Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Gastroenterology ; 166(5): 886-901.e7, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38096955

RESUMO

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Células Estreladas do Fígado , Proteína-Lisina 6-Oxidase , Microambiente Tumoral , Humanos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/enzimologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/enzimologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/enzimologia , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/enzimologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/enzimologia , Fosforilação Oxidativa , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 117(28): 16492-16499, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601222

RESUMO

Metabolic stress causes activation of the cJun NH2-terminal kinase (JNK) signal transduction pathway. It is established that one consequence of JNK activation is the development of insulin resistance and hepatic steatosis through inhibition of the transcription factor PPARα. Indeed, JNK1/2 deficiency in hepatocytes protects against the development of steatosis, suggesting that JNK inhibition represents a possible treatment for this disease. However, the long-term consequences of JNK inhibition have not been evaluated. Here we demonstrate that hepatic JNK controls bile acid production. We found that hepatic JNK deficiency alters cholesterol metabolism and bile acid synthesis, conjugation, and transport, resulting in cholestasis, increased cholangiocyte proliferation, and intrahepatic cholangiocarcinoma. Gene ablation studies confirmed that PPARα mediated these effects of JNK in hepatocytes. This analysis highlights potential consequences of long-term use of JNK inhibitors for the treatment of metabolic syndrome.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colangiocarcinoma/enzimologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Animais , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/fisiopatologia , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/genética , PPAR alfa/genética , PPAR alfa/metabolismo
3.
Hepatology ; 74(6): 3235-3248, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34322899

RESUMO

BACKGROUND AND AIMS: Sirtuin 1 (SIRT1) is a complex NAD+ -dependent protein deacetylase known to act as a tumor promoter or suppressor in different cancers. Here, we describe a mechanism of SIRT1-induced destabilization of primary cilia in cholangiocarcinoma (CCA). APPROACH AND RESULTS: A significant overexpression of SIRT1 was detected in human CCA specimens and CCA cells including HuCCT1, KMCH, and WITT1 as compared with normal cholangiocytes (H69 and NHC). Small interfering RNA (siRNA)-mediated knockdown of SIRT1 in HuCCT1 cells induced cilia formation, whereas overexpression of SIRT1 in normal cholangiocytes suppressed ciliary expression. Activity of SIRT1 was regulated by presence of NAD+ in CCA cells. Inhibition of NAD -producing enzyme nicotinamide phosphoribosyl transferase increased ciliary length and frequency in CCA cells and in SIRT1-overexpressed H69 cells. Furthermore, we also noted that SIRT1 induces the proteasomal mediated degradation of ciliary proteins, including α-tubulin, ARL13B, and KIF3A. Moreover, overexpression of SIRT1 in H69 and NHC cells significantly induced cell proliferation and, conversely, SIRT1 inhibition in HuCCT1 and KMCH cells using siRNA or sirtinol reduced cell proliferation. In an orthotopic transplantation rat CCA model, the SIRT1 inhibitor sirtinol reduced tumor size and tumorigenic proteins (glioma-associated oncogene 1, phosphorylated extracellular signal-regulated kinase, and IL-6) expression. CONCLUSIONS: In conclusion, these results reveal the tumorigenic role of SIRT1 through modulation of primary cilia formation and provide the rationale for developing therapeutic approaches for CCA using SIRT1 as a target.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Cílios/metabolismo , Sirtuína 1/metabolismo , Animais , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/enzimologia , Colangiocarcinoma/patologia , Cílios/patologia , Humanos , Masculino , Transplante de Neoplasias , Ratos , Ratos Endogâmicos F344
4.
Dig Dis Sci ; 67(8): 3817-3830, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34626299

RESUMO

BACKGROUND: Combined hepatocellular and cholangiocarcinoma is a rare primary liver cancer with histological features of both hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Little is known about the prognostic features and molecular mechanism of cHCC-iCCA. Acylphosphatase 1 is a cytosolic enzyme that produces acetic acid from acetyl phosphate and plays an important role in cancer progression. AIMS: We evaluated the clinical significance of ACYP1 expression in cHCC-iCCA, HCC, and iCCA. METHODS: ACYP1 immunohistochemistry was performed in 39 cases diagnosed with cHCC-iCCA. The prognosis was evaluated in three different cohorts (cHCC-iCCA, HCC, and iCCA). The relationships between ACYP1 expression and cell viability, migration, invasiveness, and apoptosis were examined using siRNA methods in vitro. In vivo subcutaneous tumor volumes and cell apoptosis were evaluated after downregulation of ACYP1 expression. RESULTS: Almost half of the patients with cHCC-iCCA were diagnosed with high ACYP1 expression. In all three cohorts, the cases with high ACYP1 expression had significantly lower overall survival, and high ACYP1 expression was identified as an independent prognostic factor. Downregulation of ACYP1 reduced the proliferative capacity, migration, and invasiveness of both HCC and iCCA cells. Moreover, knockdown of ACYP1 increased the ratio of apoptotic cells and decreased the expression of anti-apoptosis proteins. In vivo tumor growth was significantly inhibited by the transfection of ACYP1 siRNA, and the number of apoptotic cells increased. CONCLUSION: High ACYP1 expression could influence the prognosis of cHCC-iCCA, HCC, and iCCA patients. In vitro ACYP1 expression influences the tumor growth and cell viability in both HCC and iCCA by regulating anti-apoptosis proteins.


