Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Exp Eye Res ; 211: 108723, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34384756

RESUMO

PURPOSE: To develop an easy-to-perform combined model in human corneal epithelial cells (HCECs) and Balb/c mice macrophages J774.A1 (MP) for preliminary screening of potential ophthalmic therapeutic substances. METHODS: HCECs were exposed to different osmolarities (350-500 mOsm/L) and MTT assay was employed for cell survival and flow cytometry to assess apoptosis-necrosis and relative cell size (RCS) distribution. Effectiveness of Betaine, L-Carnitine, Taurine at different concentrations (ranging from 20 mM to 200 mM) was studied. Also, mucoadhesive polymers such as Hyaluronic acid (HA) and Hydroxypropylmethylcellulose (HPMC) (0.4 and 0.8%) were evaluated. Cells were pre-incubated with the compounds (8h) and then exposed to hyperosmotic stress (470 mOsm/L) for 16h. Moreover, anti-inflammatory activity was performed in LPS-stimulated MP. RESULTS: Exposure to hyperosmotic solutions between 450 and 500 mOsm/L promoted the highest cell death after 16h exposures (p < 0.0001) with a drop in viability to 34.96% ± 11.77 for 470 mOsm/L. Pre-incubation with Betaine at 150 mM and 200 mM provided the highest cell survival against hyperosmolarity (66.01% ± 3.65 and 65.90% ± 0.78 respectively) while HA 0.4% was the most effective polymer in preventing cell death (42.2% ± 3.60). Flow cytometry showed that Betaine and Taurine at concentrations between 150-200 mM and 20-80 mM respectively presented the highest anti-apoptotic activity. Also, HA and HPMC polymers reduced apoptotic-induced cell death. All osmoprotectants modified RCS, and polymers increased their value over 100%. L-Carnitine 50 mM, Taurine 40 mM and HA 0.4% presented the highest TNF-α inhibition activity (60%) albeit all of them showed anti-inflammatory inhibition percentages higher than 20% CONCLUSIONS: HCECs hyperosmolar model combined with inflammatory conditions in macrophages allows the screening of osmoprotectants by simulating chronic hyperosmolarity (16h) and inflammation (24h).


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Epitélio Corneano/efeitos dos fármacos , Soluções Hipertônicas/farmacologia , Inflamação/fisiopatologia , Macrófagos/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Betaína/farmacologia , Carnitina/farmacologia , Sobrevivência Celular , Células Cultivadas , Síndromes do Olho Seco/fisiopatologia , Epitélio Corneano/metabolismo , Citometria de Fluxo , Humanos , Ácido Hialurônico/farmacologia , Derivados da Hipromelose/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Concentração Osmolar , Taurina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
2.
J Nanobiotechnology ; 19(1): 385, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809623

RESUMO

Demineralization of hard tooth tissues leads to dental caries, which cause health problems and economic burdens throughout the world. A biomimetic mineralization strategy is expected to reverse early dental caries. Commercially available anti-carious mineralizing products lead to inconclusive clinical results because they cannot continuously replenish the required calcium and phosphate resources. Herein, we prepared a mineralizing film consisting of hydroxypropylmethylcellulose (HPMC) and polyaspartic acid-stabilized amorphous calcium phosphate (PAsp-ACP) nanoparticles. HPMC which contains multiple hydroxyl groups is a film-forming material that can be desiccated to form a dry film. In a moist environment, this film gradually changes into a gel. HPMC was used as the carrier of PAsp-ACP nanoparticles to deliver biomimetic mineralization. Our results indicated that the hydroxyl and methoxyl groups of HPMC could assist the stability of PAsp-ACP nanoparticles and maintain their biomimetic mineralization activity. The results further demonstrated that the bioinspired mineralizing film induced the early mineralization of demineralized dentin after 24 h with increasing mineralization of the whole demineralized dentin (3-4 µm) after 72-96 h. Furthermore, these results were achieved without any cytotoxicity or mucosa irritation. Therefore, this mineralizing film shows promise for use in preventive dentistry due to its efficient mineralization capability.


Assuntos
Materiais Biomiméticos , Fosfatos de Cálcio , Cárie Dentária/metabolismo , Derivados da Hipromelose , Calcificação de Dente/efeitos dos fármacos , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacocinética , Fosfatos de Cálcio/farmacologia , Células Cultivadas , Dentina/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacologia , Masculino , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas , Coelhos
3.
Optom Vis Sci ; 98(2): 159-169, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534380

RESUMO

SIGNIFICANCE: Contact lens (CL) wearing may cause discomfort and eye dryness. We describe here the efficacy of a synthetic polymer in protecting both the corneal epithelial cells and the CL from desiccation damage. Artificial tears containing this polymer might be helpful to treat or prevent ocular surface damage in CL wearers. PURPOSE: We aimed to investigate the protective effects of the synthetic polymer 2-methacryloyloxyethyl phosphorylcholine (poly-MPC) on corneal epithelial cells and CLs subjected to desiccation damage. METHODS: The interaction of poly-MPC with the cell membrane was evaluated on human primary corneal epithelial cells (HCE-F) by the sodium dodecyl sulfate damage protection assay or the displacement of the cell-binding lectin concanavalin A (ConA). Survival in vitro of HCE-F cells and ex vivo of porcine corneas exposed to desiccating conditions after pre-treatment with poly-MPC or hyaluronic acid (HA), hypromellose (HPMC), and trehalose was evaluated by a colorimetric assay. Soft CLs were soaked overnight in a solution of poly-MPC/HPMC and then let dry in ambient air. Contact lens weight, morphology, and transparency were periodically registered until complete dryness. RESULTS: Polymer 2-methacryloyloxyethyl phosphorylcholine and HPMC were retained on the HCE-F cell membrane more than trehalose or HA. Polymer 2-methacryloyloxyethyl phosphorylcholine, HA, and HPMC either alone or in association protected corneal cells from desiccation significantly better than did trehalose alone or in association with HA. Contact lens permeation by poly-MPC/HPMC preserved better their shape and transparency than did saline. CONCLUSIONS: Polymer 2-methacryloyloxyethyl phosphorylcholine coats and protects corneal epithelial cells and CLs from desiccation damage more efficiently compared with trehalose and as good as other reference compounds.


Assuntos
Lentes de Contato Hidrofílicas , Dessecação , Epitélio Corneano/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Ácidos Polimetacrílicos/farmacologia , Falha de Prótese/efeitos dos fármacos , Animais , Células Cultivadas , Síndromes do Olho Seco/tratamento farmacológico , Humanos , Ácido Hialurônico/farmacologia , Derivados da Hipromelose/farmacologia , Fosforilcolina/farmacologia , Dodecilsulfato de Sódio/toxicidade , Suínos , Trealose/farmacologia
4.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769429

RESUMO

(1) Background: Artemia salina is a brine shrimp containing high concentrations of dinucleotides, molecules with properties for dry eye treatment. For this reason, the purpose of the study was to evaluate the effect of the artificial tears based on an extract of Artemia salina in a rabbit dry eye model. (2) Methods: A prospective and randomized study was carried out. Twenty rabbits were divided into 4 groups (n = 5, each group): healthy rabbits, dry eye rabbits, dry eye rabbits treated with hypromellose (HPMC), and dry eye rabbits treated with Artemia salina. Dry eye was induced by the topical instillation of 0.2% benzalkonium chloride. The measurements were performed before and after the treatment for 5 consecutive days. (3) Results: The topical instillation of artificial tears containing Artemia salina showed beneficial effects on tear secretion, tear break-up time, corneal staining, the density of Goblet cells, heigh of mucin cloud secreted by these cells, and mRNA levels of IL-1ß and MMP9 in conjunctival cells. Compared with the HPMC, there was a statistically significant improvement (p < 0.05) with the Artemia salina in all the variables under study, except for the conjunctival hyperemia, density of Goblet cells, and mRNA levels of IL-6. (4) Conclusions: The potential of artificial tears based on Artemia salina as a secretagogue agent for dry eye treatment was confirmed, opening the door for future clinical trials and studies to extrapolate the findings for dry eye patients.


Assuntos
Artemia/química , Fosfatos de Dinucleosídeos/farmacologia , Síndromes do Olho Seco/tratamento farmacológico , Derivados da Hipromelose/farmacologia , Lubrificantes Oftálmicos/administração & dosagem , Extratos Vegetais/farmacologia , Lágrimas/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Síndromes do Olho Seco/metabolismo , Masculino , Coelhos , Lágrimas/metabolismo
5.
Drug Dev Ind Pharm ; 46(1): 146-158, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31894720

RESUMO

The aim of this research was to assess the effect of polymer blend and effervescent components on the floating and swelling behaviors of swellable gastro-floating formulation as well as the drug release through a compartmental modeling analysis. Swellable gastro-floating formulation of freely water-soluble drug, metformin HCl as a drug model, was formulated and developed using D-optimal design. Polymer combination between interpolymer complex (IPC) (poly-vinyl acetate-copolymer methacrylate) and hydroxy propyl methyl cellulose (HPMC), and effervescent components were studied and optimized in this work. Several factors affecting the drug release behavior were determined e.g. swelling behavior, erosion behavior, and floating behavior were studied as well as the drug release through compartmental modeling analysis. The results revealed that the hydrophilic polymer was responsible for gas entrapment formed from effervescent reaction, meanwhile IPC contributed on maintaining the swollen matrix integrity through intermolecular polymer interaction. In addition, effervescent components played fundamental role in the formation of porous system as well as inducing burst release effect. Compartmental modeling provided different outlook about the drug release. Presence of IPC at a high proportion (10-15%) of the polymer blend modulated the changes of pattern of the drug release kinetics and mechanism. Finally, compartmental modeling-based approach was more adequate to describe the drug release kinetics and mechanism compared to the monophasic equation model correlating with process understanding of the drug release from swellable gastro-floating formulation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Metacrilatos/química , Polímeros/química , Estômago/fisiologia , Administração Oral , Liberação Controlada de Fármacos , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacologia , Cinética , Metacrilatos/farmacologia , Comprimidos
6.
PLoS Pathog ; 12(12): e1006045, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27973536

RESUMO

Prion diseases are fatal, progressive, neurodegenerative diseases caused by prion accumulation in the brain and lymphoreticular system. Here we report that a single subcutaneous injection of cellulose ethers (CEs), which are commonly used as inactive ingredients in foods and pharmaceuticals, markedly prolonged the lives of mice and hamsters intracerebrally or intraperitoneally infected with the 263K hamster prion. CEs provided sustained protection even when a single injection was given as long as one year before infection. These effects were linked with persistent residues of CEs in various tissues. More effective CEs had less macrophage uptake ratios and hydrophobic modification of CEs abolished the effectiveness. CEs were significantly effective in other prion disease animal models; however, the effects were less remarkable than those observed in the 263K prion-infected animals. The genetic background of the animal model was suggested to influence the effects of CEs. CEs did not modify prion protein expression but inhibited abnormal prion protein formation in vitro and in prion-infected cells. Although the mechanism of CEs in vivo remains to be solved, these findings suggest that they aid in elucidating disease susceptibility and preventing prion diseases.


Assuntos
Derivados da Hipromelose/farmacologia , Doenças Priônicas/patologia , Animais , Celulose/farmacologia , Cricetinae , Modelos Animais de Doenças , Éteres/farmacologia , Injeções Subcutâneas , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Retina ; 38(11): 2137-2142, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28937526

RESUMO

PURPOSE: To compare corneal wetting performances of different dispersive ophthalmic viscosurgical devices. METHODS: Three different types of dispersive ophthalmic viscosurgical devices, hydroxypropyl methylcellulose %2 (HPMC), sodium hyaluronate %3-sodium chondroitin sulphate %4 (HACS), and sodium hyaluronate %3 (HA), were applied on corneal surfaces of 10 healthy volunteer subjects repeatedly at 3 different time points. Corneal wetting properties of the ophthalmic viscosurgical devices were compared qualitatively and quantitatively by anterior segment optical coherence tomography for 30 minutes. RESULTS: Sodium hyaluronate 3% and HACS applications had a higher mean precorneal ophthalmic viscosurgical device thickness than HPMC application at all time points (seventh minute HPMC: 105.2 ± 25.3 µm, HA: 561.4 ± 115.8 µm, HACS: 481.2 ± 55 µm, P < 0.001). All HPMC applications were terminated by the 12th minute because of insufficient corneal wetting. Mean survival estimate time was significantly shortest for HPMC (11.5 ± 0.5 minutes, P < 0.001) and longest for HA (29.7 ± 0.28 minutes). It was slightly shorter for HACS (26.9 ± 0.87 minutes, P = 0.007) than the HA application. CONCLUSION: Sodium hyaluronate 3% and HACS provide superior corneal covering compared with HPMC with an effect that can be maintained up to 30 minutes. They may be an effective option for corneal wetting during long vitreoretinal surgeries with longer duration of effect and fever number of applications.


Assuntos
Sulfatos de Condroitina/farmacologia , Córnea/metabolismo , Ácido Hialurônico/farmacologia , Derivados da Hipromelose/farmacologia , Complicações Pós-Operatórias/prevenção & controle , Tomografia de Coerência Óptica/métodos , Adolescente , Adulto , Córnea/diagnóstico por imagem , Combinação de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Soluções Oftálmicas , Facoemulsificação , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/metabolismo , Propriedades de Superfície , Viscossuplementos/farmacologia , Adulto Jovem
8.
Mol Pharm ; 14(12): 4154-4160, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28763224

RESUMO

Many drug candidates today have a low aqueous solubility and, hence, may show a low oral bioavailability, presenting a major formulation and drug delivery challenge. One way to increase the bioavailability of these drugs is to use a supersaturating drug delivery strategy. The aim of this study was to develop a video-microscopic method, to evaluate the effect of a precipitation inhibitor on supersaturated solutions of the poorly soluble drug tadalafil, using a novel video-microscopic small scale setup. Based on preliminary studies, a degree of supersaturation of 29 was chosen for the supersaturation studies with tadalafil in FaSSIF. Different amounts of hydroxypropyl methyl cellulose (HPMC) were predissolved in FaSSIF to give four different concentrations, and the supersaturated system was then created using a solvent shift method. Precipitation of tadalafil from the supersaturated solutions was monitored by video-microscopy as a function of time. Single-particle analysis was possible using commercially available software; however, to investigate the entire population of precipitating particles (i.e., their number and area covered in the field of view), an image analysis algorithm was developed (multiparticle analysis). The induction time for precipitation of tadalafil in FaSSIF was significantly prolonged by adding 0.01% (w/v) HPMC to FaSSIF, and the maximum inhibition was reached at 0.1% (w/v) HPMC, after which additional HPMC did not further increase the induction time. The single-particle and multiparticle analyses yielded the same ranking of the HPMC concentrations, regarding the inhibitory effect on precipitation. The developed small scale method to assess the effect of precipitation inhibitors can speed up the process of choosing the right precipitation inhibitor and the concentration to be used.


Assuntos
Precipitação Química/efeitos dos fármacos , Excipientes/farmacologia , Derivados da Hipromelose/farmacologia , Tadalafila/farmacocinética , Algoritmos , Disponibilidade Biológica , Química Farmacêutica , Desenho de Fármacos , Excipientes/química , Derivados da Hipromelose/química , Microscopia de Vídeo/métodos , Modelos Químicos , Solubilidade , Solventes/química , Tadalafila/química , Água/química
9.
AAPS PharmSciTech ; 18(4): 936-946, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28108973

RESUMO

In this work, chitosan films were prepared by a casting/solvent evaporation methodology using pectin or hydroxypropylmethyl cellulose to form polymeric matrices. Miconazole nitrate, as a model drug, was loaded into such formulations. These polymeric films were characterized in terms of mechanical properties, adhesiveness, and swelling as well as drug release. Besides, the morphology of raw materials and films was investigated by scanning electron microscopy; interactions between polymers were analyzed by infrared spectroscopy and drug crystallinity studied by differential scanning calorimetry and X-ray diffraction. In addition, antifungal activity against cultures of the five most important fungal opportunistic pathogens belonging to Candida genus was investigated. Chitosan:hydroxypropylmethyl cellulose films were found to be the most appropriate formulations in terms of folding endurance, mechanical properties, and adhesiveness. Also, an improvement in the dissolution rate of miconazole nitrate from the films up to 90% compared to the non-loaded drug was observed. The in vitro antifungal activity showed a significant activity of the model drug when it is loaded into chitosan films. These findings suggest that chitosan-based films are a promising approach to deliver miconazole nitrate for the treatment of candidiasis.


Assuntos
Candidíase Bucal/tratamento farmacológico , Quitosana , Sistemas de Liberação de Medicamentos , Derivados da Hipromelose/farmacologia , Miconazol , Adesividade , Administração Bucal , Antidiarreicos/química , Antidiarreicos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Quitosana/química , Quitosana/farmacologia , Composição de Medicamentos , Humanos , Miconazol/química , Miconazol/farmacologia , Microscopia Eletrônica de Varredura/métodos , Pectinas/química , Pectinas/farmacologia , Polímeros/farmacologia , Difração de Raios X/métodos
10.
Antimicrob Agents Chemother ; 59(4): 2215-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645853

RESUMO

To be efficient, vaginal microbicide hydrogels should form a barrier against viral infections and prevent virus spreading through mucus. Multiple particle tracking was used to quantify the mobility of 170-nm fluorescently labeled COOH-modified polystyrene particles (COOH-PS) into thermosensitive hydrogels composed of amphiphilic triblock copolymers with block compositions EOn-POm-EOn (where EO refers to ethylene oxide and PO to propylene oxide) containing mucoadhesive hydroxypropylmethylcellulose (HPMC). COOH-PS were used to mimic the size and the surface charge of HIV-1. Analysis of COOH-PS trajectories showed that particle mobility was decreased by Pluronic hydrogels in comparison with cynomolgus macaque cervicovaginal mucus and hydroxyethylcellulose hydrogel (HEC; 1.5% by weight [wt%]) used as negative controls. Formulation of the peptide mini-CD4 M48U1 used as an anti-HIV-1 molecule into a mixture of Pluronic F127 (20 wt%) and HPMC (1 wt%) did not affect its anti-HIV-1 activity in comparison with HEC hydrogel. The 50% inhibitory concentration (IC50) was 0.53 µg/ml (0.17 µM) for M48U1-HEC and 0.58 µg/ml (0.19 µM) for M48U1-F127-HPMC. The present work suggests that hydrogels composed of F127-HPMC (20/1 wt%, respectively) can be used to create an efficient barrier against particle diffusion in comparison to conventional HEC hydrogels.


Assuntos
Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Antígenos CD4/química , Antígenos CD4/farmacologia , Muco do Colo Uterino/efeitos dos fármacos , Muco do Colo Uterino/virologia , Inibidores da Fusão de HIV/síntese química , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacologia , Poloxâmero/química , Polietilenoglicóis/química , Propilenoglicóis/química , Animais , Difusão , Feminino , Corantes Fluorescentes , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Hidrogéis/síntese química , Derivados da Hipromelose/síntese química , Macaca fascicularis , Poloxâmero/farmacologia , Polietilenoglicóis/farmacologia , Propilenoglicóis/farmacologia , Reologia , Viscosidade
11.
Molecules ; 20(6): 9496-509, 2015 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-26020699

RESUMO

The present study aimed to investigate the effect of Eudragit® E/HCl (E-SD) on the degradation of sirolimus in simulated gastric fluid (pH 1.2) and to develop a new oral formulation of sirolimus using E-SD solid dispersions to enhance oral bioavailability. Sirolimus-loaded solid dispersions were fabricated by a spray drying process. A kinetic solubility test demonstrated that the sirolimus/E-SD/TPGS (1/8/1) solid dispersion had a maximum solubility of 196.7 µg/mL within 0.5 h that gradually decreased to 173.4 µg/mL after 12 h. According to the dissolution study, the most suitable formulation was the sirolimus/E-SD/TPGS (1/8/1) solid dispersion in simulated gastric fluid (pH 1.2), owing to enhanced stability and degree of supersaturation of E-SD and TPGS. Furthermore, pharmacokinetic studies in rats indicated that compared to the physical mixture and sirolimus/HPMC/TPGS (1/8/1) solid dispersion, the sirolimus/E-SD/TPGS (1/8/1) solid dispersion significantly improved oral absorption of sirolimus. E-SD significantly inhibited the degradation of sirolimus in a dose-dependent manner. E-SD also significantly inhibited the precipitation of sirolimus compared to hydroxypropylmethyl cellulose (HPMC). Therefore, the results from the present study suggest that the sirolimus-loaded E-SD/TPGS solid dispersion has great potential in clinical applications.


Assuntos
Materiais Biomiméticos/química , Portadores de Fármacos , Absorção pela Mucosa Oral/efeitos dos fármacos , Sirolimo/farmacocinética , Animais , Disponibilidade Biológica , Estabilidade de Medicamentos , Excipientes , Suco Gástrico/química , Concentração de Íons de Hidrogênio , Hidrólise/efeitos dos fármacos , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacologia , Masculino , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Ratos , Ratos Sprague-Dawley , Sirolimo/química , Sirolimo/metabolismo , Solubilidade , Vitamina E/análogos & derivados , Vitamina E/química , Vitamina E/farmacologia
12.
J Nutr ; 144(9): 1415-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24991042

RESUMO

Viscous dietary fiber consumption lowers the postprandial glucose curve and may decrease obesity and associated comorbidities such as insulin resistance and fatty liver. We determined the effect of 2 viscous fibers, one fermentable and one not, on the development of adiposity, fatty liver, and metabolic flexibility in a model of diet-induced obesity. Rats were fed a normal-fat (NF) diet (26% energy from fat), a high-fat diet (60% energy from fat), each containing 5% fiber as cellulose (CL; nonviscous and nonfermentable), or 5% of 1 of 2 highly viscous fibers-hydroxypropyl methylcellulose (HPMC; nonfermentable) or guar gum (GG; fermentable). After 10 wk, fat mass percentage in the NF (18.0%; P = 0.03) and GG groups (17.0%; P < 0.01) was lower than the CL group (20.7%). The epididymal fat pad weight of the NF (3.9 g; P = 0.04), HPMC (3.9 g; P = 0.03), and GG groups (3.6 g; P < 0.01) was also lower than the CL group (5.0 g). The HPMC (0.11 g/g liver) and GG (0.092 g/g liver) groups had lower liver lipid concentrations compared with the CL group (0.14 g/g liver). Fat mass percentage, epididymal fat pad weight, and liver lipid concentration were not different among the NF, HPMC, and GG groups. The respiratory quotient was higher during the transition from the diet-deprived to fed state in the GG group (P = 0.002) and tended to be higher in the HPMC group (P = 0.06) compared with the CL group, suggesting a quicker shift from fatty acid (FA) to carbohydrate oxidation. The HPMC group [15.1 nmol/(mg ⋅ h)] had higher ex vivo palmitate oxidation in muscle compared with the GG [11.7 nmol/(mg ⋅ h); P = 0.04] and CL groups [10.8 nmol/(mg ⋅ h); P < 0.01], implying a higher capacity to oxidize FAs. Viscous fibers can reduce the adiposity and hepatic steatosis that accompany a high-fat diet, and increase metabolic flexibility, regardless of fermentability.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Fibras na Dieta/uso terapêutico , Fígado Gorduroso/prevenção & controle , Galactanos/uso terapêutico , Derivados da Hipromelose/uso terapêutico , Mananas/uso terapêutico , Obesidade/prevenção & controle , Gomas Vegetais/uso terapêutico , Adiposidade/efeitos dos fármacos , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Celulose/farmacologia , Celulose/uso terapêutico , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fermentação , Galactanos/farmacologia , Derivados da Hipromelose/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Mananas/farmacologia , Músculos/efeitos dos fármacos , Músculos/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Gomas Vegetais/farmacologia , Ratos Wistar , Viscosidade
13.
BMC Complement Med Ther ; 24(1): 56, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273247

RESUMO

AIMS: Thymus plant is a very useful herbal medicine with various properties such as anti-inflammatory and antibacterial. Therefore, the properties of this plant have made this drug a suitable candidate for wound healing. In this study, hydroxypropyl methylcellulose (HPMC) gel containing Zataria multiflora volatile oil nanoemulsion (neZM) along with polycaprolactone/chitosan (PCL-CS) nanofibrous scaffold was used, and the effect of three experimental groups on the wound healing process was evaluated. The first group, HPMC gel containing neZM, the second group, PCL-CS nanofibers, and the third group, HPMC gel containing neZM and bandaged with PCL-CS nanofibers (PCL-CS/neZM). Wounds bandaged with common sterile gas were considered as control. METHODS: The nanoemulsion was synthesized by a spontaneous method and loaded into a hydroxypropyl methylcellulose (HPMC) gel. The DLS test investigated the size of these nanoemulsions. A PCL-CS nanofibrous scaffold was also synthesized by electrospinning method then SEM and contact angle tests investigated morphology and hydrophilicity/hydrophobicity of its surface. The animal study was performed on full-thickness skin wounds in rats, and the process of tissue regeneration in the experimental and control groups was evaluated by H&E and Masson's trichrome staining. RESULTS: The results showed that the nanoemulsion has a size of 225±9 nm and has an acceptable dispersion. The PCL-CS nanofibers synthesized by the electrospinning method also show non-beaded smooth fibers and due to the presence of chitosan with hydrophilic properties, have higher surface hydrophobicity than PCL fibers. The wound healing results show that the PCL-CS/neZM group significantly reduced the wound size compared to the other groups on the 7th, 14th, and 21st days. The histological results also show that the PCL-CS/neZM group could significantly reduce the parameters of edema, inflammation, and vascularity and increase the parameters of fibrosis, re-epithelialization, and collagen deposition compared to other groups on day 21. CONCLUSION: The results of this study show that the PCL-CS/neZM treatment can effectively improve wound healing.


Assuntos
Quitosana , Óleos Voláteis , Poliésteres , Ratos , Animais , Quitosana/farmacologia , Óleos Voláteis/farmacologia , Derivados da Hipromelose/farmacologia , Cicatrização
14.
J Mech Behav Biomed Mater ; 150: 106240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992582

RESUMO

Hemostatic materials are of great significance for rapid control of bleeding, especially in military trauma and traffic accidents. Chitosan (CS) hemostatic sponges have been widely concerned and studied due to their excellent biocompatibility. However, the hemostatic performance of pure chitosan sponges is poor due to the shortcoming of strong rigidity. In this study, CS and hydroxypropylmethylcellulose (HPMC) were combined to develop a safe and effective hemostatic composite sponges (CS/HPMC) for hemorrhage control by a simple mixed-lyophilization strategy. The CS/HPMC exhibited excellent flexibility (the flexibility was 74% higher than that of pure CS sponges). Due to the high porosity and procoagulant chemical structure of the CS/HPMC, it exhibited rapid hemostatic ability in vitro (BCI was shortened by 50% than that of pure CS sponges). The good biocompatibility of the obtained CS/HPMC was confirmed via cytotoxicity, hemocompatibility and skin irritation tests. The CS/HPMC can induced the erythrocyte and platelets adhesion, resulting in significant coagulation acceleration. The CS/HPMC had excellent performance in vivo assessments with shortest clotting time (40 s) and minimal blood loss (166 mg). All above results proved that the CS/HPMC had great potential to be a safe and rapid hemostatic material.


Assuntos
Quitosana , Hemostáticos , Humanos , Hemostáticos/farmacologia , Hemostáticos/química , Quitosana/farmacologia , Quitosana/química , Derivados da Hipromelose/farmacologia , Hemostasia , Coagulação Sanguínea , Hemorragia
15.
Yao Xue Xue Bao ; 48(5): 767-72, 2013 May.
Artigo em Zh | MEDLINE | ID: mdl-23888703

RESUMO

Hydroxypropyl methylcellulose (HPMC) propels self-emulsifying drug delivery systems (SEDDS) to achieve the supersaturated state in gastrointestinal tract, which possesses important significance to enhance oral absorption for poorly water-soluble drugs. This study investigated capacities and mechanisms of HPMC with different viscosities (K4M, K15M and K100M) to inhibit drug precipitation of SEDDS in the simulated gastrointestinal tract environment in vitro. The results showed that HPMC inhibited drug precipitation during the dispersion of SEDDS under gastric conditions by inhibiting the formation of crystal nucleus and the growth of crystals. HPMC had evident effects on the rate of SEDDS lipolysis and benefited the distribution of drug molecules across into the aqueous phase and the decrease of drug sediment. The mechanisms were related to the formed network of HPMC and its viscosities and molecular weight. These results offered a reference for selecting appropriate type of HPMC as the precipitation inhibitor of supersaturatable SEDDS.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsificantes/química , Derivados da Hipromelose/farmacologia , Indometacina/administração & dosagem , Caprilatos/química , Precipitação Química/efeitos dos fármacos , Cristalização , Emulsões , Etilenoglicóis/química , Glicerídeos/química , Derivados da Hipromelose/administração & dosagem , Derivados da Hipromelose/química , Indometacina/química , Lipólise/efeitos dos fármacos , Peso Molecular , Polietilenoglicóis/química , Viscosidade
16.
Int J Mol Sci ; 13(3): 3738-3750, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489179

RESUMO

The effect of dietary feeding of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) on the glucose metabolism and antioxidative status in mice under high fat diet conditions was investigated. The mice were randomly divided and given experimental diets for six weeks: normal control (NC group), high fat (HF group), and high fat supplemented with either HEMC (HF+HEMC group) or HPMC (HF+HPMC group). At the end of the experimental period, the HF group exhibited markedly higher blood glucose and insulin levels as well as a higher erythrocyte lipid peroxidation rate relative to the control group. However, diet supplementation of HEMC and HPMC was found to counteract the high fat-induced hyperglycemia and oxidative stress via regulation of antioxidant and hepatic glucose-regulating enzyme activities. These findings illustrate that HEMC and HPMC were similarly effective in improving the glucose metabolism and antioxidant defense system in high fat-fed mice and they may be beneficial as functional biomaterials in the development of therapeutic agents against high fat dietinduced hyperglycemia and oxidative stress.


Assuntos
Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Derivados da Hipromelose/farmacologia , Metilcelulose/análogos & derivados , Aumento de Peso/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Glicemia/efeitos dos fármacos , Dieta Hiperlipídica , Suplementos Nutricionais , Glucose/metabolismo , Glicogênio/sangue , Hipoglicemiantes/administração & dosagem , Derivados da Hipromelose/administração & dosagem , Insulina/sangue , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Metilcelulose/administração & dosagem , Metilcelulose/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos
17.
Microb Biotechnol ; 15(5): 1422-1433, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34773386

RESUMO

The use of medical devices, such as contact lenses, represents a substantial risk of infection, as they can act as scaffolds for formation of microbial biofilms. Recently, the increasing emergency of antibiotic resistance has prompted the development of novel and effective antimicrobial drugs for biofilm treatment, such as oxidizing agents. The purpose of this study is to investigate the effects of Ozodrop® and Ozodrop® gel, commercial names of ozonated oil in liposomes plus hypromellose, on eradication and de novo formation of biofilms on different supports, such as plastic plates and contact lens. Our results demonstrate that ozonated liposomal sunflower oil plus hypromellose have an excellent inhibitory effect on bacterial viability and on both de novo formation and eradication of biofilms produced on plates and contact lens by Pseudomonas aeruginosa and Staphylococcus aureus. Moreover, we show that Ozodrop® formulations stimulate expression of antimicrobial peptides and that Ozodrop® gel has a strong repair activity on human epithelial cells, suggesting further applications for the treatment of non-healing infected wounds.


Assuntos
Lipossomos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biofilmes , Humanos , Derivados da Hipromelose/farmacologia , Lipossomos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus
18.
Int J Biol Macromol ; 216: 235-250, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35780920

RESUMO

Effective treatment of infected wounds requires a comprehensive wound dressing with a combination of antibacterial, antioxidative, and anti-inflammatory effects. Biodegradable wound dressings incorporating nanostructured material were developed using polyvinyl alcohol with xanthan gum, hypromellose, or sodium carboxymethyl cellulose and extensively evaluated for antibacterial and wound healing efficacy. Synthesized silver nanoparticles and wound dressings displayed λmax at 420 nm with zeta potential ≈ - 35 mV. Significant growth inhibition with >99 % reduction in CFU/ml (p < 0.05) against important wound pathogens including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans were observed. Within 1 h of treatment, hypromellose nanocomposite demonstrated excellent bactericidal effects with a 99.9 % of reduction in growth. In addition, wound dressings demonstrated inhibitory activities against free radical scavengers. Wound dressings demonstrated a significant reduction in the inflammatory response in RAW 264.7 macrophages (p < 0.001). Ex-vivo diffusion demonstrated zero-order release and steady-state flux between 0.1571-0.2295 µg/ml/cm2h with 0.124-0.144 permeability coefficient after 10 h. Usage in animals further confirmed that the hypromellose nanocomposite accelerated the wound healing process with biocompatibility. The results suggested that hybrid biodegradable dressings can be effectively applied to treat infected wounds and attenuate inflammatory responses.


Assuntos
Nanopartículas Metálicas , Infecção dos Ferimentos , Animais , Antibacterianos/farmacologia , Bandagens , Carboximetilcelulose Sódica/farmacologia , Escherichia coli , Derivados da Hipromelose/farmacologia , Polissacarídeos Bacterianos , Álcool de Polivinil/farmacologia , Prata/farmacologia , Sódio/farmacologia , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
19.
BMC Complement Med Ther ; 22(1): 261, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207726

RESUMO

BACKGROUND: As the largest organ, the skin has been frequently affected by trauma, chemical materials, toxins, bacterial pathogens, and free radicals. Recently, many attempts have been made to develop natural nanogels that, besides hydrating the skin, could also be used as antioxidant or antibacterial agents. METHODS: In this study, the chemical composition of the Mentha spicata essential oil was first investigated using GC-MS analysis. Its nanoemulsion-based nanogel was then investigated; successful loading of the essential oil in the nanogel was confirmed using FTIR analysis. Besides, nanogel's antioxidative, anticancer, and antibacterial activities were investigated. RESULTS: Carvone (37.1%), limonene (28.5%), borneol (3.9%), ß-pinene (3.3%), and pulegone (3.3%) were identified as five major compounds in the essential oil. By adding carboxymethylcellulose (3.5% w/v) to the optimal nanoemulsion containing the essential oil (droplet size of 196 ± 8 nm), it was gelified. The viscosity was fully fitted with a common non-Newtonian viscosity regression, the Carreau-Yasuda model. The antioxidant effect of the nanogel was significantly more potent than the essential oil (P < 0.001) at all examined concentrations (62.5-1000 µg/mL). Furthermore, the potency of the nanogel with an IC50 value of 55.0 µg/mL was substantially more (P < 0.001) than the essential oil (997.4 µg/mL). Also, the growth of Staphylococcus aureus and Escherichia coli after treatment with 1000 µg/mL nanogel was about 50% decreased compared to the control group. Besides, the prepared electrospun polycaprolactone-hydroxypropyl methylcellulose nanofibers mat with no cytotoxic, antioxidant, or antibacterial effects was proposed as lesion dressing after treatment with the nanogel. High potency, natural ingredients, and straightforward preparation are advantages of the prepared nanogel. Therefore, it could be considered for further consideration in vivo studies.


Assuntos
Toxinas Bacterianas , Mentha spicata , Nanofibras , Óleos Voláteis , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Toxinas Bacterianas/farmacologia , Carboximetilcelulose Sódica/farmacologia , Escherichia coli , Radicais Livres/farmacologia , Derivados da Hipromelose/farmacologia , Limoneno/farmacologia , Mentha spicata/química , Testes de Sensibilidade Microbiana , Nanogéis , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Poliésteres , Polietilenoglicóis , Polietilenoimina
20.
J Pharm Pharmacol ; 73(5): 641-652, 2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33772289

RESUMO

OBJECTIVES: The current study was focused on preparing curcumin (CUR) supersaturated self-nano-emulsion (PI-CUR-SNEDDS) using hydrophilic polymer and to study the influence of polymer precipitation inhibitor on the physicochemical and biopharmaceutical properties of the PI-CUR-SNEDDS. METHODS: PI-CUR-SNEDDS were prepared using hydrophilic polymer in order to maintain the supersaturation of CUR in nano-emulsion solution, artificial gastrointestinal fluid (AGF), and the precipitates formed, and characterised by in vitro dispersion tests, in vitro intestinal absorption and in vivo pharmacokinetic and compared with CUR-SNEDDS. KEY FINDINGS: PI-CUR-SNEDDS prepared with 2% hydroxypropyl methylcellulose 55-60 (HPMC55-60) as precipitation inhibitor (PI) significantly improved the viscosity, physical stability and CUR's equilibrium solubility of nanoemulsion. HPMC55-60 and CUR interact in AGF through intermolecular interactions, form hydrogen bonds, and produce amorphous precipitates. Compared with CUR-SNEDDS, the proportion of CUR in the hydrophilic phase increased by about 3-fold, and apparent permeability coefficient (Papp) in duodenum, jejunum, ileum, and colon increased by 2.30, 3.65, 1.54 and 2.08-fold, respectively, and the area under the plasma concentration-time curve0-12h of PI-CUR-SNEDDS also increased by 3.50-fold. CONCLUSIONS: Our results suggested that HPMC55-60 maintained the CUR supersaturation state by forming hydrogen bonds with CUR, increasing the solution's viscosity and drug solubilisation, thus improving the absorption and bioavailability of CUR.


Assuntos
Curcumina/administração & dosagem , Curcumina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Administração Oral , Animais , Disponibilidade Biológica , Liberação Controlada de Fármacos , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Derivados da Hipromelose/administração & dosagem , Derivados da Hipromelose/farmacologia , Absorção Intestinal , Tamanho da Partícula , Polímeros/administração & dosagem , Polímeros/farmacologia , Ratos Sprague-Dawley , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA