RESUMO
Börjeson-Forssman-Lehmann syndrome (BFLS) is an X-linked intellectual disability and endocrine disorder caused by pathogenic variants of plant homeodomain finger gene 6 (PHF6). An understanding of the role of PHF6 in vivo in the development of the mammalian nervous system is required to advance our knowledge of how PHF6 mutations cause BFLS. Here, we show that PHF6 protein levels are greatly reduced in cells derived from a subset of patients with BFLS. We report the phenotypic, anatomical, cellular and molecular characterization of the brain in males and females in two mouse models of BFLS, namely loss of Phf6 in the germline and nervous system-specific deletion of Phf6. We show that loss of PHF6 resulted in spontaneous seizures occurring via a neural intrinsic mechanism. Histological and morphological analysis revealed a significant enlargement of the lateral ventricles in adult Phf6-deficient mice, while other brain structures and cortical lamination were normal. Phf6 deficient neural precursor cells showed a reduced capacity for self-renewal and increased differentiation into neurons. Phf6 deficient cortical neurons commenced spontaneous neuronal activity prematurely suggesting precocious neuronal maturation. We show that loss of PHF6 in the foetal cortex and isolated cortical neurons predominantly caused upregulation of genes, including Reln, Nr4a2, Slc12a5, Phip and ZIC family transcription factor genes, involved in neural development and function, providing insight into the molecular effects of loss of PHF6 in the developing brain.
Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Proteínas Repressoras , Convulsões , Animais , Feminino , Humanos , Masculino , Camundongos , Calcinose/genética , Calcinose/patologia , Calcinose/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Face/anormalidades , Dedos/anormalidades , Hipogonadismo/genética , Hipogonadismo/patologia , Hipogonadismo/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Obesidade , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Convulsões/genética , Convulsões/metabolismo , Transcrição Gênica , Doenças Vestibulares/genética , Doenças Vestibulares/patologiaRESUMO
Allan-Herndon-Dudley syndrome (AHDS) is a rare X-linked disorder that causes severe neurological damage, for which there is no effective treatment. AHDS is due to inactivating mutations in the thyroid hormone transporter MCT8 that impair the entry of thyroid hormones into the brain, resulting in cerebral hypothyroidism. However, the pathophysiology of AHDS is still not fully understood and this is essential to develop therapeutic strategies. Based on evidence suggesting that thyroid hormone deficit leads to alterations in astroglial cells, including gliosis, in this work, we have evaluated astroglial impairments in MCT8 deficiency by means of magnetic resonance imaging, histological, ultrastructural, and immunohistochemical techniques, and by mining available RNA sequencing outputs. Apparent diffusion coefficient (ADC) imaging values obtained from magnetic resonance imaging showed changes indicative of alterations in brain cytoarchitecture in MCT8-deficient patients (n = 11) compared to control subjects (n = 11). Astroglial alterations were confirmed by immunohistochemistry against astroglial markers in autopsy brain samples of an 11-year-old and a 30th gestational week MCT8-deficient subjects in comparison to brain samples from control subjects at similar ages. These findings were validated and further explored in a mouse model of AHDS. Our findings confirm changes in all the astroglial populations of the cerebral cortex in MCT8 deficiency that impact astrocytic metabolic and mitochondrial cellular respiration functions. These impairments arise early in brain development and persist at adult stages, revealing an abnormal distribution, density, morphology of cortical astrocytes, along with altered transcriptome, compatible with an astrogliosis-like phenotype at adult stages. We conclude that astrocytes are potential novel therapeutic targets in AHDS, and we propose ADC imaging as a tool to monitor the progression of neurological impairments and potential effects of treatments in MCT8 deficiency.
Assuntos
Astrócitos , Encéfalo , Transportadores de Ácidos Monocarboxílicos , Hipotonia Muscular , Simportadores , Hormônios Tireóideos , Astrócitos/metabolismo , Astrócitos/patologia , Animais , Camundongos , Humanos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Masculino , Encéfalo/metabolismo , Encéfalo/patologia , Hormônios Tireóideos/metabolismo , Criança , Simportadores/metabolismo , Simportadores/genética , Hipotonia Muscular/metabolismo , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Feminino , Adulto , Imageamento por Ressonância Magnética/métodos , Atrofia MuscularRESUMO
CASK (MIM#300172), encoding a calcium/calmodulin-dependent serine protein kinase, is crucial for synaptic transmission and gene regulation during neural development. Pathogenic variants of CASK are known to cause several neurodevelopmental disorders, including X-linked intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH). This study introduces a novel, de novo synonymous CASK variant (NM_001367721.1: c.1737G>A, p.(Glu579=)), discovered in a male patient diagnosed with MICPCH, characterized by microcephaly, developmental delay, visual impairment, and myoclonic seizures. The variant disrupts a donor splice-site at the end of exon 18. Transcriptomic analysis of blood identified 12 different CASK transcripts secondary to the synonymous variant. Nearly one third of these transcripts were predicted to result in nonsense mediated decay or protein degradation. Protein modeling revealed structural alterations in the PDZ functional domain of CASK, due to exon 18 deletion. Our findings highlight the utility of transcriptomic analysis in demonstrating the underlying disease mechanism in neurodevelopmental disorders.
Assuntos
Guanilato Quinases , Fenótipo , Humanos , Masculino , Guanilato Quinases/genética , Microcefalia/genética , Microcefalia/patologia , Cerebelo/anormalidades , Cerebelo/patologia , Sítios de Splice de RNA/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Éxons/genética , Linhagem , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Malformações do Sistema NervosoRESUMO
Pettigrew syndrome (PGS), an X-linked intellectual disability (XLID), is caused by mutations in the AP1S2 gene. Herein, we described a Thai family with six patients who had severe-to-profound intellectual impairment, limited verbal communication, and varying degrees of limb spasticity. One patient had a unilateral cataract. We demonstrated facial evolution over time, namely coarse facies, long faces, and thick lip vermilions. We identified a novel AP1S2 variant, c.1-2A>G. The mRNA analysis revealed that the variant resulted in splicing defects with leaky splicing, yielding two distinct aberrant transcripts, one of which likely resulting in the mutant protein lacking the first 44 amino acids whereas the other possibly leading to no production of the protein. By performing a literature review, we found 51 patients and 11 AP1S2 pathogenic alleles described and that all the variants were loss-of-function alleles. The severity of ID in Pettigrew syndrome is mostly severe-to-profound (54.8%), followed by moderate (26.2%) and mild. Progressive spasticity was noted in multiple patients. In summary, leaky splicing found in the present family was likely related to the intrafamilial clinical variability. Our data also support the previous notion of variable expression and neuroprogressive nature of the disorder.
Assuntos
Subunidades sigma do Complexo de Proteínas Adaptadoras , Deficiência Intelectual Ligada ao Cromossomo X , Splicing de RNA , Adulto , Pré-Escolar , Feminino , Humanos , Masculino , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Alelos , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação/genética , Linhagem , Fenótipo , Splicing de RNA/genéticaRESUMO
OBJECTIVE: Methyl CpG-binding protein 2 (MECP2) duplication syndrome is a rare X-linked genomic disorder affecting predominantly males, which is usually manifested as epilepsy and autism spectrum disorder (ASD) comorbidity. The transgenic line MeCP2Tg1 was used for mimicking MECP2 duplication syndrome and showed autism-epilepsy co-occurrence. Previous works suggested that the excitatory/inhibitory (E/I) imbalance is a potential common mechanism for both epilepsy and ASD. The projection neurons and parvalbumin (PV) interneurons account for the majority of E/I balance in the hippocampus. Therefore, we explored how structural changes of projection and PV+ neurons occur in the hippocampus of MeCP2Tg1 mice and whether these morphological changes contribute to epilepsy susceptibility. METHODS: We used the interneuron Designer receptors exclusively activated by designer drugs mouse model to inhibit inhibitory neurons in the hippocampus to verify the epilepsy susceptibility of MeCP2Tg1 (FVB, an inbred strain named as sensitivity to Friend leukemia virus) mice. Electroencephalograms were recorded for the definition of seizure. We performed retro-orbital injection of virus in MeCP2Tg1 (FVB):CaMKIIα-Cre (C57BL/6) mice or MeCP2Tg1:PV-Cre (C57BL/6) mice and their littermate controls to specifically label projection and PV+ neurons for structural analysis. RESULTS: Epilepsy susceptibility was increased in MeCP2Tg1 mice. There was a reduced number of PV neurons and reduced dendritic complexity in the hippocampus of MeCP2Tg1 mice. The dendritic complexity in MeCP2Tg1 mice was increased compared to wild-type mice, and total dendritic spine density in dentate gyrus of MeCP2Tg1 mice was also increased. Total dendritic spine density was increased in CA1 of MeCP2Tg1 mice. SIGNIFICANCE: Overexpression of MeCP2 may disrupt crucial signaling pathways, resulting in decreased dendritic complexity of PV interneurons and increased dendritic spine density of projection neurons. This reciprocal modulation of excitatory and inhibitory neuronal structures associated with MeCP2 implies its significance as a potential target in the development of epilepsy and offers a novel perspective on the co-occurrence of autism and epilepsy.
Assuntos
Epilepsia , Hipocampo , Interneurônios , Parvalbuminas , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/patologia , Epilepsia/genética , Hipocampo/patologia , Hipocampo/metabolismo , Interneurônios/patologia , Interneurônios/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Transgênicos , Parvalbuminas/metabolismoRESUMO
Börjeson-Forssman-Lehmann syndrome (BFLS) is an intellectual disability and endocrine disorder caused by plant homeodomain finger 6 (PHF6) mutations. Individuals with BFLS present with short stature. We report a mouse model of BFLS, in which deletion of Phf6 causes a proportional reduction in body size compared with control mice. Growth hormone (GH) levels were reduced in the absence of PHF6. Phf6-/Y animals displayed a reduction in the expression of the genes encoding GH-releasing hormone (GHRH) in the brain, GH in the pituitary gland and insulin-like growth factor 1 (IGF1) in the liver. Phf6 deletion specifically in the nervous system caused a proportional growth defect, indicating a neuroendocrine contribution to the phenotype. Loss of suppressor of cytokine signaling 2 (SOCS2), a negative regulator of growth hormone signaling partially rescued body size, supporting a reversible deficiency in GH signaling. These results demonstrate that PHF6 regulates the GHRH/GH/IGF1 axis.
Assuntos
Regulação para Baixo , Epilepsia/metabolismo , Face/anormalidades , Dedos/anormalidades , Transtornos do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/metabolismo , Hipogonadismo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Obesidade/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Epilepsia/sangue , Epilepsia/patologia , Face/patologia , Dedos/patologia , Transtornos do Crescimento/sangue , Transtornos do Crescimento/patologia , Hormônio do Crescimento/sangue , Hipogonadismo/sangue , Hipogonadismo/patologia , Hipotálamo/metabolismo , Fator de Crescimento Insulin-Like I/genética , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/sangue , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Nervoso/metabolismo , Obesidade/sangue , Obesidade/patologia , Especificidade de Órgãos , Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismoRESUMO
Mutations in the polyglutamine tract-binding protein 1 (PQBP1) gene are associated with Renpenning syndrome, which is characterized by microcephaly, intellectual deficiency, short stature, small testes, and distinct facial dysmorphism. Studies using different models have revealed that PQBP1 plays essential roles in neural development and function. In this mini-review, we summarize recent findings relating to the roles of PQBP1 in these processes, including in the regulation of neural progenitor proliferation, neural projection, synaptic growth, neuronal survival, and cognitive function via mRNA transcription and splicing-dependent or -independent processes. The novel findings provide insights into the mechanisms underlying the pathogenesis of Renpenning syndrome and may advance drug discovery and treatment for this condition.
Assuntos
Paralisia Cerebral , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Humanos , Proteínas de Transporte/química , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação , Paralisia Cerebral/genética , Paralisia Cerebral/patologia , Deficiência Intelectual/genética , Proteínas de Ligação a DNA/genéticaRESUMO
Alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX), a DAXX (death domain-associated protein) interacting protein, is often lost in cells using the alternative lengthening of telomeres (ALT) pathway, but it is not known how ATRX loss leads to ALT. We report that ATRX deletion from mouse cells altered the repair of telomeric double-strand breaks (DSBs) and induced ALT-like phenotypes, including ALT-associated promyelocytic leukemia (PML) bodies (APBs), telomere sister chromatid exchanges (T-SCEs), and extrachromosomal telomeric signals (ECTSs). Mechanistically, we show that ATRX affects telomeric DSB repair by promoting cohesion of sister telomeres and that loss of ATRX in ALT cells results in diminished telomere cohesion. In addition, we document a role for DAXX in the repair of telomeric DSBs. Removal of telomeric cohesion in combination with DAXX deficiency recapitulates all telomeric DSB repair phenotypes associated with ATRX loss. The data reveal that ATRX has an effect on telomeric DSB repair and that this role involves both telomere cohesion and a DAXX-dependent pathway.
Assuntos
Proteínas Correpressoras/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Chaperonas Moleculares/fisiologia , Troca de Cromátide Irmã/genética , Telômero/genética , Proteína Nuclear Ligada ao X/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Células HeLa , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Camundongos , Camundongos Knockout , Transdução de Sinais/genética , Telômero/metabolismo , Homeostase do Telômero/genética , Talassemia alfa/genética , Talassemia alfa/patologiaRESUMO
Börjeson-Forssman-Lehmann syndrome (BFLS) is a rare X-linked intellectual disability. The main features of the patients include intellectual disability/global developmental delay, characteristic face, anomalies of fingers and toes, hypogonadism, linear skin hyperpigmentation, and tooth abnormalities in female patients, and obesity in male patients. A case of BFLS caused by a novel mutation of PHF6 gene who was treated in the Department of Pediatrics, Xiangya Hospital, Central South University was reported. The 11 months old girl presented the following symptons: Global developmental delay, characteristic face, sparse hair, ocular hypertelorism, flat nasal bridge, hairy anterior to the tragus, thin upper lip, dental anomalies, ankyloglossia, simian line, tapering fingers, camptodactylia, and linear skin hyperpigmentation. The gene results of the second-generation sequencing technology showed that there was a novel heterozygous mutation site c.346C>T (p.Arg116*) of the PHF6 (NM032458.3), variation rating as pathogenic variation. During the follow-up, the patient developed astigmatism, strabismus, awake bruxism, and stereotyped behavior, and the linear skin hyperpigmentation became gradually more evident. The disease is lack of effective therapy so far.
Assuntos
Hipogonadismo , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Humanos , Masculino , Feminino , Criança , Lactente , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/complicações , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Obesidade/complicações , Hipogonadismo/genética , Hipogonadismo/patologiaRESUMO
BACKGROUND: The diagnostic process for uncommon disorders with similar manifestations is complicated and requires newer technology, like gene sequencing for a correct diagnosis. MAIN BODY: We described two brothers clinically diagnosed with Carpenter syndrome, which is a condition characterized by the premature fusion of certain skull bones (craniosynostosis), abnormalities of the fingers and toes, and other developmental problems, for which they underwent craniotomies. However, whole exome sequencing analysis concluded a novel pathological variation in the ATRX chromatin remodeler gene and protein remodeling demonstrated structural variations that decreased the function, giving a completely different diagnosis to these patients. CONCLUSION: Our study focuses on the importance of using newer technologies, such as whole exome sequencing analysis, in patients with ambiguous phenotypes.
Assuntos
Acrocefalossindactilia/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas Nucleares/genética , Proteína Nuclear Ligada ao X/genética , Talassemia alfa/genética , Acrocefalossindactilia/patologia , DNA Helicases/genética , Exoma/genética , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação/genética , Fenótipo , Sequenciamento do Exoma , Talassemia alfa/patologiaRESUMO
Snyder-Robinson syndrome (SRS) is an X-linked intellectual disability syndrome caused by a loss-of-function mutation in the spermine synthase (SMS) gene. Primarily affecting males, the main manifestations of SRS include osteoporosis, hypotonic stature, seizures, cognitive impairment, and developmental delay. Because there is no cure for SRS, treatment plans focus on alleviating symptoms rather than targeting the underlying causes. Biochemically, the cells of individuals with SRS accumulate excess spermidine, whereas spermine levels are reduced. We recently demonstrated that SRS patient-derived lymphoblastoid cells are capable of transporting exogenous spermine and its analogs into the cell and, in response, decreasing excess spermidine pools to normal levels. However, dietary supplementation of spermine does not appear to benefit SRS patients or mouse models. Here, we investigated the potential use of a metabolically stable spermine mimetic, (R,R)-1,12-dimethylspermine (Me2SPM), to reduce the intracellular spermidine pools of SRS patient-derived cells. Me2SPM can functionally substitute for the native polyamines in supporting cell growth while stimulating polyamine homeostatic control mechanisms. We found that both lymphoblasts and fibroblasts from SRS patients can accumulate Me2SPM, resulting in significantly decreased spermidine levels with no adverse effects on growth. Me2SPM administration to mice revealed that Me2SPM significantly decreases spermidine levels in multiple tissues. Importantly, Me2SPM was detectable in brain tissue, the organ most affected in SRS, and was associated with changes in polyamine metabolic enzymes. These findings indicate that the (R,R)-diastereomer of 1,12-Me2SPM represents a promising lead compound in developing a treatment aimed at targeting the molecular mechanisms underlying SRS pathology.
Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/patologia , Espermidina/metabolismo , Espermina/análogos & derivados , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Poliaminas/análise , Poliaminas/metabolismo , Espermina/administração & dosagem , Espermina/metabolismo , Espermina/farmacologia , Espermina Sintase/genética , Células Tumorais CultivadasRESUMO
Renpenning syndrome belongs to a group of X-linked intellectual disability disorders. The Renpenning syndrome-associated protein PQBP1 (polyglutamine-binding protein 1) is intrinsically disordered, associates with several splicing factors, and is involved in pre-mRNA splicing. PQBP1 uses its C-terminal YxxPxxVL motif for binding to the splicing factor TXNL4A (thioredoxin like 4A), but the biological function of this interaction has yet to be elucidated. In this study, using recombinant protein expression, in vitro binding assays, and immunofluorescence microscopy in HeLa cells, we found that a recently reported X-linked intellectual disability-associated missense mutation, resulting in the PQBP1-P244L variant, disrupts the interaction with TXNL4A. We further show that this interaction is critical for the subcellular location of TXNL4A. In combination with other PQBP1 variants lacking a functional nuclear localization signal required for recognition by the nuclear import receptor karyopherin ß2, we demonstrate that PQBP1 facilitates the nuclear import of TXNL4A via a piggyback mechanism. These findings expand our understanding of the molecular basis of the PQBP1-TXNL4A interaction and of the etiology and pathogenesis of Renpenning syndrome and related disorders.
Assuntos
Paralisia Cerebral/genética , Proteínas de Ligação a DNA/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Ribonucleoproteína Nuclear Pequena U5/genética , beta Carioferinas/genética , Transporte Ativo do Núcleo Celular/genética , Paralisia Cerebral/patologia , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação de Sentido Incorreto/genética , Ligação Proteica/genética , Precursores de RNA/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Transdução de Sinais/genéticaRESUMO
Allan-Herndon-Dudley is an X-linked recessive syndrome caused by pathogenic variants in the SLC16A2 gene. Clinical manifestations are a consequence of impaired thyroid metabolism and aberrant transport of thyroid hormones to the brain. Carrier females are generally asymptomatic and may show subtle symptoms of the disease. We describe a female with a complete Allan-Herndon-Dudley phenotype, carrying a de novo 543-kb deletion of the X chromosome. The deletion encompasses exon 1 of the SLC16A2 gene and JPX and FTX genes; it is known that the latter two genes participate in the X-inactivation process upregulating XIST gene expression. Subsequent studies in the patient demonstrated the preferential expression of the X chromosome with the JPX and FTX deletion.
Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mutação/genética , Inativação do Cromossomo X/genética , Encéfalo/patologia , Criança , Feminino , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonia Muscular/diagnóstico , Atrofia Muscular/diagnóstico , Fenótipo , Simportadores/genéticaRESUMO
MECP2 duplication syndrome (MDS), a rare X-linked genomic disorder affecting predominantly males, is caused by duplication of the chromosomal region containing the methyl CpG binding protein-2 (MECP2) gene, which encodes methyl-CpG-binding protein 2 (MECP2), a multi-functional protein required for proper brain development and maintenance of brain function during adulthood. Disease symptoms include severe motor and cognitive impairment, delayed or absent speech development, autistic features, seizures, ataxia, recurrent respiratory infections, and shortened lifespan. The cellular and molecular mechanisms by which a relatively modest increase in MECP2 protein causes such severe disease symptoms are poorly understood and consequently there are no treatments available for this fatal disorder. This review summarizes what is known to date about the structure and zcomplex regulation of MECP2 and its many functions in the developing and adult brain. Additionally, recent experimental findings on the cellular and molecular underpinnings of MDS based on cell culture and mouse models of the disorder are reviewed. The emerging picture from these studies is that MDS is a neurodegenerative disorder in which neurons die in specific parts of the central nervous system, including the cortex, hippocampus, cerebellum, and spinal cord. Neuronal death likely results from astrocytic dysfunction, including a breakdown of glutamate homeostatic mechanisms. The role of elevations in the expression of glial acidic fibrillary protein (GFAP) in astrocytes and the microtubule-associated protein, Tau, in neurons to the pathogenesis of MDS is discussed. Lastly, potential therapeutic strategies to potentially treat MDS are discussed.
Assuntos
Encéfalo/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação/fisiologiaRESUMO
Heterozygous variants in USP9X are associated with female-restricted X-linked mental retardation (MRXS99F), a rare syndrome characterized by neurodevelopmental delay, intellectual disability (ID), and a wide variety of additional congenital anomalies. Here, we report a girl harboring a novel de novo loss-of-function variant in USP9X (c.4091delinsAG, p.Thr1364Lysfs*7), and literature review revealed novel prenatal features associated with MRXS99F, expanding the genotypic and phenotypic landscape of the syndrome. It is important to consider X-linked diseases in girls with ID and perform directed molecular investigation to provide correct diagnosis and prognosis.
Assuntos
Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Transtornos do Neurodesenvolvimento/genética , Ubiquitina Tiolesterase/genética , Pré-Escolar , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/patologia , Mutação com Perda de Função/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Transtornos do Neurodesenvolvimento/patologia , FenótipoRESUMO
BACKGROUND: MECP2 Duplication syndrome (MDS) is a rare X-linked genomic disorder that is caused by interstitial chromosomal duplications at Xq28 encompassing the MECP2 gene. Although phenotypic features in MDS have been described, there is a limited understanding of the range of severity of these features, and how they evolve with age. METHODS: The cross-sectional results of N = 69 participants (ages 6 months-33 years) enrolled in a natural history study of MDS are presented. Clinical severity was assessed using a clinician-report measure as well as a parent-report measure. Data was also gathered related to the top 3 concerns of parents as selected from the most salient symptoms related to MDS. The Child Health Questionnaire was also utilized to obtain parental reports of each child's quality of life to establish disease burden. RESULTS: The results of linear regression from the clinician-reported measure show that overall clinical severity scores, motor dysfunction, and functional skills are significantly worse with increasing age. Top concerns rated by parents included lack of effective communication, abnormal walking/balance issues, constipation, and seizures. Higher levels of clinical severity were also related to lower physical health quality of life scores as reported by parents. CONCLUSIONS: The data suggest that increasing levels of clinical severity are noted with older age, and this is primarily attributable to motor dysfunction, and functional skills. The results provide an important foundation for creating an MDS-specific severity scale highlighting the most important domains to target for treatment trials and will help clinicians and researchers define clinically meaningful changes.
Assuntos
Duplicação Cromossômica/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína 2 de Ligação a Metil-CpG/genética , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Efeitos Psicossociais da Doença , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/epidemiologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Lactente , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/epidemiologia , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Fenótipo , Qualidade de Vida , Índice de Gravidade de Doença , Adulto JovemRESUMO
The severe impact on brain function and lack of effective therapy for patients with creatine (Cr) transporter deficiency motivated the generation of three ubiquitous Slc6a8 deficient mice (-/y). While each mouse knock-out line has similar behavioral effects at 2 to 3 months of age, other features critical to the efficient use of these mice in drug discovery are unclear or lacking: the concentration of Cr in brain and heart differ widely between mouse lines, there are limited data on histopathologic changes, and no data on Cr uptake. Here, we determined survival, measured endogenous Cr and uptake of its deuterium-labeled analogue Cr-d3 using a liquid chromatography coupled with tandem mass spectrometry assay, and performed comprehensive histopathologic examination on the Slc6a8-/y mouse developed by Skelton et al. Our results show that Slc6a8-/y mice have widely varying organ-specific uptake of Cr-d3, significantly diminished growth with the exception of brain, progressive vacuolar myopathy, and markedly shortened lifespan.
Assuntos
Encefalopatias Metabólicas Congênitas/genética , Creatina/deficiência , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Animais , Encefalopatias Metabólicas Congênitas/patologia , Cromatografia Líquida , Creatina/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Camundongos , Camundongos Knockout , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Espectrometria de Massas em TandemRESUMO
PURPOSE: Marfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan-Fryns syndrome explain no more than 20% of subjects. METHODS: To further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic. RESULTS: We identified eight genes with de novo variants (DNVs) in at least two unrelated individuals (ARID1B, ATP1A1, DLG4, EHMT1, NFIX, NSD1, NUP205 and ZEB2). Using simulation models, we showed that five genes (DLG4, NFIX, EHMT1, ZEB2 and ATP1A1) met conservative Bonferroni genomewide significance for an excess of the observed de novo point variants. Overall, at least one pathogenic or likely pathogenic variant was identified in 54.7% of subjects (35/64). These variants fell within 27 genes previously associated with Mendelian disorders, including NSD1 and NFIX, which are known to be mutated in overgrowth syndromes. CONCLUSION: We demonstrated that DNVs were enriched in chromatin remodelling (p=2×10-4) and genes regulated by the fragile X mental retardation protein (p=3×10-8), highlighting overlapping genetic mechanisms between MHID and related neurodevelopmental disorders.
Assuntos
Anormalidades Craniofaciais/genética , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/genética , Síndrome de Marfan/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Fatores de Transcrição NFI/genética , Adolescente , Adulto , Criança , Montagem e Desmontagem da Cromatina , Anormalidades Craniofaciais/patologia , Exoma/genética , Feminino , Predisposição Genética para Doença , Humanos , Deficiência Intelectual/patologia , Masculino , Síndrome de Marfan/patologia , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Pessoa de Meia-Idade , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Sequenciamento do Exoma , Adulto JovemRESUMO
MECP2 duplication syndrome (MDS) is an X-linked neurodevelopmental disorder characterized by a severe to profound intellectual disability, early onset hypotonia and diverse psycho-motor and behavioural features. To date, fewer than 200 cases have been published. We report the clinical and molecular characterization of a Spanish MDS cohort that included 19 boys and 2 girls. Clinical suspicions were confirmed by array comparative genomic hybridization and multiplex ligation-dependent probe amplification (MLPA). Using, a custom in-house MLPA assay, we performed a thorough study of the minimal duplicated region, from which we concluded a complete duplication of both MECP2 and IRAK1 was necessary for a correct MDS diagnosis, as patients with partial MECP2 duplications lacked some typical clinical traits present in other MDS patients. In addition, the duplication location may be related to phenotypic severity. This observation may provide a new approach for genotype-phenotype correlations, and thus more personalized genetic counselling.
Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína 2 de Ligação a Metil-CpG/genética , Adolescente , Adulto , Criança , Pré-Escolar , Cromossomos Humanos X/genética , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/patologia , Feminino , Estudos de Associação Genética , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Linhagem , Medicina de Precisão , Adulto JovemRESUMO
Since the discovery of the FMR1 gene and the clinical and molecular characterization of Fragile X Syndrome in 1991, more than 141 genes have been identified in the X-chromosome in these 28 years thanks to applying continuously evolving molecular techniques to X-linked intellectual disability (XLID) families. In the past decade, array comparative genomic hybridization and next generation sequencing technologies have accelerated gene discovery exponentially. Classically, XLID has been subdivided in syndromic intellectual disability (S-XLID)-where intellectual disability (ID) is always associated with other recognizable physical and/or neurological features-and non-specific or non-syndromic intellectual disability (NS-XLID) where the only common feature is ID. Nevertheless, new advances on the study of these entities have showed that this classification is not always clear-cut because distinct variants in several of these XLID genes can result in S-XLID as well as in NS-XLID. This review focuses on the current knowledge on the XLID genes involved in non-syndromic forms, with the emphasis on their pathogenic mechanism, thus allowing the possibility to elucidate why some of them can give both syndromic and non-syndromic phenotypes.