RESUMO
Protein aggregation causes a wide range of neurodegenerative diseases. Targeting and removing aggregates, but not the functional protein, is a considerable therapeutic challenge. Here, we describe a therapeutic strategy called "RING-Bait," which employs an aggregating protein sequence combined with an E3 ubiquitin ligase. RING-Bait is recruited into aggregates, whereupon clustering dimerizes the RING domain and activates its E3 function, resulting in the degradation of the aggregate complex. We exemplify this concept by demonstrating the specific degradation of tau aggregates while sparing soluble tau. Unlike immunotherapy, RING-Bait is effective against both seeded and cell-autonomous aggregation. RING-Bait removed tau aggregates seeded from Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) brain extracts and was also effective in primary neurons. We used a brain-penetrant adeno-associated virus (AAV) to treat P301S tau transgenic mice, reducing tau pathology and improving motor function. A RING-Bait strategy could be applied to other neurodegenerative proteinopathies by replacing the Bait sequence to match the target aggregate.
Assuntos
Doença de Alzheimer , Camundongos Transgênicos , Neurônios , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Neurônios/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Paralisia Supranuclear Progressiva/metabolismo , Agregação Patológica de Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Dependovirus/metabolismo , Dependovirus/genética , Feminino , Células HEK293 , Masculino , Agregados Proteicos , Atividade MotoraRESUMO
Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.
Assuntos
Redes Reguladoras de Genes , Análise de Célula Única , Animais , Feminino , Humanos , Camundongos , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Vetores Genéticos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/citologia , Análise de Célula Única/métodos , Transcriptoma/genética , Linhagem Celular , Transcrição GênicaRESUMO
Precise targeting of large transgenes to T cells using homology-directed repair has been transformative for adoptive cell therapies and T cell biology. Delivery of DNA templates via adeno-associated virus (AAV) has greatly improved knockin efficiencies, but the tropism of current AAV serotypes restricts their use to human T cells employed in immunodeficient mouse models. To enable targeted knockins in murine T cells, we evolved Ark313, a synthetic AAV that exhibits high transduction efficiency in murine T cells. We performed a genome-wide knockout screen and identified QA2 as an essential factor for Ark313 infection. We demonstrate that Ark313 can be used for nucleofection-free DNA delivery, CRISPR-Cas9-mediated knockouts, and targeted integration of large transgenes. Ark313 enables preclinical modeling of Trac-targeted CAR-T and transgenic TCR-T cells in immunocompetent models. Efficient gene targeting in murine T cells holds great potential for improved cell therapies and opens avenues in experimental T cell immunology.
Assuntos
Dependovirus , Engenharia Genética , Linfócitos T , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Marcação de Genes , Engenharia Genética/métodosRESUMO
Directed evolution of AAV capsids has been a successful strategy for generating bespoke serotypes to target gene therapies more specifically to the intended tissue. This has now been achieved for the largest organ, skeletal muscle, by selecting for an RGD containing integrin binding heptamer in a hypervariable region of the capsid of AAV9.
Assuntos
Dependovirus , Vetores Genéticos , Capsídeo , Proteínas do Capsídeo/genética , Dependovirus/genética , Músculo EsqueléticoRESUMO
In this issue of Cell, Wang et al. come to the unsettling conclusion that adeno-associated viruses, despite being engineered for glia-specific expression, can become widely active in endogenous neurons, misleading researchers in their quest for efficient conversion of glia into neurons for brain repair.
Assuntos
Neuroglia , Neurônios , Encéfalo , DependovirusRESUMO
Retinal ganglion cells (RGCs) are the sole output neurons that transmit visual information from the retina to the brain. Diverse insults and pathological states cause degeneration of RGC somas and axons leading to irreversible vision loss. A fundamental question is whether manipulation of a key regulator of RGC survival can protect RGCs from diverse insults and pathological states, and ultimately preserve vision. Here, we report that CaMKII-CREB signaling is compromised after excitotoxic injury to RGC somas or optic nerve injury to RGC axons, and reactivation of this pathway robustly protects RGCs from both injuries. CaMKII activity also promotes RGC survival in the normal retina. Further, reactivation of CaMKII protects RGCs in two glaucoma models where RGCs degenerate from elevated intraocular pressure or genetic deficiency. Last, CaMKII reactivation protects long-distance RGC axon projections in vivo and preserves visual function, from the retina to the visual cortex, and visually guided behavior.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Citoproteção , Células Ganglionares da Retina/patologia , Visão Ocular , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Encéfalo/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dependovirus/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Glaucoma/genética , Glaucoma/patologia , Camundongos Endogâmicos C57BL , Neurotoxinas/toxicidade , Traumatismos do Nervo Óptico/patologia , Transdução de SinaisRESUMO
In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo.
Assuntos
Astrócitos/citologia , Diferenciação Celular , Linhagem da Célula , Neurônios/citologia , Animais , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/patologia , Lesões Encefálicas/patologia , Linhagem Celular Tumoral , Reprogramação Celular , Dependovirus/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismoRESUMO
Replacing or editing disease-causing mutations holds great promise for treating many human diseases. Yet, delivering therapeutic genetic modifiers to specific cells in vivo has been challenging, particularly in large, anatomically distributed tissues such as skeletal muscle. Here, we establish an in vivo strategy to evolve and stringently select capsid variants of adeno-associated viruses (AAVs) that enable potent delivery to desired tissues. Using this method, we identify a class of RGD motif-containing capsids that transduces muscle with superior efficiency and selectivity after intravenous injection in mice and non-human primates. We demonstrate substantially enhanced potency and therapeutic efficacy of these engineered vectors compared to naturally occurring AAV capsids in two mouse models of genetic muscle disease. The top capsid variants from our selection approach show conserved potency for delivery across a variety of inbred mouse strains, and in cynomolgus macaques and human primary myotubes, with transduction dependent on target cell expressed integrin heterodimers.
Assuntos
Capsídeo/metabolismo , Dependovirus/metabolismo , Evolução Molecular Direcionada , Técnicas de Transferência de Genes , Músculo Esquelético/metabolismo , Sequência de Aminoácidos , Animais , Capsídeo/química , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Integrinas/metabolismo , Macaca fascicularis , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/terapia , Multimerização Proteica , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/uso terapêutico , RNA Guia de Cinetoplastídeos/metabolismo , Recombinação Genética/genética , Especificidade da Espécie , TransgenesRESUMO
The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-based biotechnologies has revolutionized the life sciences and introduced new therapeutic modalities with the potential to treat a wide range of diseases. Here, we describe CRISPR-based strategies to improve human health, with an emphasis on the delivery of CRISPR therapeutics directly into the human body using adeno-associated virus (AAV) vectors. We also discuss challenges facing broad deployment of CRISPR-based therapeutics and highlight areas where continued discovery and technological development can further advance these revolutionary new treatments.
Assuntos
Sistemas CRISPR-Cas , Dependovirus/genética , Edição de Genes/métodos , Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Animais , HumanosRESUMO
Although human genetic studies have implicated many susceptible genes associated with plasma lipid levels, their physiological and molecular functions are not fully characterized. Here we demonstrate that orphan G protein-coupled receptor 146 (GPR146) promotes activity of hepatic sterol regulatory element binding protein 2 (SREBP2) through activation of the extracellular signal-regulated kinase (ERK) signaling pathway, thereby regulating hepatic very low-density lipoprotein (VLDL) secretion, and subsequently circulating low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) levels. Remarkably, GPR146 deficiency reduces plasma cholesterol levels substantially in both wild-type and LDL receptor (LDLR)-deficient mice. Finally, aortic atherosclerotic lesions are reduced by 90% and 70%, respectively, in male and female LDLR-deficient mice upon GPR146 depletion. Taken together, these findings outline a regulatory role for the GPR146/ERK axis in systemic cholesterol metabolism and suggest that GPR146 inhibition could be an effective strategy to reduce plasma cholesterol levels and atherosclerosis.
Assuntos
Aterosclerose/metabolismo , Hipercolesterolemia/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Animais , Aterosclerose/sangue , Sequência de Bases , Colesterol/sangue , Dependovirus/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Jejum , Feminino , Hepatócitos/metabolismo , Humanos , Hipercolesterolemia/sangue , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de LDL/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Triglicerídeos/sangue , Regulação para CimaRESUMO
A phase 1/2 clinical trial of AAV-mediated gene therapy in patients with hemophilia B using an enhanced specific activity factor IX (FIX) transgene reports sustained levels of FIX levels, leading to the near elimination of bleeding for more than a year and without serious adverse side effects. These results are the best outcome to date for hemophilia gene therapy.
Assuntos
Fator IX/genética , Hemofilia B , Dependovirus/genética , Terapia Genética , Vetores Genéticos , HumanosRESUMO
Immunotherapy has transformed cancer treatment. However, current immunotherapy modalities face various limitations. In the present study, we developed multiplexed activation of endogenous genes as an immunotherapy (MAEGI), a new form of immunotherapy that elicits antitumor immunity through multiplexed activation of endogenous genes in tumors. We leveraged CRISPR activation (CRISPRa) to directly augment the in situ expression of endogenous genes, and thereby the presentation of tumor antigens, leading to dramatic antitumor immune responses. Deploying this as a cell-based vaccination strategy showed efficacy in both prophylactic and therapeutic settings. Intratumoral adeno-associated virus delivery of CRISPRa libraries elicited strong antitumor immunity across multiple cancer types. Precision targeting of mutated gene sets eradicated a large fraction of established tumors at both local and distant sites. This treatment modality led to alterations in the tumor microenvironment, marked by enhanced T cell infiltration and antitumor immune signatures. Multiplexed endogenous gene activation is a versatile and highly scalable strategy to elicit potent immune responses against cancer, distinct from all existing cancer therapies.
Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Terapia Genética/métodos , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Animais , Apresentação de Antígeno/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Terapia Combinada/métodos , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Células HEK293 , Humanos , Injeções Intralesionais , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologiaRESUMO
Optogenetic studies in mice have revealed new relationships between well-defined neurons and brain functions. However, there are currently no means to achieve the same cell-type specificity in monkeys, which possess an expanded behavioral repertoire and closer anatomical homology to humans. Here, we present a resource for cell-type-specific channelrhodopsin expression in Rhesus monkeys and apply this technique to modulate dopamine activity and monkey choice behavior. These data show that two viral vectors label dopamine neurons with greater than 95% specificity. Infected neurons were activated by light pulses, indicating functional expression. The addition of optical stimulation to reward outcomes promoted the learning of reward-predicting stimuli at the neuronal and behavioral level. Together, these results demonstrate the feasibility of effective and selective stimulation of dopamine neurons in non-human primates and a resource that could be applied to other cell types in the monkey brain.
Assuntos
Comportamento de Escolha/fisiologia , Neurônios Dopaminérgicos/metabolismo , Optogenética/métodos , Animais , Dependovirus/genética , Dopamina/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos/genética , Macaca mulatta , Regiões Promotoras Genéticas/genética , Rodopsina/genéticaRESUMO
Recombinant adeno-associated viruses (AAVs) are commonly used gene delivery vehicles for neuroscience research. They have two engineerable features: the capsid (outer protein shell) and cargo (encapsulated genome). These features can be modified to enhance cell type or tissue tropism and control transgene expression, respectively. Several engineered AAV capsids with unique tropisms have been identified, including variants with enhanced central nervous system transduction, cell type specificity, and retrograde transport in neurons. Pairing these AAVs with modern gene regulatory elements and state-of-the-art reporter, sensor, and effector cargo enables highly specific transgene expression for anatomical and functional analyses of brain cells and circuits. Here, we discuss recent advances that provide a comprehensive (capsid and cargo) AAV toolkit for genetic access to molecularly defined brain cell types.
Assuntos
Dependovirus , Vetores Genéticos , Encéfalo , Capsídeo/metabolismo , Dependovirus/genética , Técnicas de Transferência de GenesRESUMO
Gene replacement using adeno-associated virus (AAV) vectors is a promising therapeutic approach for many diseases1,2. However, this therapeutic modality is challenged by the packaging capacity of AAVs (approximately 4.7 kilobases)3, limiting its application for disorders involving large coding sequences, such as Duchenne muscular dystrophy, with a 14 kilobase messenger RNA. Here we developed a new method for expressing large dystrophins by utilizing the protein trans-splicing mechanism mediated by split inteins. We identified several split intein pairs that efficiently join two or three fragments to generate a large midi-dystrophin or the full-length protein. We show that delivery of two or three AAVs into dystrophic mice results in robust expression of large dystrophins and significant physiological improvements compared with micro-dystrophins. Moreover, using the potent myotropic AAVMYO4, we demonstrate that low total doses (2 × 1013 viral genomes per kg) are sufficient to express large dystrophins in striated muscles body-wide with significant physiological corrections in dystrophic mice. Our data show a clear functional superiority of large dystrophins over micro-dystrophins that are being tested in clinical trials. This method could benefit many patients with Duchenne or Becker muscular dystrophy, regardless of genotype, and could be adapted to numerous other disorders caused by mutations in large genes that exceed the AAV capacity.
Assuntos
Distrofina , Terapia Genética , Inteínas , Distrofia Muscular de Duchenne , Processamento de Proteína , Animais , Humanos , Masculino , Camundongos , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Distrofina/biossíntese , Distrofina/deficiência , Distrofina/genética , Distrofina/metabolismo , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Inteínas/genética , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Processamento de Proteína/genéticaRESUMO
The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina1. Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored. Here, studying immune responses to herpes simplex virus in the brain, we observed that intravitreal immunization protects mice against intracranial viral challenge. This protection extended to bacteria and even tumours, allowing therapeutic immune responses against glioblastoma through intravitreal immunization. We further show that the anterior and posterior compartments of the eye have distinct lymphatic drainage systems, with the latter draining to the deep cervical lymph nodes through lymphatic vasculature in the optic nerve sheath. This posterior lymphatic drainage, like that of meningeal lymphatics, could be modulated by the lymphatic stimulator VEGFC. Conversely, we show that inhibition of lymphatic signalling on the optic nerve could overcome a major limitation in gene therapy by diminishing the immune response to adeno-associated virus and ensuring continued efficacy after multiple doses. These results reveal a shared lymphatic circuit able to mount a unified immune response between the posterior eye and the brain, highlighting an understudied immunological feature of the eye and opening up the potential for new therapeutic strategies in ocular and CNS diseases.
Assuntos
Encéfalo , Olho , Sistema Linfático , Animais , Feminino , Humanos , Masculino , Camundongos , Coelhos , Bactérias/imunologia , Encéfalo/anatomia & histologia , Encéfalo/imunologia , Dependovirus/imunologia , Olho/anatomia & histologia , Olho/imunologia , Glioblastoma/imunologia , Herpesvirus Humano 2/imunologia , Injeções Intravítreas , Sistema Linfático/anatomia & histologia , Sistema Linfático/imunologia , Vasos Linfáticos/anatomia & histologia , Vasos Linfáticos/imunologia , Macaca mulatta , Meninges/imunologia , Nervo Óptico/imunologia , Suínos , Peixe-Zebra , Fator C de Crescimento do Endotélio Vascular/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologiaRESUMO
The blood-brain barrier (BBB) protects the central nervous system from infections or harmful substances1; its impairment can lead to or exacerbate various diseases of the central nervous system2-4. However, the mechanisms of BBB disruption during infection and inflammatory conditions5,6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7-9), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP-CD14 LPS transfer and internalization pathway10-12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4-humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.
Assuntos
Barreira Hematoencefálica , Encéfalo , Células Endoteliais , Gasderminas , Inflamação , Animais , Feminino , Humanos , Masculino , Camundongos , Membrana Basal/metabolismo , Membrana Basal/ultraestrutura , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/ultraestrutura , Barreira Hematoencefálica/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Caspases Iniciadoras/metabolismo , Dependovirus , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Gasderminas/antagonistas & inibidores , Gasderminas/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Klebsiella pneumoniae/fisiologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/sangue , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Piroptose , Sepse/metabolismo , Sepse/patologia , Sepse/microbiologia , Análise de Célula Única , Junções Íntimas/metabolismo , Junções Íntimas/ultraestruturaRESUMO
As of August 2022, clusters of acute severe hepatitis of unknown aetiology in children have been reported from 35 countries, including the USA1,2. Previous studies have found human adenoviruses (HAdVs) in the blood from patients in Europe and the USA3-7, although it is unclear whether this virus is causative. Here we used PCR testing, viral enrichment-based sequencing and agnostic metagenomic sequencing to analyse samples from 16 HAdV-positive cases from 1 October 2021 to 22 May 2022, in parallel with 113 controls. In blood from 14 cases, adeno-associated virus type 2 (AAV2) sequences were detected in 93% (13 of 14), compared to 4 (3.5%) of 113 controls (P < 0.001) and to 0 of 30 patients with hepatitis of defined aetiology (P < 0.001). In controls, HAdV type 41 was detected in blood from 9 (39.1%) of the 23 patients with acute gastroenteritis (without hepatitis), including 8 of 9 patients with positive stool HAdV testing, but co-infection with AAV2 was observed in only 3 (13.0%) of these 23 patients versus 93% of cases (P < 0.001). Co-infections by Epstein-Barr virus, human herpesvirus 6 and/or enterovirus A71 were also detected in 12 (85.7%) of 14 cases, with higher herpesvirus detection in cases versus controls (P < 0.001). Our findings suggest that the severity of the disease is related to co-infections involving AAV2 and one or more helper viruses.
Assuntos
Infecções por Adenovirus Humanos , Coinfecção , Dependovirus , Hepatite , Criança , Humanos , Doença Aguda , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/virologia , Coinfecção/epidemiologia , Coinfecção/virologia , Dependovirus/genética , Dependovirus/isolamento & purificação , Infecções por Vírus Epstein-Barr/epidemiologia , Infecções por Vírus Epstein-Barr/virologia , Hepatite/epidemiologia , Hepatite/virologia , Herpesvirus Humano 4/isolamento & purificação , Herpesvirus Humano 6/isolamento & purificação , Enterovirus Humano A/isolamento & purificação , Vírus Auxiliares/isolamento & purificaçãoRESUMO
An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.
Assuntos
Infecções por Adenovirus Humanos , Dependovirus , Hepatite , Criança , Humanos , Doença Aguda/epidemiologia , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/genética , Infecções por Adenovirus Humanos/virologia , Alelos , Estudos de Casos e Controles , Linfócitos T CD4-Positivos/imunologia , Coinfecção/epidemiologia , Coinfecção/virologia , Dependovirus/isolamento & purificação , Predisposição Genética para Doença , Vírus Auxiliares/isolamento & purificação , Hepatite/epidemiologia , Hepatite/genética , Hepatite/virologia , Hepatócitos/virologia , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Fígado/virologiaRESUMO
The ever-growing compendium of genetic variants associated with human pathologies demands new methods to study genotype-phenotype relationships in complex tissues in a high-throughput manner1,2. Here we introduce adeno-associated virus (AAV)-mediated direct in vivo single-cell CRISPR screening, termed AAV-Perturb-seq, a tuneable and broadly applicable method for transcriptional linkage analysis as well as high-throughput and high-resolution phenotyping of genetic perturbations in vivo. We applied AAV-Perturb-seq using gene editing and transcriptional inhibition to systematically dissect the phenotypic landscape underlying 22q11.2 deletion syndrome3,4 genes in the adult mouse brain prefrontal cortex. We identified three 22q11.2-linked genes involved in known and previously undescribed pathways orchestrating neuronal functions in vivo that explain approximately 40% of the transcriptional changes observed in a 22q11.2-deletion mouse model. Our findings suggest that the 22q11.2-deletion syndrome transcriptional phenotype found in mature neurons may in part be due to the broad dysregulation of a class of genes associated with disease susceptibility that are important for dysfunctional RNA processing and synaptic function. Our study establishes a flexible and scalable direct in vivo method to facilitate causal understanding of biological and disease mechanisms with potential applications to identify genetic interventions and therapeutic targets for treating disease.