Assuntos
Hidrolases Anidrido Ácido , Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Hidrolases Anidrido Ácido/genética , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/enzimologia , Colangiocarcinoma/patologia , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , RNA Interferente Pequeno/genética , Acilfosfatase
5.
Lancet Oncol ; 21(6): 796-807, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32416072

RESUMO

BACKGROUND: Isocitrate dehydrogenase 1 (IDH1) mutations occur in approximately 13% of patients with intrahepatic cholangiocarcinoma, a relatively uncommon cancer with a poor clinical outcome. The aim of this international phase 3 study was to assess the efficacy and safety of ivosidenib (AG-120)-a small-molecule targeted inhibitor of mutated IDH1-in patients with previously treated IDH1-mutant cholangiocarcinoma. METHODS: This multicentre, randomised, double-blind, placebo-controlled, phase 3 study included patients from 49 hospitals in six countries aged at least 18 years with histologically confirmed, advanced, IDH1-mutant cholangiocarcinoma who had progressed on previous therapy, and had up to two previous treatment regimens for advanced disease, an Eastern Cooperative Oncology Group performance status score of 0 or 1, and a measurable lesion as defined by Response Evaluation Criteria in Solid Tumors version 1.1. Patients were randomly assigned (2:1) with a block size of 6 and stratified by number of previous systemic treatment regimens for advanced disease to oral ivosidenib 500 mg or matched placebo once daily in continuous 28-day cycles, by means of an interactive web-based response system. Placebo to ivosidenib crossover was permitted on radiological progression per investigator assessment. The primary endpoint was progression-free survival by independent central review. The intention-to-treat population was used for the primary efficacy analyses. Safety was assessed in all patients who had received at least one dose of ivosidenib or placebo. Enrolment is complete; this study is registered with ClinicalTrials.gov, NCT02989857. FINDINGS: Between Feb 20, 2017, and Jan 31, 2019, 230 patients were assessed for eligibility, and as of the Jan 31, 2019 data cutoff date, 185 patients were randomly assigned to ivosidenib (n=124) or placebo (n=61). Median follow-up for progression-free survival was 6·9 months (IQR 2·8-10·9). Progression-free survival was significantly improved with ivosidenib compared with placebo (median 2·7 months [95% CI 1·6-4·2] vs 1·4 months [1·4-1·6]; hazard ratio 0·37; 95% CI 0·25-0·54; one-sided p<0·0001). The most common grade 3 or worse adverse event in both treatment groups was ascites (four [7%] of 59 patients receiving placebo and nine [7%] of 121 patients receiving ivosidenib). Serious adverse events were reported in 36 (30%) of 121 patients receiving ivosidenib and 13 (22%) of 59 patients receiving placebo. There were no treatment-related deaths. INTERPRETATION: Progression-free survival was significantly improved with ivosidenib compared with placebo, and ivosidenib was well tolerated. This study shows the clinical benefit of targeting IDH1 mutations in advanced, IDH1-mutant cholangiocarcinoma. FUNDING: Agios Pharmaceuticals.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/administração & dosagem , Glicina/análogos & derivados , Isocitrato Desidrogenase/antagonistas & inibidores , Mutação , Piridinas/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/enzimologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Progressão da Doença , Método Duplo-Cego , Inibidores Enzimáticos/efeitos adversos , Europa (Continente) , Feminino , Glicina/administração & dosagem , Glicina/efeitos adversos , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Piridinas/efeitos adversos , República da Coreia , Fatores de Tempo , Estados Unidos
6.
Nature ; 513(7516): 110-4, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25043045

RESUMO

Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are among the most common genetic alterations in intrahepatic cholangiocarcinoma (IHCC), a deadly liver cancer. Mutant IDH proteins in IHCC and other malignancies acquire an abnormal enzymatic activity allowing them to convert α-ketoglutarate (αKG) to 2-hydroxyglutarate (2HG), which inhibits the activity of multiple αKG-dependent dioxygenases, and results in alterations in cell differentiation, survival, and extracellular matrix maturation. However, the molecular pathways by which IDH mutations lead to tumour formation remain unclear. Here we show that mutant IDH blocks liver progenitor cells from undergoing hepatocyte differentiation through the production of 2HG and suppression of HNF-4α, a master regulator of hepatocyte identity and quiescence. Correspondingly, genetically engineered mouse models expressing mutant IDH in the adult liver show an aberrant response to hepatic injury, characterized by HNF-4α silencing, impaired hepatocyte differentiation, and markedly elevated levels of cell proliferation. Moreover, IDH and Kras mutations, genetic alterations that co-exist in a subset of human IHCCs, cooperate to drive the expansion of liver progenitor cells, development of premalignant biliary lesions, and progression to metastatic IHCC. These studies provide a functional link between IDH mutations, hepatic cell fate, and IHCC pathogenesis, and present a novel genetically engineered mouse model of IDH-driven malignancy.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Diferenciação Celular/genética , Colangiocarcinoma/patologia , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Hepatócitos/patologia , Isocitrato Desidrogenase/genética , Proteínas Mutantes/metabolismo , Animais , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/enzimologia , Ductos Biliares Intra-Hepáticos/patologia , Divisão Celular/genética , Linhagem da Célula/genética , Colangiocarcinoma/enzimologia , Colangiocarcinoma/genética , Modelos Animais de Doenças , Feminino , Glutaratos/metabolismo , Fator 4 Nuclear de Hepatócito/biossíntese , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/genética , Mutação/genética , Metástase Neoplásica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Células-Tronco/patologia , Proteínas ras/genética , Proteínas ras/metabolismo
7.
Cell Biochem Funct ; 38(6): 743-752, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32476180

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer, and thymidine phosphorylase (TP) is a regulator of angiogenesis. To investigate the biological activities of TP in ICC, we established human cholangiocarcinoma RBE cell lines overexpressing TP or silencing TP. Overexpression of TP enhanced viability, suppressed apoptosis and increased tube formation in human umbilical vein endothelial cells, while downregulation of TP reversed these effects. Moreover, an orthotopic xenograft mouse model of ICC was built to further explore TP's function in ICC in vivo. Histological analysis using H&E, TUNEL and Ki67 staining showed that TP promoted tumour growth and inhibited cell apoptosis. Immunostaining for CD31 revealed an elevation in microvessel density in the presence of TP. Besides, upregulation of TP increased the expression of vascular endothelial growth factor, basic fibroblast growth factor, interleukin-8 and tumour necrosis factor alpha. In contrast, TP knockdown inhibited tumour growth, suppressed microvessel formation and decreased the expression of angiogenesis-related proteins. Therefore, we suggest that TP promotes angiogenesis and tumour growth in ICC, which can be a potent therapeutic target for ICC treatment.


Assuntos
Neoplasias dos Ductos Biliares/enzimologia , Colangiocarcinoma/enzimologia , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica , Timidina Fosforilase/metabolismo , Animais , Apoptose , Neoplasias dos Ductos Biliares/patologia , Sobrevivência Celular , Colangiocarcinoma/patologia , Regulação Enzimológica da Expressão Gênica , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Microcirculação , Transplante de Neoplasias , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Hepatobiliary Pancreat Dis Int ; 19(5): 420-428, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32386990

RESUMO

BACKGROUND: Human telomerase reverse transcriptase (hTERT) and its components play a significant role in cancer progression, but recent data demonstrated that telomeres and telomerase alterations could be found in other diseases; increasing evidence suggests a key role of this enzyme in the fields of hepatobiliary and pancreatic diseases. DATA SOURCES: We performed a PubMed search with the following keywords: telomerase, hepatocellular carcinoma, cholangiocarcinoma, pancreatic adenocarcinoma by December 2019. We reviewed the relevant publications that analyzed the correlation between telomerase activity and hepatobiliary and pancreatic diseases. RESULTS: Telomerase reactivation plays a significant role in the development and progression of hepatobiliary and pancreatic tumors and could be used as a diagnostic biomarker for hepatobiliary and pancreatic cancers, as a predictor for prognosis and a promising therapeutic target. CONCLUSIONS: Our review summarized the evidence about the critical role of hTERT in cancerous and precancerous lesions of the alteration and its activity in hepatobiliary and pancreatic diseases.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias do Sistema Digestório/enzimologia , Telomerase/metabolismo , Homeostase do Telômero , Telômero/enzimologia , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Animais , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/genética , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Colangiocarcinoma/enzimologia , Colangiocarcinoma/genética , Neoplasias do Sistema Digestório/genética , Ativação Enzimática , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Prognóstico , Telomerase/genética , Telômero/metabolismo
9.
Pathol Int ; 69(2): 86-93, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30729623

RESUMO

Bile duct cancer is known to contain numerous fibroblasts, and reported to recruit cancer- associated fibroblasts by secreting platelet-derived growth factor-D (PDGF-D) which needs serine proteases, such as matriptase, to behave as a ligand. However, their expression pattern, and prognostic value have not been clarified. In this study, we investigated the clinicopathological significance of PDGF-D and matriptase expression in patients with extrahepatic bile duct cancer. The samples were obtained from 256 patients who underwent the surgical resection between 1991 and 2015, and the expression levels of PDGF-D and matriptase were evaluated immunohistochemically. Staining intensities and distribution were scored, and finally classified into low and high expression groups in cancer cells and stroma respectively. High expression of matriptase in the cancer stroma was detected in 91 tumors (40%). The high stromal matriptase expression was significantly associated with shorter recurrence-free survival (RFS) and overall survival (OS) (P = 0.0027 and 0.0023, respectively). Multivariate analyses also demonstrated that the stromal matriptase expression level was an independent influential factor in RFS (P = 0.0050) and OS (P = 0.0093). Our findings suggest that the high stromal matriptase expression was strongly associated with tumor progression, recurrence and poor outcomes in patients with extrahepatic bile duct cancer.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/análise , Colangiocarcinoma/patologia , Serina Endopeptidases/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/mortalidade , Ductos Biliares Extra-Hepáticos/patologia , Colangiocarcinoma/enzimologia , Colangiocarcinoma/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Linfocinas/biossíntese , Masculino , Pessoa de Meia-Idade , Fator de Crescimento Derivado de Plaquetas/biossíntese , Prognóstico
10.
Biochem Biophys Res Commun ; 499(3): 433-440, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29574153

RESUMO

Kelch-like family member 21 (KLHL21) is involved in cell mitosis and motility. Nevertheless, the clinical significance and biological function of KLHL21 in cholangiocarcinoma (CCA) are elusive. This is the first study to describe a pivotal role for KLHL21 in the progression of CCA. The expression of KLHL21 was elevated in CCA tissues compared with paired normal bile duct tissues. In addition, immunohistochemical and statistical analyses demonstrated that the expression of KLHL21 correlated inversely with tumor histological grade (p < 0.05) and the overall survival of patients (p < 0.01). In CCA cells, we found that the inhibition of KLHL21 significantly reduced proliferation, migration and invasion. Further results indicated that inhibition of KLHL21 triggered G0/G1 cell cycle arrest, leading to the increased expression of P21 and P27 and decreased expression of Cyclin E1, which eventually resulted in proliferation suppression in CCA cells. Furthermore, KLHL21 knockdown alleviated the activation of the Erk signaling pathway via decreasing the expression of phospho-Erk1/2. Our data demonstrated that KLHL21 plays an essential role in the tumorigenesis and progression of CCA, implying that it might serve as a potential therapeutic target for CCA treatment.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/antagonistas & inibidores , Movimento Celular , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Proteínas do Citoesqueleto/antagonistas & inibidores , Progressão da Doença , Sistema de Sinalização das MAP Quinases , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/enzimologia , Proteínas do Citoesqueleto/metabolismo , Ativação Enzimática , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Prognóstico , RNA Interferente Pequeno/metabolismo , Análise de Sobrevida
11.
Eur Radiol ; 28(1): 159-169, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28752218

RESUMO

OBJECTIVES: To explore the difference in contrast-enhanced computed tomography (CT) features of intrahepatic cholangiocarcinomas (ICCs) with different isocitrate dehydrogenase (IDH) mutation status. METHODS: Clinicopathological and contrast-enhanced CT features of 78 patients with 78 ICCs were retrospectively analysed and compared based on IDH mutation status. RESULTS: There were 11 ICCs with IDH mutation (11/78, 14.1%) and 67 ICCs without IDH mutation (67/78, 85.9%). IDH-mutated ICCs showed intratumoral artery more often than IDH-wild ICCs (p = 0.023). Most ICCs with IDH mutation showed rim and internal enhancement (10/11, 90.9%), while ICCs without IDH mutation often appeared diffuse (26/67, 38.8%) or with no enhancement (4/67, 6.0%) in the arterial phase (p = 0.009). IDH-mutated ICCs showed significantly higher CT values, enhancement degrees and enhancement ratios in arterial and portal venous phases than IDH-wild ICCs (all p < 0.05). The CT value of tumours in the portal venous phase performed best in distinguishing ICCs with and without IDH mutation, with an area under the curve of 0.798 (p = 0.002). CONCLUSIONS: ICCs with and without IDH mutation differed significantly in arterial enhancement mode, and the tumour enhancement degree on multiphase contrast-enhanced CT was helpful in predicting IDH mutation status. KEY POINTS: • IDH mutation occurred frequently in ICCs. • ICCs with and without IDH mutation differed significantly in arterial enhancement mode. • ICCs with IDH mutation enhanced more than those without IDH mutation. • Enhancement ratio and tumour CT value can predict IDH mutation status.


Assuntos
Neoplasias dos Ductos Biliares/enzimologia , Colangiocarcinoma/enzimologia , Meios de Contraste , Isocitrato Desidrogenase/genética , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/enzimologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/diagnóstico por imagem , Colangiocarcinoma/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estudos Retrospectivos
12.
Biochem Biophys Res Commun ; 484(2): 409-415, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28131825

RESUMO

Overexpression of hexokinase 2 (HKII) has been demonstrated in various cancers. A number of in vitro and in vivo studies in several cancers show the significance of HKII in many cellular processes including proliferation, metastasis and apoptosis. However, the role of HKII in Opisthorchis viverrini (Ov) associated cholangiocarcinoma (CCA) is still unknown. In the present study, the expression and roles of HKII were determined in Ov associated CCA. The expression of HKII was investigated in 82 patients with histologically proven CCAs by immunohistochemistry. HKII was distinctively expressed in CCA tissues. It was rarely expressed in normal bile duct epithelium, but was expressed in hyperplastic/dysplastic and in 82% of CCA bile ducts. The observation was confirmed in the Ov associated hamster model. Suppression of HKII expression using siRNA significantly decreased cell proliferation, migration and invasion of CCA cell lines. Similar results were obtained using lonidamine (LND), an inhibitor of HK. LND significantly inhibited growth of 4 CCA cell lines tested in dose and time dependent fashion. Comparison the cytotoxic effects of LND and siRNA-HKII suggests the off target of LND above 100 µM. In addition, LND in non-cytotoxic doses could suppress migration and invasion of CCA cells. These results indicate the association of HKII in cholangiocarcinogenesis and progression and suggest the possibility of HKII as a therapeutic target for CCA.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Hexoquinase/antagonistas & inibidores , Animais , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/patologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Colangiocarcinoma/enzimologia , Colangiocarcinoma/patologia , Cricetinae , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Imuno-Histoquímica , Indazóis/farmacologia , Indazóis/uso terapêutico , Opisthorchis/enzimologia
13.
Hepatology ; 62(6): 1804-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26340507

RESUMO

UNLABELLED: The molecular pathogenesis of intrahepatic cholangiocarcinoma (iCCA) is poorly understood, and its incidence continues to increase worldwide. Deficiency of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) has been reported to induce the epithelial-mesenchymal transition (EMT) process of placental and embryonic development, yet its role in human cancer remains unknown. MAP3K4 has somatic mutation in iCCA so we sequenced all exons of MAP3K4 in 124 iCCA patients. We identified nine somatic mutations in 10 (8.06%) patients, especially in those with lymph node metastasis and intrahepatic metastasis. We also showed that messenger RNA and protein levels of MAP3K4 were significantly reduced in iCCA versus paired nontumor tissues. Furthermore, knockdown of MAP3K4 in cholangiocarcinoma cells markedly enhanced cell proliferation and invasiveness in vitro and tumor progression in vivo, accompanied by a typical EMT process. In contrast, overexpression of MAP3K4 in cholangiocarcinoma cells obviously reversed EMT and inhibited cell invasion. Mechanistically, MAP3K4 functioned as a negative regulator of EMT in iCCA by antagonizing the activity of the p38/nuclear factor κB/snail pathway. We found that the tumor-inhibitory effect of MAP3K4 was abolished by inactivating mutations. Clinically, a tissue microarray study containing 322 iCCA samples from patients revealed that low MAP3K4 expression in iCCA positively correlated with aggressive tumor characteristics, such as vascular invasion and intrahepatic or lymph node metastases, and was independently associated with poor survival and increased recurrence after curative surgery. CONCLUSIONS: MAP3K4, significantly down-regulated, frequently mutated, and potently regulating the EMT process in iCCA, was a putative tumor suppressor of iCCA.


Assuntos
Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/enzimologia , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal , MAP Quinase Quinase Quinase 4/deficiência , Humanos , Invasividade Neoplásica
14.
Oncologist ; 20(9): 1019-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26245674

RESUMO

BACKGROUND: Conflicting data exist regarding the prognostic impact of the isocitrate dehydrogenase (IDH) mutation in intrahepatic cholangiocarcinoma (ICC), and limited data exist in patients with advanced-stage disease. Similarly, the clinical phenotype of patients with advanced IDH mutant (IDHm) ICC has not been characterized. In this study, we report the correlation of IDH mutation status with prognosis and clinicopathologic features in patients with advanced ICC. METHODS: Patients with histologically confirmed advanced ICC who underwent tumor mutational profiling as a routine part of their care between 2009 and 2014 were evaluated. Clinical and pathological data were collected by retrospective chart review for patients with IDHm versus IDH wild-type (IDHwt) ICC. Pretreatment tumor volume was calculated on computed tomography or magnetic resonance imaging. RESULTS: Of the 104 patients with ICC who were evaluated, 30 (28.8%) had an IDH mutation (25.0% IDH1, 3.8% IDH2). The median overall survival did not differ significantly between IDHm and IDHwt patients (15.0 vs. 20.1 months, respectively; p = .17). The pretreatment serum carbohydrate antigen 19-9 (CA19-9) level in IDHm and IDHwt patients was 34.5 and 118.0 U/mL, respectively (p = .04). Age at diagnosis, sex, histologic grade, and pattern of metastasis did not differ significantly by IDH mutation status. CONCLUSION: The IDH mutation was not associated with prognosis in patients with advanced ICC. The clinical phenotypes of advanced IDHm and IDHwt ICC were similar, but patients with IDHm ICC had a lower median serum CA19-9 level at presentation. IMPLICATIONS FOR PRACTICE: Previous studies assessing the prognostic impact of the isocitrate dehydrogenase (IDH) gene mutation in intrahepatic cholangiocarcinoma (ICC) mainly focused on patients with early-stage disease who have undergone resection. These studies offer conflicting results. The target population for clinical trials of IDH inhibitors is patients with unresectable or metastatic disease, and the current study is the first to focus on the prognosis and clinical phenotype of this population and reports on the largest cohort of patients with advanced IDH mutant ICC to date. The finding that the IDH mutation lacks prognostic significance in advanced ICC is preliminary and needs to be confirmed prospectively in a larger study.


Assuntos
Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/enzimologia , Colangiocarcinoma/genética , Isocitrato Desidrogenase/genética , Adulto , Idoso , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Adulto Jovem
15.
Gastroenterology ; 146(5): 1397-407, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24503127

RESUMO

BACKGROUND & AIMS: The pathogenesis of intrahepatic cholangiocarcinoma (ICC), the second most common hepatic cancer, is poorly understood, and the incidence of ICC is increasing worldwide. We searched for mutations in human ICC tumor samples and investigated how they affect ICC cell function. METHODS: We performed whole exome sequencing of 7 pairs of ICC tumors and their surrounding nontumor tissues to detect somatic alterations. We then screened 124 pairs of ICC and nontumor samples for these mutations, including 7 exomes. We compared mutations in PTPN3 with tumor recurrence in 124 patients and PTPN3 expression levels with recurrence in 322 patients (the combination of both in 86 patients). The functional effects of PTPN3 variations were determined by RNA interference and transgenic expression in cholangiocarcinoma cell lines (RBE, HCCC-9810, and Huh28). RESULTS: Based on exome sequencing, pathways that regulate protein phosphorylation were among the most frequently altered in ICC samples and genes encoding protein tyrosine phosphatases (PTPs) were among the most frequently mutated. We identified mutations in 9 genes encoding PTPs in 4 of 7 ICC exomes. In the prevalence screen of 124 paired samples, 51.6% of ICCs contained somatic mutations in at least 1 of 9 PTP genes; 41.1% had mutations in PTPN3. Transgenic expression of PTPN3 in cell lines increased cell proliferation, colony formation, and migration. PTPN3(L232R) and PTPN3(L384H), which were frequently detected in ICC samples, were found to be gain-of-function mutations; their expression in cell lines further increased cell proliferation, colony formation, and migration. ICC-associated variants of PTPN3 altered phosphatase activity. Patients whose tumors contained activating mutations or higher levels of PTPN3 protein than nontumor tissues had higher rates of disease recurrence than patients whose tumors did not have these characteristics. CONCLUSIONS: Using whole exome sequencing of ICC samples from patients, we found that more than 40% contain somatic mutations in PTPN3. Activating mutations in and high expression levels of PTPN3 were associated with tumor recurrence.


Assuntos
Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/enzimologia , Movimento Celular , Proliferação de Células , Colangiocarcinoma/genética , Neoplasias Hepáticas/genética , Mutação , Recidiva Local de Neoplasia , Proteína Tirosina Fosfatase não Receptora Tipo 3/genética , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/enzimologia , Colangiocarcinoma/patologia , Análise Mutacional de DNA , Ativação Enzimática , Exossomos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Predisposição Genética para Doença , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 3/metabolismo , Interferência de RNA , Fatores de Tempo , Transfecção
16.
Phytother Res ; 29(12): 1926-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26490449

RESUMO

Malaria and cholangiocarcinoma remain important public health problems in tropical countries including Southeast Asian nations. Newly developed chemotherapeutic and plant-derived drugs are urgently required for the control of both diseases. The aim of the present study was to investigate the propensity to inhibit cytochrome P450-mediated hepatic metabolism (CYP1A2, CYP2C19, CYP2D6 and CYP3A4) of the crude ethanolic extract of eight Thai medicinal plants with promising activities against malaria and cholangiocarcinoma, using human liver microsomes in vitro. Piper chaba Linn. (PC) and Atractylodes lancea (thung.) DC. (AL) exhibited the most potent inhibitory activities on CYP1A2-mediated phenacetin O-deethylation with mean IC50 of 0.04 and 0.36 µg/mL, respectively. Plumbago indica Linn. (PI) and Dioscorea membranacea Pierre. (DM) potently inhibited CYP2C19-mediated omeprazole 5-hydroxylation (mean IC50 4.71 and 6.92 µg/mL, respectively). DM, Dracaena loureiri Gagnep. (DL) and PI showed the highest inhibitory activities on dextromethorphan O-demethylation (mean IC50 2.93-9.57 µg/mL). PC, DM, DL and PI exhibited the most potent inhibitory activities on CYP3A4-mediated nifedipine oxidation (mean IC50 1.54-6.43 µg/mL). Clinical relevance of the inhibitory potential of DM, PC and PI is of concern for the further development of these plants for the treatment of malaria and/or cholangiocarcinoma.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Colangiocarcinoma/enzimologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Atractylodes/química , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Sistema Enzimático do Citocromo P-450/metabolismo , Dioscorea/química , Dracaena/química , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Fenacetina , Piper/química , Plumbaginaceae/química
17.
Cancer Sci ; 105(6): 667-74, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24673799

RESUMO

Cholangiocarcinoma is an aggressive malignant tumor originating from intrahepatic or extrahepatic bile ducts. Its malignant phenotypes may be assumed by cancer stem cells (CSC). Here, we demonstrate that CD274 (PD-L1), known as an immunomodulatory ligand, has suppressive effects on CSC-related phenotypes of cholangiocarcinoma. Using two human cholangiocarcinoma cell lines, RBE and HuCCT1, we attempted to isolate the CD274(low) and CD274(high) cells from each cell line, and xenografted them into immunodeficient NOD/scid/γcnull (NOG) mice. We found that the CD274(low) cells isolated from both RBE and HuCCT1 are highly tumorigenic in NOG mice compared with CD274(high) cells. Furthermore, the CD274(low) cells possess several CSC-related characteristics, such as high aldehyde dehydrogenase (ALDH) activity, reduced reactive oxygen species production and a dormant state in the cell cycle. Furthermore, depletion of CD274 expression by shRNA in RBE cells enhances their tumorigenicity and increases ALDH activity. These findings are compatible with our observation that clinical cholangiocarcinoma specimens are classified into low and high groups for CD274 expression, and the CD274 low group shows poorer prognosis when compared with the CD274 high group. These results strongly suggest that CD274 has a novel function in the negative regulation of CSC-related phenotypes in human cholangiocarcinoma, which is distinct from its immunomodulatory actions.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Colangiocarcinoma/patologia , Células-Tronco Neoplásicas/citologia , Aldeído Desidrogenase/metabolismo , Animais , Antígeno B7-H1/genética , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/genética , Biomarcadores Tumorais/genética , Ciclo Celular , Linhagem Celular Tumoral , Colangiocarcinoma/enzimologia , Colangiocarcinoma/genética , Humanos , Imunomodulação/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo , Prognóstico , Interferência de RNA , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Tretinoína/análise , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Am J Physiol Gastrointest Liver Physiol ; 306(9): G759-68, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24603459

RESUMO

Substance P (SP) promotes cholangiocyte growth during cholestasis by activating its receptor, NK1R. SP is a proteolytic product of tachykinin (Tac1) and is deactivated by membrane metalloendopeptidase (MME). This study aimed to evaluate the functional role of SP in the regulation of cholangiocarcinoma (CCA) growth. NK1R, Tac1, and MME expression and SP secretion were assessed in human CCA cells and nonmalignant cholangiocytes. The proliferative effects of SP (in the absence/presence of the NK1R inhibitor, L-733,060) and of L-733,060 were evaluated. In vivo, the effect of L-733,060 treatment or MME overexpression on tumor growth was evaluated by using a xenograft model of CCA in nu/nu nude mice. The expression of Tac1, MME, NK1R, PCNA, CK-19, and VEGF-A was analyzed in the resulting tumors. Human CCA cell lines had increased expression of Tac1 and NK1R, along with reduced levels of MME compared with nonmalignant cholangiocytes, resulting in a subsequent increase in SP secretion. SP treatment increased CCA cell proliferation in vitro, which was blocked by L-733,060. Treatment with L-733,060 alone inhibited CCA proliferation in vitro and in vivo. Xenograft tumors derived from MME-overexpressed human Mz-ChA-1 CCA cells had a slower growth rate than those derived from control cells. Expression of PCNA, CK-19, and VEGF-A decreased, whereas MME expression increased in the xenograft tumors treated with L-733,060 or MME-overexpressed xenograft tumors compared with controls. The study suggests that SP secreted by CCA promotes CCA growth via autocrine pathway. Blockade of SP secretion and NK1R signaling may be important for the management of CCA.


Assuntos
Neoplasias dos Ductos Biliares/enzimologia , Ductos Biliares Intra-Hepáticos/enzimologia , Proliferação de Células , Colangiocarcinoma/enzimologia , Neprilisina/metabolismo , Substância P/metabolismo , Animais , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/efeitos dos fármacos , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Queratina-19/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neprilisina/genética , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Receptores da Neurocinina-1/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
BMC Gastroenterol ; 14: 138, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25100243

RESUMO

BACKGROUND: Alkaline sphingomyelinase (NPP7) is an ecto-enzyme expressed in intestinal mucosa, which hydrolyses sphingomyelin (SM) to ceramide and inactivates platelet activating factor. It is also expressed in human liver and released in the bile. The enzyme may have anti-tumour and anti-inflammatory effects in colon and its levels are decreased in patients with colon cancer and ulcerative colitis. Active NPP7 is translated from a transcript of 1.4 kb, whereas an inactive form from a 1.2 kb mRNA was found in colon and liver cancer cell lines. While the roles of NPP7 in colon cancer have been intensively studied, less is known about the function and implications of NPP7 in the bile. The present study examines the changes of NPP7 in bile of patients with various hepatobiliary diseases. METHODS: Bile samples were obtained at endoscopic retrograde cholangiopancreatography (ERCP) in 59 patients with gallstone, other benign disease, tumour, and primary sclerosing cholangitis (PSC). The NPP7 activity was determined. The appearance of the 1.4 and 1.2 kb products in the bile was examined by Western blot. The results were correlated to the diseases and also plasma bilirubin and alkaline phosphatase. RESULTS: NPP7 activity in the tumour group was significantly lower than in the gallstone group (p < 0.05). The activity in the tumour plus PSC group was also lower than in gallstone plus other benign disease group (p < 0.05). Within the tumour group NPP7 activity was lowest in cholangiocarcinoma patients, being only 19% of that in gallstone patients. Bilirubin correlated inversely to NPP7 and was higher in the tumour than in the gallstone group. Western blot identified both the 1.4 kb and the 1.2 kb products in most bile samples. The density ratio for the 1.4/1.2 kb products correlated to NPP7 activity significantly. Two patients (one PSC and one cholangiocarcinoma) lacking NPP7 activity had only the 1.2 kb form in bile. CONCLUSION: NPP7 activity and the ratio of 1.4/1.2 kb products in bile are significantly decreased in malignancy, particularly in cholangiocarcinoma. The implications of the finding in diagnosis of cholangiocarcinoma and 1.2 kb product in hepatobiliary diseases require further investigation.


Assuntos
Bile/enzimologia , Colangiopancreatografia Retrógrada Endoscópica , Esfingomielina Fosfodiesterase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias dos Ductos Biliares/enzimologia , Ductos Biliares Intra-Hepáticos , Neoplasias do Sistema Biliar/enzimologia , Western Blotting , Carcinoma Hepatocelular/enzimologia , Colangiocarcinoma/enzimologia , Colangite Esclerosante/enzimologia , Coledocolitíase/enzimologia , Colelitíase/enzimologia , Ensaios Enzimáticos , Feminino , Neoplasias da Vesícula Biliar/enzimologia , Humanos , Isoenzimas , Neoplasias Hepáticas/enzimologia , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/enzimologia , Adulto Jovem
20.
J Biol Chem ; 287(47): 39812-23, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23024367

RESUMO

Pro-tumorigenic function of the p38 kinase plays a critical role in human cholangiocarcinogenesis. However, the underlying mechanism remains incompletely understood. Here, we report that c-Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), contributes to the pro-tumorigenic ability of p38 in human cholangiocarcinoma cells. Both p38 and c-Met promote the proliferation and invasion of human cholangiocarcinoma cells. Importantly, inhibition or knockdown of p38 decreased the basal activation of c-Met. Tyrosine phosphatase inhibitor studies revealed that p38 promotes the activity of c-Met, at least in part, by inhibiting dephosphorylation of the receptor. Moreover, density enhanced phosphatase-1 (DEP-1) is involved in p38-mediated inhibiting dephosphorylation of c-Met. Furthermore, p38 inhibits the degradation of c-Met. Taken together, these data provide a potential mechanism to explain how p38 promotes human cholangiocarcinoma cell proliferation and invasion. We propose that the link between p38 and c-Met is implicated in the progression of human cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares/enzimologia , Proliferação de Células , Colangiocarcinoma/enzimologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Células Hep G2 , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Invasividade Neoplásica , Fosforilação/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA