Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Nat Immunol ; 20(8): 1046-1058, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31209405

RESUMO

The neonatal thymus generates Foxp3+ regulatory T (tTreg) cells that are critical in controlling immune homeostasis and preventing multiorgan autoimmunity. The role of antigen specificity on neonatal tTreg cell selection is unresolved. Here we identify 17 self-peptides recognized by neonatal tTreg cells, and reveal ligand specificity patterns that include self-antigens presented in an age- and inflammation-dependent manner. Fate-mapping studies of neonatal peptidyl arginine deiminase type IV (Padi4)-specific thymocytes reveal disparate fate choices. Neonatal thymocytes expressing T cell receptors that engage IAb-Padi4 with moderate dwell times within a conventional docking orientation are exported as tTreg cells. In contrast, Padi4-specific T cell receptors with short dwell times are expressed on CD4+ T cells, while long dwell times induce negative selection. Temporally, Padi4-specific thymocytes are subject to a developmental stage-specific change in negative selection, which precludes tTreg cell development. Thus, a temporal switch in negative selection and ligand binding kinetics constrains the neonatal tTreg selection window.


Assuntos
Autoantígenos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Tolerância a Antígenos Próprios/imunologia , Linfócitos T Reguladores/citologia , Animais , Autoimunidade/imunologia , Diferenciação Celular/imunologia , Linhagem Celular , Feminino , Fatores de Transcrição Forkhead/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Desiminases de Arginina em Proteínas/metabolismo , Linfócitos T Reguladores/imunologia , Timo/citologia
2.
Mol Cell ; 73(1): 84-96.e7, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472187

RESUMO

The post-translational modification of key residues at the C-terminal domain of RNA polymerase II (RNAP2-CTD) coordinates transcription, splicing, and RNA processing by modulating its capacity to act as a landing platform for a variety of protein complexes. Here, we identify a new modification at the CTD, the deimination of arginine and its conversion to citrulline by peptidyl arginine deiminase 2 (PADI2), an enzyme that has been associated with several diseases, including cancer. We show that, among PADI family members, only PADI2 citrullinates R1810 (Cit1810) at repeat 31 of the CTD. Depletion of PADI2 or loss of R1810 results in accumulation of RNAP2 at transcription start sites, reduced gene expression, and inhibition of cell proliferation. Cit1810 is needed for interaction with the P-TEFb (positive transcription elongation factor b) kinase complex and for its recruitment to chromatin. In this way, CTD-Cit1810 favors RNAP2 pause release and efficient transcription in breast cancer cells.


Assuntos
Neoplasias da Mama/enzimologia , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , Transcrição Gênica , Arginina , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Citrulinação , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Proteína-Arginina Desiminase do Tipo 2 , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , RNA Polimerase II/química , RNA Polimerase II/genética , Transdução de Sinais
3.
Nat Chem Biol ; 20(6): 742-750, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308046

RESUMO

Unlocking the potential of protein arginine deiminase 4 (PAD4) as a drug target for rheumatoid arthritis requires a deeper understanding of its regulation. In this study, we use unbiased antibody selections to identify functional antibodies capable of either activating or inhibiting PAD4 activity. Through cryogenic-electron microscopy, we characterized the structures of these antibodies in complex with PAD4 and revealed insights into their mechanisms of action. Rather than steric occlusion of the substrate-binding catalytic pocket, the antibodies modulate PAD4 activity through interactions with allosteric binding sites adjacent to the catalytic pocket. These binding events lead to either alteration of the active site conformation or the enzyme oligomeric state, resulting in modulation of PAD4 activity. Our study uses antibody engineering to reveal new mechanisms for enzyme regulation and highlights the potential of using PAD4 agonist and antagonist antibodies for studying PAD4-dependency in disease models and future therapeutic development.


Assuntos
Proteína-Arginina Desiminase do Tipo 4 , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Proteína-Arginina Desiminase do Tipo 4/química , Humanos , Domínio Catalítico , Microscopia Crioeletrônica , Modelos Moleculares , Anticorpos/química , Anticorpos/imunologia , Anticorpos/metabolismo , Artrite Reumatoide/metabolismo , Artrite Reumatoide/tratamento farmacológico , Hidrolases/metabolismo , Hidrolases/química , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/química
4.
J Immunol ; 213(1): 75-85, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758115

RESUMO

In chronic obstructive pulmonary disease (COPD), inflammation gives rise to protease-mediated degradation of the key extracellular matrix protein, elastin, which causes irreversible loss of pulmonary function. Intervention against proteolysis has met with limited success in COPD, due in part to our incomplete understanding of the mechanisms that underlie disease pathogenesis. Peptidyl arginine deiminase (PAD) enzymes are a known modifier of proteolytic susceptibility, but their involvement in COPD in the lungs of affected individuals is underexplored. In this study, we showed that enzyme isotypes PAD2 and PAD4 are present in primary granules of neutrophils and that cells from people with COPD release increased levels of PADs when compared with neutrophils of healthy control subjects. By examining bronchoalveolar lavage and lung tissue samples of patients with COPD or matched smoking and nonsmoking counterparts with normal lung function, we reveal that COPD presents with markedly increased airway concentrations of PADs. Ex vivo, we established citrullinated elastin in the peripheral airways of people with COPD, and in vitro, elastin citrullination significantly enhanced its proteolytic degradation by serine and matrix metalloproteinases, including neutrophil elastase and matrix metalloprotease-12, respectively. These results provide a mechanism by which neutrophil-released PADs affect lung function decline, indicating promise for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.


Assuntos
Elastina , Neutrófilos , Proteína-Arginina Desiminase do Tipo 2 , Proteína-Arginina Desiminase do Tipo 4 , Proteólise , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Neutrófilos/imunologia , Elastina/metabolismo , Feminino , Masculino , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Pessoa de Meia-Idade , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/imunologia , Idoso , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Citrulinação , Desiminases de Arginina em Proteínas/metabolismo , Elastase de Leucócito/metabolismo , Pulmão/imunologia , Pulmão/patologia
5.
Neurobiol Dis ; 192: 106414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253209

RESUMO

Alteration in protein citrullination (PC), a common posttranslational modification (PTM), contributes to pathogenesis in various inflammatory disorders. We previously reported that PC and protein arginine deiminase 2 (PAD2), the predominant enzyme isoform that catalyzes this PTM in the central nervous system (CNS), are altered in mouse models of amyotrophic lateral sclerosis (ALS). We now demonstrate that PAD2 expression and PC are altered in human postmortem ALS spinal cord and motor cortex compared to controls, increasing in astrocytes while trending lower in neurons. Furthermore, PC is enriched in protein aggregates that contain the myelin proteins PLP and MBP in ALS. These results confirm our findings in ALS mouse models and suggest that altered PAD2 and PC contribute to neurodegeneration in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Citrulinação , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Gliose/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Proteínas da Mielina/metabolismo , Bainha de Mielina/patologia , Agregados Proteicos , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Proteínas/metabolismo , Medula Espinal/patologia
6.
Biochem Biophys Res Commun ; 704: 149668, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401303

RESUMO

Rheumatoid arthritis is an autoimmune disease whose early onset correlates with dysregulated citrullination, a process catalyzed by peptidylarginine deiminase isoform 4 (PADI-4). Here, we report that PADI-4 is a novel target of vitamin B12, a water-soluble vitamin that serves as a cofactor in DNA synthesis and the metabolism of fatty and amino acids. Vitamin B12 preferentially inhibited PADI-4 over PADI-2 with comparable inhibitory activity to the reference compound Cl-amidine in enzymatic inhibition assays, and reduced total cellular citrullination levels including that of histone H3 citrullination mediated by PADI-4. We also demonstrated that hydroxocobalamin, a manufactured form of vitamin B12, significantly ameliorated the severity of collagen type II antibody induced arthritis (CAIA) in mice and diminished gene expression of the rheumatoid inflammatory factors and cytokines IL17A, TNFα, IL-6, COX-II and ANXA2, as well PADI-4. Therefore, the use of vitamin B12 to treat rheumatoid arthritis merits further study.


Assuntos
Artrite Reumatoide , Vitamina B 12 , Camundongos , Animais , Desiminases de Arginina em Proteínas/metabolismo , Hidrolases/metabolismo , Proteína-Arginina Desiminase do Tipo 4 , Citrulina/metabolismo , Anticorpos , Colágeno
7.
Semin Immunol ; 47: 101393, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932199

RESUMO

Under conditions of cellular stress, proteins can be post-translationally modified causing them to be recognized by the immune system. One such stress-induced post-translational modification (siPTM) is citrullination, the conversion of arginine residues to citrulline by peptidylarginine deiminase (PAD) enzymes. PAD enzymes are activated by millimolar concentrations of calcium which can occur during apoptosis, leading to precipitation of proteins, their subsequent uptake by B cells and stimulation of antibody responses. Detection of anti-citrullinated protein antibodies (ACPAs) is a diagnostic of rheumatoid arthritis (RA), where immune complexes stimulate inflammation around the joints. More recently, autophagy has been shown to play a role in the presentation of citrullinated peptides on MHC class II molecules to CD4+ helper T cells, suggesting that citrullination may be a way of alerting immune cells to cellular stress. Additionally, inflammation-induced IFNγ and concomitant MHC class II expression on target cells contributes to immune activation. Stressful conditions in the tumor microenvironment induce autophagy in cancer cells as a pro-survival mechanism. Cancer cells also over express PAD enzymes and in light of this the hypothesis that citrullinated peptides stimulate CD4+ T cell responses that would recognize these siPTM's produced during autophagy has been investigated. The induction of potent citrullinated peptide-specific CD4 responses has been shown in both humans and HLA transgenic mouse models. Responses in mouse models resulted in potent anti-tumour responses against tumours expressing either constitutive or IFNγ-inducible MHC class II. The anti-tumour effect relied upon direct recognition of tumours by specific CD4 T cells suggesting that citrullinated peptides are attractive targets for cancer vaccines.


Assuntos
Biomarcadores Tumorais , Citrulinação , Neoplasias/etiologia , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunoterapia , Terapia de Alvo Molecular , Neoplasias/terapia , Peptídeos/imunologia , Peptídeos/metabolismo , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo
8.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791230

RESUMO

The human microbiome exists throughout the body, and it is essential for maintaining various physiological processes, including immunity, and dysbiotic events, which are associated with autoimmunity. Peptidylarginine deiminase (PAD) enzymes can citrullinate self-proteins related to rheumatoid arthritis (RA) that induce the production of anti-citrullinated protein antibodies (ACPAs) and lead to inflammation and joint damage. The present investigation was carried out to demonstrate the expression of homologs of PADs or arginine deiminases (ADs) and citrullinated proteins in members of the human microbiota. To achieve the objective, we used 17 microbial strains and specific polyclonal antibodies (pAbs) of the synthetic peptide derived from residues 100-200 of human PAD2 (anti-PAD2 pAb), and the recombinant fragment of amino acids 326 and 611 of human PAD4 (anti-PAD4 pAb), a human anti-citrulline pAb, and affinity ACPAs of an RA patient. Western blot (WB), enzyme-linked immunosorbent assay (ELISA), elution, and a test with Griess reagent were used. This is a cross-sectional case-control study on patients diagnosed with RA and control subjects. Inferential statistics were applied using the non-parametric Kruskal-Wallis test and Mann-Whitney U test generated in the SPSS program. Some members of phyla Firmicutes and Proteobacteria harbor homologs of PADs/ADs and citrullinated antigens that are reactive to the ACPAs of RA patients. Microbial citrullinome and homolog enzymes of PADs/ADs are extensive in the human microbiome and are involved in the production of ACPAs. Our findings suggest a molecular link between microorganisms of a dysbiotic microbiota and RA pathogenesis.


Assuntos
Anticorpos Antiproteína Citrulinada , Artrite Reumatoide , Citrulinação , Microbiota , Desiminases de Arginina em Proteínas , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Antiproteína Citrulinada/imunologia , Anticorpos Antiproteína Citrulinada/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/microbiologia , Estudos de Casos e Controles , Citrulina/metabolismo , Estudos Transversais , Hidrolases/metabolismo , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/genética
9.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339001

RESUMO

UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice.


Assuntos
Desoxirribonuclease I , Medicamentos de Ervas Chinesas , Armadilhas Extracelulares , Raios Ultravioleta , Animais , Masculino , Camundongos , Calcimicina/farmacologia , Desoxirribonuclease I/farmacologia , Desoxirribonuclease I/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/efeitos da radiação , Histonas/metabolismo , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos ICR , Neutrófilos/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos
10.
Immunol Rev ; 294(1): 133-147, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31876028

RESUMO

The presence of autoantibodies and autoreactive T cells to citrullinated proteins and citrullinating enzymes in patients with rheumatoid arthritis (RA), together with the accumulation of citrullinated proteins in rheumatoid joints, provides substantial evidence that dysregulated citrullination is a hallmark feature of RA. However, understanding mechanisms that dysregulate citrullination in RA has important challenges. Citrullination is a normal process in immune and non-immune cells, which is likely activated by different conditions (eg, inflammation) with no pathogenic consequences. In a complex inflammatory environment such as the RA joint, unique strategies are therefore required to dissect specific mechanisms involved in the abnormal production of citrullinated proteins. Here, we will review current models of citrullination in RA and discuss critical components that, in our view, are relevant to understanding the accumulation of citrullinated proteins in the RA joint, collectively referred to as the RA citrullinome. In particular, we will focus on potential caveats in the study of citrullination in RA and will highlight methods to precisely detect citrullinated proteins in complex biological samples, which is a confirmatory approach to mechanistically link the RA citrullinome with unique pathogenic pathways in RA.


Assuntos
Artrite Reumatoide/metabolismo , Armadilhas Extracelulares/metabolismo , Animais , Anticorpos Antiproteína Citrulinada/metabolismo , Artrite Reumatoide/imunologia , Autoanticorpos/metabolismo , Autoimunidade , Citrulinação , Citrulina/metabolismo , Feminino , Humanos , Desiminases de Arginina em Proteínas/metabolismo
11.
Biochemistry ; 62(4): 893-898, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36757899

RESUMO

Post-translational modification of arginine to citrulline is catalyzed by members of the peptidylarginine deiminase (PAD) family. Dysregulation of this catalysis is a significant driver of the pathogenesis of numerous inflammatory diseases, including cancer. However, dysregulation of PAD activity has not been examined in breast cancer with respect to hormone receptor status. In this study, we measured PAD enzyme levels using Western blotting and investigated protein citrullination using a mass spectrometry-based proteomics approach in primary estrogen receptor negative (ER-) or positive (ER+) breast tumor and matched adjacent normal tissue. Our findings reveal 72 and 41 citrullinated proteins in ER- tumor and adjacent healthy tissue, respectively, where 20 of these proteins are common between the two groups. We detected 64 and 49 citrullinated proteins in ER+ tumor and adjacent healthy tissue, respectively, where 32 proteins are common. Interestingly, upon comparison of ER- and ER+ tumor tissue, only 32 citrullinated proteins are shared between the two and the rest are unique to the tumor's receptor status. Using the STRING database for protein-protein interaction network analysis, these proteins are involved in protein-folding events (i.e., heat shock proteins) in ER- samples and blood-clotting events (i.e., fibulin) in ER+ samples. Constituents of the extracellular matrix structure (i.e., collagen and fibrinogen) were found in both. Herein, we establish evidence that supports the role of this unique post-translational modification in breast cancer biology. Finally, to aid drug discovery against citrullination, we developed a liquid chromatography-ultraviolet method to measure PAD enzymatic activity and optimized glucagon-like peptide II to quantitatively measure the ability of PADs to citrullinate its substrate.


Assuntos
Neoplasias da Mama , Citrulinação , Humanos , Feminino , Proteínas/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Citrulina/química , Hidrolases/química
12.
J Immunol ; 207(3): 974-984, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34282000

RESUMO

K9CATH is the sole cathelicidin in canines (dogs) and exhibits broad antimicrobial activity against both Gram-positive and Gram-negative bacteria. K9CATH also modulates inflammatory responses and binds to LPS. These activities depend on the secondary structure and a net-positive charge of the peptide. Peptidylarginine deiminases (PAD) convert cationic peptidyl arginine to neutral citrulline. Thus, we hypothesized that citrullination is a biologically relevant modification of the peptide that would reduce the antibacterial and LPS-binding activities of K9CATH. Recombinant PAD2 and PAD4 citrullinated K9CATH to various extents and circular dichroism spectroscopy revealed that both native and citrullinated K9CATH exhibited similar α-helical secondary structures. Notably, citrullination of K9CATH reduced its bactericidal activity, abolished its ability to permeabilize the membrane of Gram-negative bacteria and reduced the hemolytic capacity. Electron microscopy showed that citrullinated K9CATH did not cause any morphological changes of Gram-negative bacteria, whereas the native peptide caused clear alterations of membrane integrity, concordant with a rapid bactericidal effect. Finally, citrullination of K9CATH impaired its capacity to inhibit LPS-mediated release of proinflammatory molecules from mouse and canine macrophages. In conclusion, citrullination attenuates the antibacterial and the LPS-binding properties of K9CATH, demonstrating the importance of a net positive charge for antibacterial lysis of bacteria and LPS-binding effects and suggests that citrullination is a means to regulate cathelicidin activities.


Assuntos
Antibacterianos/metabolismo , Anti-Inflamatórios/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Macrófagos/imunologia , Infecções por Pasteurella/metabolismo , Pasteurella multocida/fisiologia , Desiminases de Arginina em Proteínas/metabolismo , Animais , Antibacterianos/química , Anti-Inflamatórios/química , Peptídeos Catiônicos Antimicrobianos/química , Citrulinação , Cães , Imunidade Inata , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Ligação Proteica , Células RAW 264.7 , Catelicidinas
13.
Cell Mol Life Sci ; 79(2): 94, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079870

RESUMO

Numerous post-translational modifications (PTMs) govern the collective metabolism of a cell through altering the structure and functions of proteins. The action of the most prevalent PTMs, encompassing phosphorylation, methylation, acylations, ubiquitination and glycosylation is well documented. A less explored protein PTM, conversion of peptidylarginine to citrulline, is the subject of this review. The process of citrullination is catalysed by peptidylarginine deiminases (PADs), a family of conserved enzymes expressed in a variety of human tissues. Accumulating evidence suggest that citrullination plays a significant role in regulating cellular metabolism and gene expression by affecting a multitude of pathways and modulating the chromatin status. Here, we will discuss the biochemical nature of arginine citrullination, the enzymatic machinery behind it and also provide information on the pathological consequences of citrullination in the development of inflammatory diseases (rheumatoid arthritis, multiple sclerosis, psoriasis, systemic lupus erythematosus, periodontitis and COVID-19), cancer and thromboembolism. Finally, developments on inhibitors against protein citrullination and recent clinical trials providing a promising therapeutic approach to inflammatory disease by targeting citrullination are discussed.


Assuntos
Doenças Autoimunes/patologia , Citrulinação/fisiologia , Inflamação/patologia , Processamento de Proteína Pós-Traducional/fisiologia , Desiminases de Arginina em Proteínas/metabolismo , COVID-19/patologia , Citrulina/biossíntese , Metabolismo Energético/fisiologia , Armadilhas Extracelulares/imunologia , Regulação da Expressão Gênica/genética , Humanos , Neoplasias/patologia , SARS-CoV-2/imunologia , Tromboembolia/patologia
14.
Clin Oral Investig ; 27(7): 3509-3519, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133700

RESUMO

INTRODUCTION: Porphyromonas gulae have the enzyme PPAD, as P. gingivalis, which is responsible for citrullination related to the pathophysiology of rheumatoid arthritis and periodontitis; this implies the presence of two species of PPAD-producing bacteria in the mouth as well as the presence of citrullinated proteins. There are no previous reports or studies investigating an association between P. gulae PPAD in rheumatoid arthritis (RA). OBJECTIVE: To assess the presence of P. gulae and anti-citrullinated peptide antibodies of P. gulae PAD in patients with RA and their possible relationship with clinical activity markers. SUBJECTS AND METHODS: A total of 95 patients with RA and 95 controls were included. Erythrocyte sedimentation rate (ESR), C-reactive protein, anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF) were measured. Activity index-28 (DAS28) and SCDAI. The periodontal diagnosis was established. Presence of P. gulae and P. gingivalis. An ELISA was used to determine antibodies against citrullinated peptides of P. gulae PAD. RESULTS: A P. gulae frequency of 15.8% was observed in the RA group and 9.5% in the control group. Higher levels of ACPA were found in the P. gulae-positive patients of the RA group, finding no significant difference, but if in patients positive for P. gingivalis with statistical significance (p = 0.0001). The frequency of anti-VDK-cit and anti-LPQ-cit9 antibodies to PPAD of P. gulae was higher in the RA group than in the control group without significant difference. No relationship was found with the clinical variables despite the presence of P. gulae and anti-citrullinated peptide antibodies of P. gulae PPAD in patients with RA CONCLUSIONS: It was not possible to establish a connection with clinical variables in RA and P. gulae; as a result, the presence of P. gingivalis continues to contribute significantly to the increase in antibodies against citrullinated proteins/peptides from exogenous sources of citrullination in RA and periodontitis.


Assuntos
Artrite Reumatoide , Periodontite , Humanos , Citrulinação , Desiminases de Arginina em Proteínas/metabolismo , Anticorpos Antiproteína Citrulinada/metabolismo , Porphyromonas gingivalis , Periodontite/microbiologia , Peptídeos/metabolismo
15.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511288

RESUMO

Neonatal seizures are commonly associated with acute perinatal brain injury, while understanding regarding the downstream molecular pathways related to seizures remains unclear. Furthermore, effective treatment and reliable biomarkers are still lacking. Post-translational modifications can contribute to changes in protein function, and post-translational citrullination, which is caused by modification of arginine to citrulline via the calcium-mediated activation of the peptidylarginine deiminase (PAD) enzyme family, is being increasingly linked to neurological injury. Extracellular vesicles (EVs) are lipid-bilayer structures released from cells; they can be isolated from most body fluids and act as potential liquid biomarkers for disease conditions and response to treatment. As EVs carry a range of genetic and protein cargo that can be characteristic of pathological processes, the current study assessed modified citrullinated protein cargo in EVs isolated from plasma and CSF in a piglet neonatal seizure model, also following phenobarbitone treatment. Our findings provide novel insights into roles for PAD-mediated changes on EV signatures in neonatal seizures and highlight the potential of plasma- and CSF-EVs to monitor responses to treatment.


Assuntos
Citrulinação , Vesículas Extracelulares , Recém-Nascido , Humanos , Animais , Suínos , Desiminases de Arginina em Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Convulsões/metabolismo
16.
Inflammopharmacology ; 31(2): 731-744, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36806957

RESUMO

Peptidyl arginine deiminases (PADs) are a family of post-translational modification enzymes that irreversibly citrullinate (deiminate) arginine residues of protein and convert them to a non-classical amino acid citrulline in the presence of calcium ions. It has five isotypes, such as PAD1, PAD2, PAD3, PAD4, and PAD6, found in mammalian species. It has been suggested that increased PAD expression in various tissues contributes to the development of multiple inflammatory diseases, including rheumatoid arthritis (RA), cancer, diabetes, and neurological disorders. Elevation of PAD enzyme expression depends on several factors like rising intracellular Ca2+ levels, oxidative stress, and proinflammatory cytokines. PAD inhibitors originating from natural or synthetic sources can be used as a novel therapeutic approach concerning inflammatory disorders. Here, we review the pathological role of PAD in several inflammatory disorders, factors that trigger PAD expression, epigenetic role and finally, decipher the therapeutic approach of PAD inhibitors in multiple inflammatory disorders.


Assuntos
Hidrolases , Proteínas , Animais , Desiminases de Arginina em Proteínas/química , Desiminases de Arginina em Proteínas/metabolismo , Hidrolases/metabolismo , Arginina , Mamíferos/metabolismo
17.
Clin Immunol ; 245: 109134, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36184053

RESUMO

Peptidyl arginine deiminase (PAD) which mediates citrullination catalyzes the conversion of arginine residues of protein peptide chains to citrulline residues. Citrullination can be involved in the process of apoptosis, embryo development, regulation of myelin sheath function and other physiological processes. Besides, it can regulate the process of cell death, affect the formation of neutrophil extracellular traps (NETs) and produce anti-citrullinated protein antibody (ACPA) to participate in autoimmune diseases. In this manuscript, the regulatory effects of citrullination in normal physiology and autoimmune diseases are reviewed, and the effects of citrullination on immune cells in autoimmune diseases are discussed in detail.


Assuntos
Doenças Autoimunes , Armadilhas Extracelulares , Humanos , Citrulinação , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Armadilhas Extracelulares/metabolismo , Citrulina
18.
N Engl J Med ; 380(9): 833-841, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30763140

RESUMO

BACKGROUND: Central centrifugal cicatricial alopecia (CCCA) is the most common form of scarring alopecia among women of African ancestry. The disease is occasionally observed to affect women in families in a manner that suggests an autosomal dominant trait and usually manifests clinically after intense hair grooming. We sought to determine whether there exists a genetic basis of CCCA and, if so, what it is. METHODS: We used exome sequencing in a group of women with alopecia (discovery set), compared the results with those in a public repository, and applied other filtering criteria to identify candidate genes. We then performed direct sequencing to identify disease-associated DNA variations and RNA sequencing, protein modeling, immunofluorescence staining, immunoblotting, and an enzymatic assay to evaluate the consequences of potential etiologic mutations. We used a replication set that consisted of women with CCCA to confirm the data obtained with the discovery set. RESULTS: In the discovery set, which included 16 patients, we identified one splice site and three heterozygous missense mutations in PADI3 in 5 patients (31%). (The approximate prevalence of the disease is up to 5.6%.) PADI3 encodes peptidyl arginine deiminase, type III (PADI3), an enzyme that post-translationally modifies other proteins that are essential to hair-shaft formation. All three CCCA-associated missense mutations in PADI3 affect highly conserved residues and are predicted to be pathogenic; protein modeling suggests that they result in protein misfolding. These mutations were found to result in reduced PADI3 expression, abnormal intracellular localization of the protein, and decreased enzymatic activity - findings that support their pathogenicity. Immunofluorescence staining showed decreased expression of PADI3 in biopsy samples of scalp skin obtained from patients with CCCA. We then directly sequenced PADI3 in an additional 42 patients (replication set) and observed genetic variants in 9 of them. A post hoc analysis of the combined data sets showed that the prevalence of PADI3 mutation was higher among patients with CCCA than in a control cohort of women of African ancestry (P = 0.002 by the chi-square test; P = 0.006 by Fisher's exact test; and after adjustment for relatedness of persons, P = 0.03 and P = 0.04, respectively). CONCLUSIONS: Mutations in PADI3, which encodes a protein that is essential to proper hair-shaft formation, were associated with CCCA. (Funded by the Ram Family Foundation and others.).


Assuntos
Alopecia/genética , Negro ou Afro-Americano/genética , Predisposição Genética para Doença , Cabelo/crescimento & desenvolvimento , Mutação , Desiminases de Arginina em Proteínas/genética , Adolescente , Adulto , Idade de Início , Alopecia/etnologia , Distribuição de Qui-Quadrado , Cicatriz/genética , Exoma , Feminino , Heterozigoto , Humanos , Pessoa de Meia-Idade , Mutagênese , Linhagem , Proteína-Arginina Desiminase do Tipo 3 , Desiminases de Arginina em Proteínas/metabolismo , Couro Cabeludo/patologia , Análise de Sequência de DNA
19.
Biol Reprod ; 107(6): 1395-1410, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087287

RESUMO

Citrullination, the post-translational modification of arginine residues, is catalyzed by the four catalytically active peptidylarginine deiminase (PAD or PADI) isozymes and alters charge to affect target protein structure and function. PADs were initially characterized in rodent uteri and, since then, have been described in other female tissues including ovaries, breast, and the lactotrope and gonadotrope cells of the anterior pituitary gland. In these tissues and cells, estrogen robustly stimulates PAD expression resulting in changes in levels over the course of the female reproductive cycle. The best-characterized targets for PADs are arginine residues in histone tails, which, when citrullinated, alter chromatin structure and gene expression. Methodological advances have allowed for the identification of tissue-specific citrullinomes, which reveal that PADs citrullinate a wide range of enzymes and structural proteins to alter cell function. In contrast to their important physiological roles, PADs and citrullinated proteins are also involved in several female-specific diseases including autoimmune disorders and reproductive cancers. Herein, we review current knowledge regarding PAD expression and function and highlight the role of protein citrullination in both normal female reproductive tissues and associated diseases.


Assuntos
Citrulinação , Citrulina , Feminino , Animais , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Citrulina/genética , Citrulina/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Hidrolases/genética , Arginina/metabolismo
20.
Arch Biochem Biophys ; 717: 109125, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35081374

RESUMO

PADI4 (protein-arginine deiminase, also known as protein l-arginine iminohydrolase) is one of the human isoforms of a family of Ca2+-dependent proteins catalyzing the conversion of arginine to citrulline. Although the consequences of this process, known as citrullination, are not fully understood, all PADIs have been suggested to play essential roles in development and cell differentiation. They have been found in a wide range of cells and tissues and, among them, PADI4 is present in macrophages, monocytes, granulocytes and cancer cells. In this work, we focused on the biophysical features of PADI4 and, more importantly, how its expression was altered in cancer cells. Firstly, we described the different expression patterns of PADI4 in various cancer cell lines and its colocalization with the tumor-related protein p53. Secondly, we carried out a biophysical characterization of PADI4, by using a combination of biophysical techniques and in silico molecular dynamics simulations. Our biochemical results suggest the presence of several forms of PADI4 with different subcellular localizations, depending on the cancer cell line. Furthermore, PADI4 could have a major role in tumorigenesis by regulating p53 expression in certain cancer cell lines. On the other hand, the native structure of PADI4 was strongly pH-dependent both in the absence or presence of Ca2+, and showed two pH-titrations at basic and acidic pH values. Thus, there was a narrow pH range (from 6.5 to 8.0) where the protein was dimeric and had a native structure, supporting its role in histones citrullination. Thermal denaturations were always two-state, but guanidinium-induced ones showed that PADI4 unfolded through at least one intermediate. Our simulation results suggest that the thermal melting of PADI4 structure was rather homogenous throughout its sequence. The overall results are discussed in terms of the functional role of PADI4 in the development of cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Arginina/metabolismo , Carcinogênese/metabolismo , Catálise , Diferenciação Celular , Linhagem Celular Tumoral , Citrulina/metabolismo , Regulação da Expressão Gênica , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA