Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Plant Foods Hum Nutr ; 79(1): 225-233, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37957407

RESUMO

Cucumis callosus or "Choti kachri" is feral species of Cucurbitaceae family grown commonly in the semi-arid zones. The current study aimed to optimize and develop a syrup by utilizing C. callosus. For optimization of various combinations of C. callosus (CC) and Malus domestica (MD), various treatments were prepared namely T1 (100:00), T2 (75:25), T3 (50:50), T4 (00:100). The developed syrups were analyzed for nutritional and sensory analysis for a storage period of three months. The maximum and minimum range of different blends and storage period for various parameters were reported as TSS (oBx) (65.06 ± 0.23 to 67.17 ± 0.25), pH (4.67 ± 0.17 to 5.02 ± 0.65), acidity (%citric acid) (0.61 ± 0.02 to 0.98 ± 0.11), reducing sugars (%) (35.98 ± 0.12 to 44.12 ± 0.03), total sugars (%) (57.12 ± 0.03 to 65.51 ± 0.07), and non-reducing sugars (%) (14.88 ± 0.19 to 26.65 ± 0.11). All the blends varied non- significantly in terms of TSS, pH and acidity while significant (p ≥ 0.05) difference was noted in sugars when blended with 75:25 ratio of CC: MD. The data with respect to storage study reveals that the TSS, PH and acidity varied non-significantly while reducing sugars increased significantly. However, total, and non-reducing sugars decreased significantly with the increase of storage period. The prepared blends were subjected for sensory evaluation using 9-point hedonic scale for assessing color, consistency, taste, aroma, and overall acceptability with noted values as 8.0 ± 0.54 to 7.0 ± 0.44, 7.2 ± 0.54 to 8.0 ± 0.70, 7.0 ± 0.44 to 8.0 ± 0.70, 7.2 ± 0.44 to 8.0 ± 0.70, and 7.2 ± 0.44 to 8.0 ± 0.83. The study indicated that C. callosus is an acceptable source for development of syrup.


Assuntos
Cucumis , Malus , Alimentos , Açúcares
2.
Plant J ; 110(4): 1128-1143, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35293644

RESUMO

Pepino (Solanum muricatum, 2n = 2x = 24), a member of the Solanaceae family, is an important globally grown fruit. Herein, we report high-quality, chromosome-level pepino genomes. The 91.67% genome sequence is anchored to 12 chromosomes, with a total length of 1.20 Gb and scaffold N50 of 87.03 Mb. More than half the genome comprises repetitive sequences. In addition to the shared ancient whole-genome triplication (WGT) event in eudicots, an additional new WGT event was present in the pepino. Our findings suggest that pepinos experienced chromosome rearrangements, fusions, and gene loss after a WGT event. The large number of gene removals indicated the instability of Solanaceae genomes, providing opportunities for species divergence and natural selection. The paucity of disease-resistance genes (NBS) in pepino and eggplant has been explained by extensive loss and limited generation of genes after WGT events in Solanaceae. The outbreak of NBS genes was not synchronized in Solanaceae species, which occurred before the Solanaceae WGT event in pepino, tomato, and tobacco, whereas it was almost synchronized with WGT events in the other four Solanaceae species. Transcriptome and comparative genomic analyses revealed several key genes involved in anthocyanin biosynthesis. Although an extra WGT event occurred in Solanaceae, CHS genes related to anthocyanin biosynthesis in grapes were still significantly expanded compared with those in Solanaceae species. Proximal and tandem duplications contributed to the expansion of CHS genes. In conclusion, the pepino genome and annotation facilitate further research into important gene functions and comparative genomic analysis in Solanaceae.


Assuntos
Cucumis , Solanaceae , Solanum lycopersicum , Antocianinas/genética , Cromossomos , Cucumis/genética , Evolução Molecular , Genoma de Planta/genética , Solanum lycopersicum/genética , Solanaceae/genética
3.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38117210

RESUMO

Two bacterial strains, FP1935T and FP1962, were isolated from the rhizosphere soil of cucumber and Chieh-qua plants, respectively, in Jilin Province, PR China. These strains were Gram-stain-negative, aerobic, rod-shaped and motile with one or two polar flagella. Analysis of the 16S rRNA gene sequences revealed that they represented members of the genus Pseudomonas, with the highest similarity to Pseudomonas silesiensis A3T (99.45 %), Pseudomonas frederiksbergensis JAJ28T (99.45 %), Pseudomonas mandelii NBRC 103147T (99.38 %), Pseudomonas piscium P50T (99.27 %) and Pseudomonas meliae CFBP 3225T (99.18 %). The DNA G+C contents of FP1935T and FP1962 were 58.99 mol% and 58.98 mol%, respectively. The results of in silico genome-based analyses indicated that these strains were distinct from other species in the genus Pseudomonas, as the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were below the recommended thresholds of 95 % (ANI) and 70 % (dDDH) for prokaryotic species delineation, with no values exceeding 94.1 and 55.8 %, respectively, compared with any other related species. The results of phenotypic and chemotaxonomic tests confirmed their differentiation from their closest relatives. The fatty acid profiles of both strains mainly consisted of summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C12 : 0 and C16 : 0. The predominant respiratory quinone was Q-9. Polar lipids include phosphatidylethanolamine, unidentified aminophospholipids, unidentified lipids and an unidentified phospholipid. On the basis of these phenotypic and genotypic results, we propose the name Pseudomonas cucumis sp. nov. for these novel strains. The type strain is FP1935T (=ACCC 62445T=JCM 35690T).


Assuntos
Cucumis , RNA Ribossômico 16S/genética , Rizosfera , Composição de Bases , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
4.
Plant Foods Hum Nutr ; 78(4): 630-642, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37698772

RESUMO

Cucumis callosus (Kachri) is an under-exploited fruit of the Cucurbitaceae family, distributed majorly in the arid regions of India in the states of Haryana, Rajasthan, and Gujarat. The fruit is traditionally used by the native people at a small scale by home-level processing. It is a perennial herb that has been shown to possess therapeutic potential in certain disorders. In several studies, the antioxidant, anti-hyperlipidaemic, anti-diabetic, anti-cancerous, anti-microbial, and cardioprotective properties of Kachri have been reported. The fruit has a good nutritional value in terms of high percentages of protein, carbohydrates, essential fatty acids, phenols, and various phytochemicals. Also, gamma radiation treatment has been used on this crop to reduce total bacterial counts (TBC), ensuring safety from pathogens during the storage period of the fruit and its products. These facts lay down a foundation for the development of functional food formulations and nutraceuticals of medicinal value from this functionally rich crop. Processing of traditionally valuable arid region foods into functional foods and products can potentially increase the livelihood and nutritional security of people globally. Therefore, this review focuses on the therapeutic and pharmacological potentials of the Kachri fruit in the management of non-communicable diseases (NCDs) namely, diabetes, cancer, and hyperlipidemia. Graphical abstract of the review.


Assuntos
Cucumis , Doenças não Transmissíveis , Humanos , Doenças não Transmissíveis/tratamento farmacológico , Índia , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/análise
5.
Plant J ; 107(4): 1243-1259, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160852

RESUMO

Karyotype dynamics driven by complex chromosome rearrangements constitute a fundamental issue in evolutionary genetics. The evolutionary events underlying karyotype diversity within plant genera, however, have rarely been reconstructed from a computed ancestral progenitor. Here, we developed a method to rapidly and accurately represent extant karyotypes with the genus, Cucumis, using highly customizable comparative oligo-painting (COP) allowing visualization of fine-scale genome structures of eight Cucumis species from both African-origin and Asian-origin clades. Based on COP data, an evolutionary framework containing a genus-level ancestral karyotype was reconstructed, allowing elucidation of the evolutionary events that account for the origin of these diverse genomes within Cucumis. Our results characterize the cryptic rearrangement hotspots on ancestral chromosomes, and demonstrate that the ancestral Cucumis karyotype (n = 12) evolved to extant Cucumis genomes by hybridizations and frequent lineage- and species-specific genome reshuffling. Relative to the African species, the Asian species, including melon (Cucumis melo, n = 12), Cucumis hystrix (n = 12) and cucumber (Cucumis sativus, n = 7), had highly shuffled genomes caused by large-scale inversions, centromere repositioning and chromothripsis-like rearrangement. The deduced reconstructed ancestral karyotype for the genus allowed us to propose evolutionary trajectories and specific events underlying the origin of these Cucumis species. Our findings highlight that the partitioned evolutionary plasticity of Cucumis karyotype is primarily located in the centromere-proximal regions marked by rearrangement hotspots, which can potentially serve as a reservoir for chromosome evolution due to their fragility.


Assuntos
Cromossomos de Plantas/genética , Cucumis/genética , Evolução Molecular , Cariótipo , África , Ásia , Centrômero/genética , Coloração Cromossômica/métodos , Cucumis melo/genética , Cucumis sativus/genética , Genoma de Planta , Filogenia , Poliploidia
6.
Plant J ; 107(1): 136-148, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866620

RESUMO

Cucumis metuliferus (African horned cucumber), a wild relative of Cucumis sativus (cucumber) and Cucumis melo (melon), displays high-level resistance to several important plant pathogens (e.g., root-knot nematodes and several viruses). Here, we report a chromosome-level genome assembly for C. metuliferus, with a 316 Mb genome sequence comprising 29 039 genes. Phylogenetic analysis of related species in family Cucurbitaceae indicated that the divergence time between C. metuliferus and melon was 17.8 million years ago. Comparisons between the C. metuliferus and melon genomes revealed large structural variations (inversions and translocations >1 Mb) in eight chromosomes of these two species. Gene family comparison showed that C. metuliferus has the largest number of resistance-related nucleotide-binding site leucine-rich repeat (NBS-LRR) genes in Cucurbitaceae. The loss of NBS-LRR loci caused by large insertions or deletions (indels) and pseudogenization caused by small indels explained the loss of NBS-LRR genes in Cucurbitaceae. Population structure analysis suggested that C. metuliferus originated in Zimbabwe, then spread to other southern African regions where it likely underwent similar domestic selection as melon. This C. metuliferus reference sequence will accelerate the understanding of the molecular evolution of resistance-related genes and enhance cucurbit crop improvement efforts.


Assuntos
Cucumis/genética , Genes de Plantas , Genoma de Planta , Filogenia , África , Cromossomos de Plantas , Cucumis melo/genética , Evolução Molecular , Variação Genética , Genética Populacional , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Seleção Genética , Zimbábue
7.
Drug Chem Toxicol ; 45(4): 1461-1469, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33092416

RESUMO

Phytochemical study of the MeOH extract of Cucumis prophetarum fruits (family Cucurbitaceae) by using different chromatographic techniques led to the isolation of three metabolites; spinasterol (1), cucurbitacin B (2), and 2-O-ß-D-glucopyranosylcucurbitacin E (3). Their chemical structures were created on the basis of physical, chemical, spectroscopic data 1D (1H and 13C NMR), and 2D NMR (HSQC and HMBC), as well as similarity with literature data. Cucurbitacin B (Cu-B) (2) was found to be the major constituent. Potential protective activities of MeOH extract, CHCl3, and EtOAc fractions and Cu-B were evaluated against carrageenan-induced prostatic inflammation in rats. Acute toxicity was assessed by evaluating LD50. Pretreatment with CHCl3 fraction and Cu-B ameliorated the rise in the prostate index and obviously protected against histopathological changes. Further, MeOH, extract, CHCl3, and EtOAc fractions as well as Cu-B significantly protected against oxidative stress in prostatic tissues. The anti-inflammatory activities of the extract, fractions and Cu-B were confirmed by ameliorating the rise in prostatic content of the inflammatory mediators TNF-α, IL-1ß, COX-2, and iNOS induced by carrageenan. In addition, the rise in the chemotactic factors were myeloperoxidase (MPO), F4-80, and monocyte chemoattractant protein-1 (MCP-1) was significantly hampered. In conclusion, three known compounds (1-3) were isolated from Cucumis prophetarum fruits. Cu-B (2) was the major identified compound. Particularly, CHCl3 fraction and isolated Cu-B exhibited potent anti-inflammatory activity against carrageenan-induced prostatitis. The anti-inflammatory activity can be attributed, at least partly, to inhibition of neutrophil and macrophage infiltration into prostatic tissues.


Assuntos
Cucumis , Prostatite , Animais , Anti-Inflamatórios/farmacologia , Carragenina/toxicidade , Humanos , Masculino , Compostos Fitoquímicos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Prostatite/induzido quimicamente , Prostatite/tratamento farmacológico , Prostatite/prevenção & controle , Ratos
8.
Dokl Biol Sci ; 504(1): 85-93, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35821301

RESUMO

Plants are the rich source of compounds having antimicrobial properties against human pathogens. The present study has been carried out to evaluate the antimicrobial potential of Cucumis melo var. agrestis (morphotype I), Cucumis melo var. agrestis (morphotype II), Cucumis melo var. momordica L., Cucumis melo L., Momordica balsamina L., Momordica charantia L., Momordica dioica L. against Staphylococcus aureus, Pseudomonas flourescens, Bacillus coagulans, and Klebsiella pneumoniae. Crude extract of Cucumis L. and Momordica L. species were prepared with methanol, acetone and water for the determination of antimicrobial properties. Maximum yield was reported in methanol extract while minimum in acetone for all plant species. The maximum zone of inhibition of about 32.3 ± 0.57 mm was found against Staphylococcus aureus in Cucumis melo L., 21.3 ± 0.57 mm for Pseudomonas flourescens in Cucumis melo var. agrestis (morphotype II), 17 ± 0 mm for Klebsiella pneumoniae in Momordica balsamina L., and 23.3 ± 0.57 mm for Bacillus coagulans in Cucumis melo var. agrestis (morphotype II) extracts, respectively. The most active antimicrobial plants species were reported to be Cucumis melo var. agrestis (morphotype I), Cucumis melo L. and Momordica charantia L. having antimicrobial activities against all tested microorganisms.


Assuntos
Anti-Infecciosos , Cucumis , Momordica , Acetona , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Humanos , Metanol
9.
Plant J ; 102(1): 178-186, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31692131

RESUMO

Chromosome painting is a powerful technique for chromosome and genome studies. We developed a flexible chromosome painting technique based on multiplex PCR of a synthetic oligonucleotide (oligo) library in cucumber (Cucumis sativus L., 2n = 14). Each oligo in the library was associated with a universal as well as nested specific primers for amplification, which allow the generation of different probes from the same oligo library. We were also able to generate double-stranded labelled oligos, which produced much stronger signals than single-stranded labelled oligos, by amplification using fluorophore-conjugated primer pairs. Oligos covering cucumber chromosome 1 (Chr1) and chromosome 4 (Chr4) consisting of eight segments were synthesized in one library. Different oligo probes generated from the library painted the corresponding chromosomes/segments unambiguously, especially on pachytene chromosomes. This technique was then applied to study the homoeologous relationships among cucumber, C. hystrix and C. melo chromosomes based on cross-species chromosome painting using Chr4 probes. We demonstrated that the probe was feasible to detect interspecies chromosome homoeologous relationships and chromosomal rearrangement events. Based on its advantages and great convenience, we anticipate that this flexible oligo-painting technique has great potential for the studies of the structure, organization, and evolution of chromosomes in any species with a sequenced genome.


Assuntos
Coloração Cromossômica/métodos , Cromossomos de Plantas/genética , Cucumis sativus/genética , Genômica , Reação em Cadeia da Polimerase Multiplex , Oligonucleotídeos/genética , Cucumis/genética , Biblioteca Genômica , Genômica/métodos , Oligonucleotídeos/metabolismo
10.
Genome ; 64(6): 627-638, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33460340

RESUMO

Allopolyploids undergo "genomic shock" leading to significant genetic and epigenetic modifications. Previous studies have mainly focused on nuclear changes, while little is known about the inheritance and changes of organelle genome in allopolyploidization. The synthetic allotetraploid Cucumis ×hytivus, which is generated via hybridization between C. hystrix and C. sativus, is a useful model system for studying cytonuclear variation. Here, we report the chloroplast genome of allotetraploid C. ×hytivus and its diploid parents via sequencing and comparative analysis. The size of the obtained chloroplast genomes ranged from 154 673 to 155 760 bp, while their gene contents, gene orders, and GC contents were similar to each other. Comparative genome analysis supports chloroplast maternal inheritance. However, we identified 51 indels and 292 SNP genetic variants in the chloroplast genome of the allopolyploid C. ×hytivus relative to its female parent C. hystrix. Nine intergenic regions with rich variation were identified through comparative analysis of the chloroplast genomes within the subgenus Cucumis. The phylogenetic network based on the chloroplast genome sequences clarified the evolution and taxonomic position of the synthetic allotetraploid C. ×hytivus. The results of this study provide us with an insight into the changes of organelle genome after allopolyploidization, and a new understanding of the cytonuclear evolution.


Assuntos
Cloroplastos/genética , Cucumis/genética , Genoma de Cloroplastos/genética , Genoma de Planta , Composição de Bases , Núcleo Celular , Cloroplastos/classificação , DNA de Plantas/genética , Diploide , Ordem dos Genes , Hibridização Genética , Filogenia , Polimorfismo de Nucleotídeo Único , Poliploidia , Sequenciamento Completo do Genoma
11.
J Nanobiotechnology ; 19(1): 442, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930295

RESUMO

BACKGROUND: Due to the severe cadmium (Cd) pollution of farmland soil, effective measures need to be taken to reduce the Cd content in agricultural products. In this study, we added α-Fe2O3 nanoparticles (NPs) and biochar into Cd-contaminated soil to investigate physiological responses of muskmelon in the whole life cycle. RESULTS: The results showed that Cd caused adverse impacts on muskmelon (Cucumis melo) plants. For instance, the chlorophyll of muskmelon leaves in the Cd alone treatment was reduced by 8.07-32.34% in the four periods, relative to the control. The treatments with single amendment, α-Fe2O3 NPs or 1% biochar or 5% biochar, significantly reduced the soil available Cd content, but the co-exposure treatments (α-Fe2O3 NPs and biochar) had no impact on the soil available Cd content. All treatments could reduce the Cd content by 47.64-74.60% and increase the Fe content by 15.15-95.27% in fruits as compared to the Cd alone treatment. The KEGG enrichment results of different genes in different treatments indicated that single treatments could regulate genes related to anthocyanin biosynthesis, glutathione metabolism and MAPK signal transduction pathways to reduce the Cd toxicity. CONCLUSIONS: Overall the combination of biochar and α-Fe2O3 NPs can alleviate Cd toxicity in muskmelon. The present study could provide new insights into Cd remediation in soil using α-Fe2O3 NPs and biochar as amendments.


Assuntos
Cádmio/análise , Carvão Vegetal/química , Cucumis/crescimento & desenvolvimento , Compostos Férricos/química , Nanopartículas Metálicas/química , Antioxidantes/metabolismo , Cádmio/química , Cádmio/toxicidade , Clorofila/análise , Cucumis/química , Cucumis/efeitos dos fármacos , Compostos Férricos/metabolismo , Frutas/química , Frutas/metabolismo , Glutationa/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Transdução de Sinais/efeitos dos fármacos , Solo/química , Transcriptoma/efeitos dos fármacos
12.
J Insect Sci ; 21(5)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718644

RESUMO

Plant viruses can change the phenotypes and defense pathways of the host plants and the performance of their vectors to facilitate their transmission. Cucurbit chlorotic yellows virus (CCYV) (Crinivirus), a newly reported virus occurring on cucurbit plants and many other plant species, is transmitted specifically by Bemisia tabaci MEAM1 (B biotype) and MED (Q biotype) cryptic species in a semipersistent manner. This study evaluated the impacts of CCYV on B. tabaci to better understand the plant-virus-vector interactions. By using CCYV-B. tabaci MED-cucumber as the model, we investigated whether or how a semipersistent plant virus impacts the biology of its whitefly vector. CCYV mRNAs were detectable in nymphs from first to fourth instars and adults of B. tabaci with different titers. Nymph instar durations and adult longevity of female whiteflies greatly extended on CCYV-infected plants, but nymph instar durations and adult longevity of male whiteflies were not significantly influenced. In addition, the body length and oviposition increased in adults feeding on CCYV-infected plants, but the hatching rates of eggs and survival rates of different stages were not affected. Most interestingly, the sex ratio (male:female) significantly reduced to 0.5:1 in whitefly populations on CCYV-infected plants, while the ratio remained about 1:1 on healthy plants. These results indicated that CCYV can significantly impact the biological characteristics of its vector B. tabaci. It is speculated that CCYV and B. tabaci have established a typical mutualist relationship mediated by host plants.


Assuntos
Crinivirus/patogenicidade , Hemípteros , Insetos Vetores , Animais , Tamanho Corporal , Cucumis/virologia , Fertilidade , Hemípteros/fisiologia , Hemípteros/virologia , Interações entre Hospedeiro e Microrganismos , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Longevidade , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Razão de Masculinidade , Viroses/transmissão
13.
Plant Physiol ; 179(4): 1486-1501, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700539

RESUMO

The skin of fleshy fruit is typically covered by a thick cuticle. Some fruit species develop different forms of layers directly above their skin. Reticulation, for example, is a specialized suberin-based coating that ornaments some commercially important melon (Cucumis melo) fruit and is an important quality trait. Despite its importance, the structural, molecular, and biochemical features associated with reticulation are not fully understood. Here, we performed a multilevel investigation of structural attributes, chemical composition, and gene expression profiles on a set of reticulated and smooth skin melons. High-resolution microscopy, surface profiling, and histochemical staining assays show that reticulation comprises cells with heavily suberized walls accumulating large amounts of typical suberin monomers, as well as lignified cells localized underneath the specialized suberized cell layer. Reticulated skin was characterized by induced expression of biosynthetic genes acting in the core phenylpropanoid, suberin, lignin, and lignan pathways. Transcripts of genes associated with lipid polymer assembly, cell wall organization, and loosening were highly enriched in reticulated skin tissue. These signatures were exclusive to reticulated structures and absent in both the smooth surfaces observed in between reticulated regions and in the skin of smooth fruit. Our data provide important insights into the molecular and metabolic bases of reticulation and its tight association with skin ligno-suberization during melon fruit development. Moreover, these insights are likely to contribute to melon breeding programs aimed at improving postharvest qualities associated with fleshy fruit surface layers.


Assuntos
Cucumis/anatomia & histologia , Frutas/anatomia & histologia , Vias Biossintéticas/genética , Parede Celular/ultraestrutura , Cucumis/genética , Cucumis/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Lipídeos/biossíntese , Lipídeos de Membrana/biossíntese , Metabolômica , Fenótipo , Células Vegetais/metabolismo , RNA Mensageiro , Propriedades de Superfície
14.
Genome ; 63(12): 629-641, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32877612

RESUMO

Transferring desired genes from wild species to cultivars through alien addition lines (AALs) has been shown to be an effective method for genetic improvement. Cucumis hystrix Chakr. (HH, 2n = 24) is a wild species of Cucumis that possesses many resistant genes. A synthetic allotetraploid species, C. hytivus (HHCC, 2n = 38), was obtained from the cross between cultivated cucumber, C. sativus (CC, 2n = 14), and C. hystrix followed by chromosome doubling. Cucumis sativus - C. hystrix AALs were developed by continuous backcrossing to the cultivated cucumbers. In this study, 10 different types of AALs (CC-H01, CC-H06, CC-H08, CC-H10, CC-H12, CC-H06+H09, CC-H06+H10, CC-H06+H12, CC-H08+H10, CC-H01+H06+H10) were identified based on the analysis of fluorescence in situ hybridization (FISH) and molecular markers specific to C. hystrix chromosomes. And the behavior of the alien chromosomes in three AALs (CC-H01, CC-H06+H10, CC-H01+H06+H10) at meiosis was investigated. The results showed that alien chromosomes paired with C. sativus chromosome in few pollen mother cells (PMCs). Further, disomic alien addition lines (DAALs) carrying a pair of C. hystrix chromosome H10 were screened from the selfed progenies of CC-H10. Chromosome pairing between genomes provides cytological evidence for the possible introgression of alien chromosome segments. The development of AALs could serve as a key step for exploiting and utilizing valuable genes from C. hystrix.


Assuntos
Cucumis sativus/genética , Cucumis/genética , Genoma de Planta , Cromossomos de Plantas , Hibridização Genética , Hibridização in Situ Fluorescente , Meiose , Fenótipo , Especificidade da Espécie
15.
Plant J ; 94(2): 393-404, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421854

RESUMO

The important role of polyploidy in plant evolution is widely recognized. However, many questions remain to be explored to address how polyploidy affects the phenotype of the plant. To shed light on the phenotypic and molecular impacts of allopolyploidy, we investigated the leaf development of a synthesized allotetraploid (Cucumis × hytivus), with an emphasis on chlorophyll development. Delayed leaf maturation was identified in C. × hytivus, based on delayed leaf expansion, initial chlorophyll deficiency in the leaves and disordered sink-source transition. Anatomical observations also revealed disturbed chloroplast development in C. ×hytivus. The determination of chlorophyll biosynthesis intermediates suggested that the chlorophyll biosynthesis pathway of C. × hytivus is blocked at the site at which uroporphyrinogen III is catalysed to coproporphyrinogen III. Three chlorophyll biosynthesis-related genes, HEMA1, HEME2 and POR, were significantly repressed in C. × hytivus. Sequence alignment showed both synonymous and non-synonymous substitutions in the HEMA1, HEME2 and POR genes of the parents. Cloning of the chlorophyll biosynthetic genes suggested the retention of homoeologs. In addition, a chimeric clone of the HEMA1 gene that consisted of homologous genes from the parents was identified in C. × hytivus. Overall, our results showed that allopolyploidization in Cucumis has resulted in disturbed chloroplast development and reduced chlorophyll biosynthesis caused by the repressed expression of duplicated homologous genes, which further led to delayed leaf maturation in the allotetraploid, C. × hytivus. The preferential retention/loss of certain types of genes and non-reciprocal homoeologous recombination were also supported in the present study, which provides new insights into the impact of allopolyploidy.


Assuntos
Cucumis/metabolismo , Folhas de Planta/metabolismo , Poliploidia , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Cucumis/crescimento & desenvolvimento , Genes de Plantas , Redes e Vias Metabólicas , Folhas de Planta/crescimento & desenvolvimento , Recombinação Genética , Tetraploidia
16.
BMC Plant Biol ; 19(1): 471, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694540

RESUMO

BACKGROUND: Meiosis of newly formed allopolyploids frequently encounter perturbations induced by the merging of divergent and hybridizable genomes. However, to date, the meiotic properties of allopolyploids with dysploid parental karyotypes have not been studied in detail. The allotetraploid Cucumis ×hytivus (HHCC, 2n = 38) was obtained from interspecific hybridization between C. sativus (CC, 2n = 14) and C. hystrix (HH, 2n = 24) followed by chromosome doubling. The results of this study thus offer an excellent opportunity to explore the meiotic properties of allopolyploids with dysploid parental karyotypes. RESULTS: In this report, we describe the meiotic properties of five chromosomes (C5, C7, H1, H9 and H10) and two genomes in interspecific hybrids and C. ×hytivus (the 4th and 14th inbred family) through oligo-painting and genomic in situ hybridization (GISH). We show that 1) only two translocations carrying C5-oligo signals were detected on the chromosomes C2 and C4 of one 14th individual by the karyotyping of eight 4th and 36 14th plants based on C5- and C7-oligo painting, and possible cytological evidence was observed in meiosis of the 4th generation; 2) individual chromosome have biases for homoeologous pairing and univalent formation in F1 hybrids and allotetraploids; 3) extensive H-chromosome autosyndetic pairings (e.g., H-H, 25.5% PMCs) were observed in interspecific F1 hybrid, whereas no C-chromosome autosyndetic pairings were observed (e.g. C-C); 4) the meiotic properties of two subgenomes have significant biases in allotetraploids: H-subgenome exhibits higher univalent and chromosome lagging frequencies than C-subgenome; and 5) increased meiotic stability in the S14 generation compared with the S4 generation, including synchronous meiosis behavior, reduced incidents of univalent and chromosome lagging. CONCLUSIONS: These results suggest that the meiotic behavior of two subgenomes has dramatic biases in response to interspecific hybridization and allopolyploidization, and the meiotic behavior harmony of subgenomes is a key subject of meiosis evolution in C. ×hytivus. This study helps to elucidate the meiotic properties and evolution of nascent allopolyploids with the dysploid parental karyotypes.


Assuntos
Cromossomos de Plantas , Cucumis/genética , Meiose/genética , Tetraploidia , Coloração Cromossômica , Hibridização Genética , Hibridização in Situ Fluorescente/métodos , Cariótipo , Translocação Genética
17.
Soft Matter ; 15(2): 237-242, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30543253

RESUMO

The mechanical behavior of cellular matter in two dimensions can be inferred from geometric information near its energetic ground state. Here it is shown that the much larger set of all metastable state energies is universally described by a systematic expansion in moments of the joint probability distribution of size (area) and topology (number of neighbors). The approach captures bounds to the entire range of metastable state energies and quantitatively identifies any such state. The resulting energy landscape is invariant across different classes of energy functionals, across simulation techniques, and across system polydispersities. The theory also finds a threshold in tissue adhesion beyond which no metastable states are possible. Mechanical properties of cellular matter in biological and technological applications can thus be identified by visual information only.


Assuntos
Cucumis/citologia , Drosophila/citologia , Termodinâmica , Algoritmos , Animais , Fenômenos Biomecânicos , Simulação por Computador , Células Epiteliais/citologia , Modelos Biológicos , Epiderme Vegetal/citologia , Probabilidade
18.
Int J Mol Sci ; 20(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141960

RESUMO

Cover crops are key determinants of the ecological stability and sustainability of continuous cropping soils. However, their agro-ecological role in differentially reshaping the microbiome structure and functioning under a degraded agroecosystem remains poorly investigated. Therefore, structural and metabolic changes in soil bacterial community composition in response to diverse plant species were assessed. Winter catch leafy vegetables crops were introduced as cover plants in a cucumber-fallow period. The results indicate that cover crop diversification promoted beneficial changes in soil chemical and biological attributes, which increased crop yields in a cucumber double-cropping system. Illumina high-throughput sequencing of 16S rRNA genes indicated that the bacterial community composition and diversity changed through changes in the soil properties. Principal component analysis (PCA) coupled with non-metric multidimensional scaling (NMDS) analysis reveals that the cover planting shaped the soil microbiome more than the fallow planting (FC). Among different cropping systems, spinach-cucumber (SC) and non-heading Chinese cabbage-cucumber (NCCC) planting systems greatly induced higher soil nutrient function, biological activity, and bacterial diversity, thus resulting in higher cucumber yield. Quantitative analysis of linear discriminant analysis effect size (LEfSe) indicated that Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were the potentially functional and active soil microbial taxa. Rhizospheres of NCCC, leaf lettuce-cucumber (LLC), coriander-cucumber (CC), and SC planting systems created hotspots for metabolic capabilities of abundant functional genes, compared to FC. In addition, the predictive metabolic characteristics (metabolism and detoxification) associated with host-plant symbiosis could be an important ecological signal that provides direct evidence of mediation of soil structure stability. Interestingly, the plant density of non-heading Chinese cabbage and spinach species was capable of reducing the adverse effect of arsenic (As) accumulation by increasing the function of the arsenate reductase pathway. Redundancy analysis (RDA) indicated that the relative abundance of the core microbiome can be directly and indirectly influenced by certain environmental determinants. These short-term findings stress the importance of studying cover cropping systems as an efficient biological tool to protect the ecological environment. Therefore, we can speculate that leafy crop diversification is socially acceptable, economically justifiable, and ecologically adaptable to meet the urgent demand for intensive cropping systems to promote positive feedback between crop-soil sustainable intensification.


Assuntos
Produção Agrícola/métodos , Cucumis/microbiologia , Microbiota , Rizosfera , Microbiologia do Solo , China , Cucumis/crescimento & desenvolvimento , RNA Ribossômico 16S/genética
19.
Mol Plant Microbe Interact ; 31(10): 995-1005, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29714096

RESUMO

Chemotaxis-mediated response to root exudates, initiated by sensing-specific ligands through methyl-accepting chemotaxis proteins (MCP), is very important for root colonization and beneficial functions of plant-growth-promoting rhizobacteria (PGPR). Systematic identification of chemoattractants in complex root exudates and their sensing chemoreceptors in PGPR is helpful for enhancing their recruitment and colonization. In this study, 39 chemoattractants and 5 chemorepellents, including amino acids, organic acids, and sugars, were identified from 98 tested components of root exudates for the well-studied PGPR strain Bacillus amyloliquefaciens SQR9. Interestingly, mutant stain SQR9Δ8mcp, with all eight putative chemoreceptors completely deleted, lost the chemotactic responses to those 44 compounds. Gene complementation, chemotaxis assay, and isothermal titration calorimetry analysis revealed that McpA was mainly responsible for sensing organic acids and amino acids, while McpC was mostly for amino acids. These two chemoreceptors may play important roles in the rhizosphere chemotaxis of SQR9. In contrast, the B. amyloliquefaciens-unique chemoreceptor McpR was specifically responsible for arginine, and residues Tyr-78, Thr-131, and Asp-162 were critical for arginine binding. This study not only deepened our insights into PGPR-root interaction but also provided useful information to enhance the rhizosphere chemotaxis mobility and colonization of PGPR, which will promote their application in agricultural production.


Assuntos
Bacillus amyloliquefaciens/efeitos dos fármacos , Bacillus amyloliquefaciens/fisiologia , Quimiotaxia/fisiologia , Exsudatos de Plantas/química , Exsudatos de Plantas/farmacologia , Raízes de Plantas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cucumis/crescimento & desenvolvimento , Cucumis/microbiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo
20.
Mol Plant Microbe Interact ; 31(2): 274-282, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28990487

RESUMO

In Pseudomonas protegens CHA0 and other fluorescent pseudomonads, the Gac/Rsm signal transduction pathway is crucial for the expression of secondary metabolism and the biological control of fungi, nematodes, and insects. Based on the findings of a previous metabolomic study, the role of intracellular γ-aminobutyrate (GABA) as a potential signal in the Gac/Rsm pathway was investigated herein. The function and regulation of a gabDT (c01870-c01880) gene cluster in strain CHA0 were described. The gabT gene encoded GABA transaminase (GABAT) and enabled the growth of the bacterium on GABA, whereas the upstream gabD gene (annotated as a gene encoding succinic semialdehyde dehydrogenase) had an unknown function. A gacA mutant exhibited low GABAT activity, leading to the markedly greater intracellular accumulation of GABA than in the wild type. In the gacA mutant, the RsmA and RsmE proteins caused translational gabD repression, with concomitant gabT repression. Due to very low GABAT activity, the gabT mutant accumulated GABA to high levels. This trait promoted a planktonic lifestyle, reduced biofilm formation, and favored root colonization without exhibiting the highly pleiotropic gacA phenotypes. These results suggest an important role of GABA in the Gac/Rsm-regulated niche adaptation of strain CHA0 to plant roots.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas/fisiologia , Proteínas de Bactérias/genética , Cucumis , Guanosina Tetrafosfato , Mutação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA