high performance photocatalyst. The bimetal Cu/Ni-BTC@SiO2 photocatalyst was synthesized and characterized by XRD, FTIR, SEM, TEM, TGA, BET, DRS, and VSM techniques. The examination of the impact of different operational factors on the elimination of pollutants involved a comprehensive analysis of variables including the photocatalyst type, initial pollutant concentration, quantity of photocatalyst, and pH levels. The highest removal efficiency for MO and MB dyes by the photocatalyst was found to be 98 and 71%, respectively, within 60 min. In the fifth reaction stage, degradation efficiency for MO and MB was 76 and 56% respectively. Kinetic investigations demonstrated that, in the context of the uptake of MB and MO dyes, the interparticle diffusion, and pseudo-second-order models emerged as possessing the most robust correlation coefficients with the experimental data, registering values of 0.988 and 0.961, respectively. The examination of isotherms reveals that the isotherm models proposed by BET, and Anderson (V) demonstrate the highest level of conformity with the empirical data for the decomposition of MB and MO dyes, correspondingly. The TOC levels decreased significantly from 51 to 14 and 47 to 3 mg/L for MB and MO dyes, indicating the effective mineralization process using Cu/Ni-BTC@SiO2.


Assuntos
Cobre , Azul de Metileno , Dióxido de Silício , Poluentes Químicos da Água , Cobre/química , Cobre/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Dióxido de Silício/química , Azul de Metileno/química , Compostos Azo/química , Corantes/química , Níquel/química , Níquel/análise , Catálise , Cinética
19.
Environ Res ; 252(Pt 1): 118882, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582426

RESUMO

The concentration of trace elements (chromium, lead, zinc, copper, manganese, and iron) was determined in water, sediment and tissues of two Cyprinidae fish species - Labeo rohita and Tor putitora - collected from the eight sampling stations of Indus River in 2022 for four successive seasons (autumn, winter, spring, summer), and also study the present condition of macroinvertebrates after the construction of hydraulic structure. The obtained results of trace element concentrations in the Indus River were higher than the acceptable drinking water standards by WHO. The nitrate concentration ranges from 5.2 to 59.6 mg l-1, turbidity ranges from 3.00 to 63.9 NTU, total suspended solids and ammonium ions are below the detection limit (<0.05). In the liver, highest dry wt trace elements (µg/g) such as Cr (4.32), Pb (7.07), Zn (58.26), Cu (8.38), Mn (50.27), and Fe (83.9) for the Labeo rohita; and Tor Putitora has significantly greater accumulated concentration (Cr, Pb, Zn, Cu, Mn, Fe) in muscle and liver than did Labeo rohita species. Additionally, lower number of macroinvertebrates were recorded during the monsoonal season than pre-monsoon and post-monsoon. Local communities surrounded by polluted environments are more probably to consume more fish and expose them to higher concentrations of toxic trace elements (lead and copper). The findings also provide a basis for broader ecological management of the Indus River, which significantly influenced human beings and socioeconomic disasters, particularly in the local community.


Assuntos
Cyprinidae , Monitoramento Ambiental , Oligoelementos , Poluentes Químicos da Água , Oligoelementos/análise , Oligoelementos/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Rios/química , Paquistão , Invertebrados , Biodiversidade , Cromo/análise , Cromo/metabolismo , Chumbo/agonistas , Chumbo/metabolismo , Zinco/análise , Zinco/metabolismo , Cobre/análise , Cobre/metabolismo , Manganês/análise , Manganês/metabolismo , Ferro/análise , Ferro/metabolismo , Estações do Ano , Cyprinidae/metabolismo , Humanos , Animais , Fígado/metabolismo , Poluição Química da Água/estatística & dados numéricos
20.
Chirality ; 36(5): e23670, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716587

RESUMO

Metal clusters have drawn considerable research attention over the years due to their fascinating optical properties. Owing to their appealing photophysical characteristics, these materials have drawn attention as potential candidates for various application in diverse fields, including disease detection, biosensing, chemical sensing, and the fabrication of light-harvesting materials. Presently, there is an increasing research focus on the use of clusters in biomedical research, both as biodetection platform and as bioimaging agents. Of special interest are chiral clusters, which can selectively interact with chiral biomolecules owing to their optical activity. Herein, we showcase the use of a pair of chiroptically active copper clusters for the enantioselective detection of lysine, an amino acid of vast biological relevance. Two techniques are concurrently employed for the detection of lysine at varying concentrations. Circular dichroism serves as a potent tool for detecting lysine at low concentrations, whereas luminescence is effectively employed as a detection method for high analyte concentrations. The combined electronic impact of clusters and lysine resulted in the emergence of an enhanced enantioselective Cotton effect at specific wavelength.


Assuntos
Cobre , Lisina , Lisina/química , Lisina/análise , Cobre/química , Cobre/análise , Estereoisomerismo , Dicroísmo Circular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA