Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 682
Filtrar
1.
Mol Cell ; 78(3): 382-395.e8, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32183942

RESUMO

N6-Methyldeoxyadenosine (6mA) has recently been shown to exist and play regulatory roles in eukaryotic genomic DNA (gDNA). However, the biological functions of 6mA in mammals have yet to be adequately explored, largely due to its low abundance in most mammalian genomes. Here, we report that mammalian mitochondrial DNA (mtDNA) is enriched for 6mA. The level of 6mA in HepG2 mtDNA is at least 1,300-fold higher than that in gDNA under normal growth conditions, corresponding to approximately four 6mA modifications on each mtDNA molecule. METTL4, a putative mammalian methyltransferase, can mediate mtDNA 6mA methylation, which contributes to attenuated mtDNA transcription and a reduced mtDNA copy number. Mechanistically, the presence of 6mA could repress DNA binding and bending by mitochondrial transcription factor (TFAM). Under hypoxia, the 6mA level in mtDNA could be further elevated, suggesting regulatory roles for 6mA in mitochondrial stress response. Our study reveals DNA 6mA as a regulatory mark in mammalian mtDNA.


Assuntos
DNA Mitocondrial/metabolismo , Desoxiadenosinas/metabolismo , Metiltransferases/metabolismo , Animais , Metilação de DNA , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxiadenosinas/genética , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Hipóxia/genética , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Genes Dev ; 33(5-6): 282-287, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30808656

RESUMO

Here we show that translesion synthesis (TLS) opposite 1,N6-ethenodeoxyadenosine (εdA), which disrupts Watson-Crick base pairing, occurs via Polι/Polζ-, Rev1-, and Polθ-dependent pathways. The requirement of Polι/Polζ is consistent with the ability of Polι to incorporate nucleotide opposite εdA by Hoogsteen base pairing and of Polζ to extend synthesis. Rev1 polymerase and Polθ conduct TLS opposite εdA via alternative error-prone pathways. Strikingly, in contrast to extremely error-prone TLS opposite εdA by purified Polθ, it performs predominantly error-free TLS in human cells. Reconfiguration of the active site opposite εdA would provide Polθ the proficiency for error-free TLS in human cells.


Assuntos
Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiadenosinas/metabolismo , Domínio Catalítico , Adutos de DNA/metabolismo , Humanos , DNA Polimerase teta
3.
J Biol Chem ; 300(1): 105492, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000655

RESUMO

Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP-/- cancers, however the MTAP-/- genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP+/+ cancers. Methylthio-DADMe-immucillin-A (MTDIA) is a picomolar transition state analog inhibitor of MTAP that renders cells enzymatically MTAP-deficient to induce the MTAP-/- phenotype. Here, we demonstrate that MTDIA and MAT2a inhibitor AG-270 combination therapy mimics synthetic lethality in MTAP+/+ CRC cell lines with similar effects in mouse xenografts and without adverse histology on normal tissues. Combination treatment is synergistic with a 104-fold increase in drug potency for inhibition of CRC cell growth in culture. Combined MTDIA and AG-270 decreases S-adenosyl-L-methionine and increases 5'-methylthioadenosine in cells. The increased intracellular methylthioadenosine:S-adenosyl-L-methionine ratio inhibits PRMT5 activity, leading to cellular arrest and apoptotic cell death by causing MDM4 alternative splicing and p53 activation. Combination MTDIA and AG-270 treatment differs from direct inhibition of PRMT5 by GSK3326595 by avoiding toxicity caused by cell death in the normal gut epithelium induced by the PRMT5 inhibitor. The combination of MTAP and MAT2a inhibitors expands this synthetic lethal approach to include MTAP+/+ cancers, especially the remaining 98% of CRCs without the MTAP-/- genotype.


Assuntos
Desoxiadenosinas , Metionina Adenosiltransferase , Neoplasias , Proteína-Arginina N-Metiltransferases , Purina-Núcleosídeo Fosforilase , S-Adenosilmetionina , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxiadenosinas/antagonistas & inibidores , Desoxiadenosinas/genética , Desoxiadenosinas/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Neoplasias/genética , Neoplasias/fisiopatologia , Neoplasias/terapia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , S-Adenosilmetionina/metabolismo
4.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891880

RESUMO

Cordycepin, or 3'-deoxyadenosine, is an adenosine analog with a broad spectrum of biological activity. The key structural difference between cordycepin and adenosine lies in the absence of a hydroxyl group at the 3' position of the ribose ring. Upon administration, cordycepin can undergo an enzymatic transformation in specific tissues, forming cordycepin triphosphate. In this study, we conducted a comprehensive analysis of the structural features of cordycepin and its derivatives, contrasting them with endogenous purine-based metabolites using chemoinformatics and bioinformatics tools in addition to molecular dynamics simulations. We tested the hypothesis that cordycepin triphosphate could bind to the active site of the adenylate cyclase enzyme. The outcomes of our molecular dynamics simulations revealed scores that are comparable to, and superior to, those of adenosine triphosphate (ATP), the endogenous ligand. This interaction could reduce the production of cyclic adenosine monophosphate (cAMP) by acting as a pseudo-ATP that lacks a hydroxyl group at the 3' position, essential to carry out nucleotide cyclization. We discuss the implications in the context of the plasticity of cancer and other cells within the tumor microenvironment, such as cancer-associated fibroblast, endothelial, and immune cells. This interaction could awaken antitumor immunity by preventing phenotypic changes in the immune cells driven by sustained cAMP signaling. The last could be an unreported molecular mechanism that helps to explain more details about cordycepin's mechanism of action.


Assuntos
AMP Cíclico , Desoxiadenosinas , Simulação de Dinâmica Molecular , Neoplasias , Desoxiadenosinas/metabolismo , Desoxiadenosinas/farmacologia , Desoxiadenosinas/química , Humanos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , AMP Cíclico/metabolismo , Trifosfato de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Simulação por Computador , Adenilil Ciclases/metabolismo
5.
J Biol Chem ; 298(5): 101876, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358513

RESUMO

Deoxyguanosine kinase (dGK) is reported responsible for the phosphorylation of deoxyadenosine (dA) and deoxyguanosine (dG) in the mitochondrial purine salvage pathway. Antiviral nucleoside analogs known as nucleoside reverse transcriptase inhibitors (NRTIs) must be phosphorylated by host enzymes for the analog to become active. We address the possibility that NRTI purine analogs may be competitive inhibitors of dGK. From a group of such analogs, we demonstrate that entecavir (ETV) competitively inhibited the phosphorylation of dG and dA in rat mitochondria. Mitochondria from the brain, heart, kidney, and liver showed a marked preference for phosphorylation of dG over dA (10-30-fold) and ETV over dA (2.5-4-fold). We found that ETV inhibited the phosphorylation of dG with an IC50 of 15.3 ± 2.2 µM and that ETV and dG were both potent inhibitors of dA phosphorylation with IC50s of 0.034 ± 0.007 and 0.028 ± 0.006 µM, respectively. In addition, the phosphorylation of dG and ETV followed Michaelis-Menten kinetics and each competitively inhibited the phosphorylation of the other. We observed that the kinetics of dA phosphorylation were strikingly different from those of dG phosphorylation, with an exponentially lower affinity for dGK and no effect of dA on dG or ETV phosphorylation. Finally, in an isolated heart perfusion model, we demonstrated that dG, dA, and ETV were phosphorylated and dG phosphorylation was inhibited by ETV. Taken together, these data demonstrate that dGK is inhibited by ETV and that the primary role of dGK is in the phosphorylation of dG rather than dA.


Assuntos
Guanina , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Desoxiadenosinas/metabolismo , Desoxiadenosinas/farmacologia , Desoxiguanosina , Guanina/análogos & derivados , Mitocôndrias/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ratos
6.
Microb Cell Fact ; 22(1): 253, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071331

RESUMO

BACKGROUND: Cordycepin (3'-deoxyadenosine) is an important bioactive compound in medical and healthcare markets. The drawbacks of commercial cordycepin production using Cordyceps spp. include long cultivation periods and low cordycepin yields. To overcome these limitations and meet the increasing market demand, the efficient production of cordycepin by the GRAS-status Aspergillus oryzae strain using a synthetic biology approach was developed in this study. RESULTS: An engineered strain of A. oryzae capable of cordycepin production was successfully constructed by overexpressing two metabolic genes (cns1 and cns2) involved in cordycepin biosynthesis under the control of constitutive promoters. Investigation of the flexibility of carbon utilization for cordycepin production by the engineered A. oryzae strain revealed that it was able to utilize C6-, C5-, and C12-sugars as carbon sources, with glucose being the best carbon source for cordycepin production. High cordycepin productivity (564.64 ± 9.59 mg/L/d) was acquired by optimizing the submerged fermentation conditions. CONCLUSIONS: This study demonstrates a powerful production platform for bioactive cordycepin production by A. oryzae using a synthetic biology approach. An efficient and cost-effective fermentation process for cordycepin production using an engineered strain was established, offering a powerful alternative source for further upscaling.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Desoxiadenosinas/metabolismo , Fermentação , Carbono/metabolismo
7.
Appl Microbiol Biotechnol ; 107(24): 7403-7416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37773218

RESUMO

Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in Cordyceps militaris. To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett-Burman, and central composite designs in C. militaris mycelial fermentation. Under the regulation of the multifactorial interactions of selenite, ferrous chloride, xylose, and glycine, cordycepin production was increased by 5.2-fold compared with the control. The gene expression of hexokinase, ATP phosphoribosyltransferase, adenylosuccinate synthetase, and cns1-3 in the glycolysis, pentose phosphate, and adenosine synthesis pathways were increased by 3.2-7.5 times due to multifactorial interactions, while the gene expression of histidine biosynthesis trifunctional protein and histidinol-phosphate aminotransferase in histidine synthesis pathway were decreased by 23.4%-56.2%. Increasing with cordycepin production, glucose uptake was accelerated, mycelia growth was inhibited, and the cell wall was damaged. Selenomethionine (SeMet), selenocysteine (SeCys), and selenium nanoparticles (SeNPs) were the major Se species in C. militaris mycelia. This study provides a new insight for promoting cordycepin production by regulating glycolysis, pentose phosphate, and histidine metabolism. KEY POINTS: • Cordycepin production in the CCDmax group was 5.2-fold than that of the control. • Glucose uptake of the CCDmax group was accelerated and cell wall was damaged. • The metabolic flux was concentrated to the cordycepin synthesis pathway.


Assuntos
Cordyceps , Selênio , Selênio/metabolismo , Xilose/metabolismo , Ferro/metabolismo , Glicina/metabolismo , Histidina/metabolismo , Desoxiadenosinas/metabolismo , Glucose/metabolismo , Fosfatos/metabolismo
8.
Biomed Chromatogr ; 37(2): e5551, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36408993

RESUMO

Cordycepin is an important quality control marker in Cordyceps militaris. This study aimed to explain the metabolic mechanisms for high-yielding cordycepin of C. militaris. In this study, high-yielding strains of cordycepin were obtained by ultraviolet mutagenesis, and the polysaccharide and protein contents were also changed. In high-yielding strains, the protein content significantly increased, whereas the polysaccharide content decreased. Simultaneously, metabolic differences for high- and low-yielding cordycepin strains were detected by metabolomics. Metabolomics results showed that the relative content of most metabolites decreased in high-yielding cordycepin strains. Various metabolic pathways have been altered in high-yielding cordycepin strains, such as the citric acid cycle, purine metabolism, and pyrimidine metabolism, leading to an increase in cordycepin content. In addition, changes in metabolic poly-pathways related to polysaccharide and protein synthesis, such as galactose metabolism and amino acid metabolism, promoted an increase in cordycepin content. This study analyzes the high yield of cordycepin in C. militaris at the metabolic level and provides a theoretical basis for further increasing cordycepin content.


Assuntos
Cordyceps , Cordyceps/química , Desoxiadenosinas/metabolismo , Metabolômica , Polissacarídeos
9.
Yi Chuan ; 45(10): 887-903, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37872112

RESUMO

There are abundant base modifications in bacteriophages' genomes, mainly for avoiding the digestion of host endonucleases. More than 40 years ago, researchers discovered that 2-amino-adenine (Z) completely replaced adenine (A) and forms a complementary pairing with three hydrogen bonds with thymine (T) in the DNA of cyanophage S-2L, forming a distinct "Z-genome". In recent years, researchers have discovered and validated the biosynthetic pathway of Z-genome in various bacteriophages, constituting a multi-enzyme system. This system includes the phage-encoded enzymes deoxy-2'-aminoadenylosuccinate synthetase (PurZ), deoxyadenosine triphosphate hydrolase (dATPase/DatZ), deoxyadenosine/deoxyguanosine triphosphate pyrophosphatase (DUF550/MazZ) and DNA polymerase (DpoZ). In this review, we provide a concise overview of the historical discovery on diversely modified nucleosides in bacteriophages, then we comprehensively summarize the research progress on multiple enzymes involved in the Z-genome biosynthetic pathway. Finally, the potential applications of the Z-genome and the enzymes in its biosynthetic pathway are discussed in order to provide reference for research in this field.


Assuntos
Bacteriófagos , Bacteriófagos/genética , DNA Viral/genética , DNA Viral/metabolismo , Vias Biossintéticas/genética , Adenina , Desoxiadenosinas/metabolismo
10.
J Biol Chem ; 296: 100621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33811856

RESUMO

5-Deoxyadenosine (5dAdo) is the byproduct of many radical S-adenosyl-l-methionine enzyme reactions in all domains of life. 5dAdo is also an inhibitor of the radical S-adenosyl-l-methionine enzymes themselves, making it necessary for cells to construct pathways to recycle or dispose of this toxic metabolite. However, the specific pathways involved have long remained unexplored. Recent research demonstrated a growth advantage in certain organisms by using 5dAdo or intermediates as a sole carbon source and elucidated the corresponding salvage pathway. We now provide evidence using supernatant analysis by GC-MS for another 5dAdo recycling route. Specifically, in the unicellular cyanobacterium Synechococcus elongatus PCC 7942 (S. elongatus), the activity of promiscuous enzymes leads to the synthesis and excretion first of 5-deoxyribose and subsequently of 7-deoxysedoheptulose. 7-Deoxysedoheptulose is an unusual deoxy-sugar, which acts as an antimetabolite of the shikimate pathway, thereby exhibiting antimicrobial and herbicidal activity. This strategy enables organisms with small genomes and lacking canonical gene clusters for the synthesis of secondary metabolites, like S. elongatus, to produce antimicrobial compounds from primary metabolism and enzymatic promiscuity. Our findings challenge the view of bioactive molecules as sole products of secondary metabolite gene clusters and expand the range of compounds that microorganisms can deploy to compete for their ecological niche.


Assuntos
Proteínas de Bactérias/metabolismo , Desoxiadenosinas/metabolismo , Hidrolases/metabolismo , S-Adenosilmetionina/metabolismo , Metabolismo Secundário , Synechococcus/metabolismo , Proteínas de Bactérias/genética , Hidrolases/genética , Synechococcus/crescimento & desenvolvimento
11.
J Biol Chem ; 296: 100444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617883

RESUMO

Unrepaired DNA-protein cross-links, due to their bulky nature, can stall replication forks and result in genome instability. Large DNA-protein cross-links can be cleaved into DNA-peptide cross-links, but the extent to which these smaller fragments disrupt normal replication is not clear. Ethylene dibromide (1,2-dibromoethane) is a known carcinogen that can cross-link the repair protein O6-alkylguanine-DNA alkyltransferase (AGT) to the N6 position of deoxyadenosine (dA) in DNA, as well as four other positions in DNA. We investigated the effect of a 15-mer peptide from the active site of AGT, cross-linked to the N6 position of dA, on DNA replication by human translesion synthesis DNA polymerases (Pols) η, ⍳, and κ. The peptide-DNA cross-link was bypassed by the three polymerases at different rates. In steady-state kinetics, the specificity constant (kcat/Km) for incorporation of the correct nucleotide opposite to the adduct decreased by 220-fold with Pol κ, tenfold with pol η, and not at all with Pol ⍳. Pol η incorporated all four nucleotides across from the lesion, with the preference dT > dC > dA > dG, while Pol ⍳ and κ only incorporated the correct nucleotide. However, LC-MS/MS analysis of the primer-template extension product revealed error-free bypass of the cross-linked 15-mer peptide by Pol η. We conclude that a bulky 15-mer peptide cross-linked to the N6 position of dA can retard polymerization and cause miscoding but that overall fidelity is not compromised because only correct pairs are extended.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/farmacologia , Cromatografia Líquida/métodos , DNA/química , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Desoxiguanosina/metabolismo , Dibrometo de Etileno/química , Humanos , Cinética , Estrutura Molecular , Mutação , Nucleotídeos/genética , Peptídeos/genética , Espectrometria de Massas em Tandem/métodos
12.
Molecules ; 27(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500262

RESUMO

Cordyceps spp. (belonging to the Ascomycota group) are entomopathogenic mushrooms that have traditionally been used in ethnomedicine in Asian countries such as China, Japan, Korea, and India. They are unique parasites of larvae of selected species of moths. Cordyceps militaris is one of the best sources of cordycepin. Worldwide, osteoporosis is one of the most common bone diseases, whose pharmacotherapy includes various medical interventions; however, the research and development of new molecules and new drugs is required. The impact of adenosine receptors (ARs) on the purinergic signaling pathway may regulate proliferation, differentiate dental pulp stem cells and bone marrow, and modulate osteogenesis and bone repair. The aim of the review was to collect and analyze the available data on the effects of Cordyceps spp. or cordycepin on bone function and related processes. To the best of our knowledge, this is the first systematic review in this perspective, not necessarily using mushroom raw material or even the isolated parent compound cordycepin, but new molecules that are analogs of nucleosides, such as those from C. militaris. This review found that Cordyceps spp. or isolated cordycepin interacts via the AR, 5' adenosine monophosphate-activated protein kinase (AMPK), and adenosine-5'-triphosphate (ATP) signaling pathway and evaluated their impact on bones, teeth, and dental pulp. Cordyceps spp. was found to have the potential to develop regenerative medicines, thus providing an opportunity to expand the treatment or intervention methods in the recovery after traumatic injuries, convalescence, and terminal-stage or devastating diseases.


Assuntos
Cordyceps , Osteoporose , Cordyceps/metabolismo , Desoxiadenosinas/farmacologia , Desoxiadenosinas/metabolismo , Transdução de Sinais , China , Ásia
13.
Mol Microbiol ; 114(1): 46-65, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32090388

RESUMO

The methionine salvage pathway (MSP) regenerates methionine from 5'-methylthioadenosine (MTA). Aerobic MSP consists of six enzymatic steps. The mug14+ and adi1+ genes that are involved in the third and fifth steps of the pathway are repressed when Schizosaccharomyces pombe undergoes a transition from high- to low-iron conditions. Results consistently show that methionine auxotrophic cells (met6Δ) require iron for growth in the presence of MTA as the sole source of methionine. Inactivation of the iron-using protein Adi1 leads to defects in the utilization of MTA. In the case of the third step of the pathway, co-expression of two distinct proteins, Mta3 and Mde1, is required. These proteins are interdependent to rescue MTA-dependent growth deficit of met6Δ cells. Coimmunoprecipitation experiments showed that Mta3 is a binding partner of Mde1. Meiotic met6Δ cells co-expressing mta3+ and mde1+ or mta3+ and mug14+ produce comparable levels of spores in the presence of MTA, revealing that Mde1 and Mug14 share a common function when co-expressed with Mta3 in sporulating cells. In sum, our findings unveil several novel features of MSP, especially with respect to its regulation by iron and the discovery of a non-canonical third enzymatic step in the fission yeast.


Assuntos
Desoxiadenosinas/metabolismo , Ferro/metabolismo , Metionina/biossíntese , Schizosaccharomyces/metabolismo , Tionucleosídeos/metabolismo , Deficiências de Ferro , Poliaminas/metabolismo
14.
Mol Microbiol ; 113(5): 923-937, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31950558

RESUMO

S-adenosyl-l-methionine (SAM) is a necessary cosubstrate for numerous essential enzymatic reactions including protein and nucleotide methylations, secondary metabolite synthesis and radical-mediated processes. Radical SAM enzymes produce 5'-deoxyadenosine, and SAM-dependent enzymes for polyamine, neurotransmitter and quorum sensing compound synthesis produce 5'-methylthioadenosine as by-products. Both are inhibitory and must be addressed by all cells. This work establishes a bifunctional oxygen-independent salvage pathway for 5'-deoxyadenosine and 5'-methylthioadenosine in both Rhodospirillum rubrum and Extraintestinal Pathogenic Escherichia coli. Homologous genes for this pathway are widespread in bacteria, notably pathogenic strains within several families. A phosphorylase (Rhodospirillum rubrum) or separate nucleoside and kinase (Escherichia coli) followed by an isomerase and aldolase sequentially function to salvage these two wasteful and inhibitory compounds into adenine, dihydroxyacetone phosphate and acetaldehyde or (2-methylthio)acetaldehyde during both aerobic and anaerobic growth. Both SAM by-products are metabolized with equal affinity during aerobic and anaerobic growth conditions, suggesting that the dual-purpose salvage pathway plays a central role in numerous environments, notably the human body during infection. Our newly discovered bifunctional oxygen-independent pathway, widespread in bacteria, salvages at least two by-products of SAM-dependent enzymes for carbon and sulfur salvage, contributing to cell growth.


Assuntos
Proteínas de Bactérias/metabolismo , Desoxiadenosinas/metabolismo , Escherichia coli/metabolismo , Rhodospirillum rubrum/metabolismo , S-Adenosilmetionina/metabolismo , Tionucleosídeos/metabolismo , Proteínas de Bactérias/genética , Carbono/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Escherichia coli/genética , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Isomerases/genética , Isomerases/metabolismo , Redes e Vias Metabólicas/genética , Metionina/metabolismo , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Oxigênio/metabolismo , Fosforilases/genética , Fosforilases/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Rhodospirillum rubrum/genética
15.
Hum Mol Genet ; 28(1): 51-63, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219871

RESUMO

Machado-Joseph disease (MJD) is a neurodegenerative disorder caused by an abnormal expansion of citosine-adenine-guanine trinucleotide repeats in the disease-causing gene. This mutation leads to an abnormal polyglutamine tract in the protein ataxin-3 (Atx3), resulting in formation of mutant Atx3 aggregates. Despite several attempts to develop a therapeutic option for MJD, currently there are no available therapies capable of delaying or stopping disease progression. Recently, our group reported that reducing the expression levels of mutant Atx3 lead to a mitigation of several MJD-related behavior and neuropathological abnormalities. Aiming a more rapid translation to the human clinics, in this study we investigate a pharmacological inhibitor of translation-cordycepin-in several preclinical models. We found that cordycepin treatment significantly reduced (i) the levels of mutant Atx3, (ii) the neuropathological abnormalities in a lentiviral mouse model, (iii) the motor and neuropathological deficits in a transgenic mouse model and (iv) the number of ubiquitin aggregates in a human neural model. We hypothesize that the effect of cordycepin is mediated by the increase of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) levels, which is accompanied by a reduction in the global translation levels and by a significant activation of the autophagy pathway. Overall, this study suggests that cordycepin might constitute an effective and safe therapeutic approach for MJD, and probably for the other polyglutamine diseases.


Assuntos
Desoxiadenosinas/farmacologia , Desoxiadenosinas/fisiologia , Doença de Machado-Joseph/fisiopatologia , Adenilato Quinase/efeitos dos fármacos , Animais , Ataxina-3/metabolismo , Ataxina-3/fisiologia , Autofagia/efeitos dos fármacos , Desoxiadenosinas/metabolismo , Modelos Animais de Doenças , Doença de Machado-Joseph/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fosforilação , Proteínas Repressoras/genética , Repetições de Trinucleotídeos/genética
16.
Biochem Biophys Res Commun ; 558: 120-125, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33910126

RESUMO

Human concentrative nucleoside transporters (CNTs) are responsible for cellular uptake of ribonucleosides; however, although it is important to better characterize CNT-subtype specificity to understand the systemic disposition of deoxyribonucleosides (dNs) and their analogs, the involvement of CNTs in transporting dNs is not fully understood. In this study, using COS-7 cells that transiently expressed CNT1, CNT2, or CNT3, we investigated if CNTs could transport not only ribonucleosides but also dNs, i.e., 2'-deoxyadenosine (dAdo), 2'-deoxyguanosine (dGuo), and 2'-deoxycytidine (dCyd). The cellular uptake study demonstrated that dAdo and dGuo were taken up by CNT2 but not by CNT1. Although dCyd was taken up by CNT1, no significant uptake was detected in COS-7 cells expressing CNT2. Similarly, these dNs were transported by CNT3. The apparent Km values of their uptake were as follows: CNT1, Km = 141 µM for dCyd; CNT2, Km = 62.4 µM and 54.9 µM for dAdo and dGuo, respectively; CNT3, Km = 14.7 µM and 34.4 µM for dGuo and dCyd, respectively. These results demonstrate that CNTs contribute not only to ribonucleoside transport but also to the transport of dNs. Moreover, our data indicated that CNT1 and CNT2 selectively transported pyrimidine and purine dNs, respectively, and CNT3 was shown to transport both pyrimidine and purine dNs.


Assuntos
Desoxirribonucleosídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Transporte Biológico Ativo , Células COS , Chlorocebus aethiops , Desoxiadenosinas/metabolismo , Desoxicitidina/metabolismo , Desoxiguanosina/metabolismo , Humanos , Cinética , Proteínas de Membrana Transportadoras/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Chem Res Toxicol ; 34(4): 992-1003, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33705110

RESUMO

The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are considered to be two of the most important carcinogens in unburned tobacco and its smoke. They readily cause tumors in laboratory animals and are classified as "carcinogenic to humans" by the International Agency for Research on Cancer. DNA adduct formation by these two carcinogens is believed to play a critical role in tobacco carcinogenesis. Among all the DNA adducts formed by NNN and NNK, 2'-deoxyadenosine (dAdo)-derived adducts have not been fully characterized. In the study reported here, we characterized the formation of N6-[4-(3-pyridyl)-4-oxo-1-butyl]-2'-deoxyadenosine (N6-POB-dAdo) and its reduced form N6-PHB-dAdo formed by NNN 2'-hydroxylation in rat liver and lung DNA. More importantly, we characterized a new dAdo adduct N6-[4-hydroxy-1-(pyridine-3-yl)butyl]-2'-deoxyadenosine (N6-HPB-dAdo) formed after NaBH3CN or NaBH4 reduction both in vitro in calf thymus DNA reacted with 5'-acetoxy-N'-nitrosonornicotine and in vivo in rat liver and lung upon treatment with NNN. This adduct was specifically formed by NNN 5'-hydroxylation. Chemical standards of N6-HPB-dAdo and the corresponding isotopically labeled internal standard [pyridine-d4]N6-HPB-dAdo were synthesized using a four-step method. Both NMR and high-resolution mass spectrometry data agreed well with the proposed structure of N6-HPB-dAdo. The new adduct coeluted with the synthesized internal standard under various LC conditions. Its product ion patterns of MS2 and MS3 transitions were also consistent with the proposed fragmentation patterns. Chromatographic resolution of the two diastereomers of N6-HPB-dAdo was successfully achieved. Quantitation suggested a dose-dependent response of the levels of this new adduct in the liver and lung of rats treated with NNN. However, its level was lower than that of 2-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxyinosine, a previously reported dGuo adduct that is also formed from NNN 5'-hydroxylation. The identification of N6-HPB-dAdo in this study leads to new insights pertinent to the mechanism of carcinogenesis by NNN and to the development of biomarkers of NNN metabolic activation.


Assuntos
Adutos de DNA/análise , DNA/química , Desoxiadenosinas/análise , Fígado/química , Pulmão/química , Nitrosaminas/química , Animais , DNA/metabolismo , Adutos de DNA/metabolismo , Desoxiadenosinas/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Estrutura Molecular , Nitrosaminas/metabolismo , Proibitinas , Ratos
18.
Pediatr Res ; 89(3): 476-482, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32311698

RESUMO

BACKGROUND: Neonatal hyperoxia increases oxidative stress and adversely disturbs glomerular and tubular maturity. Maternal Tn immunization induces anti-Tn antibody titer and attenuates hyperoxia-induced lung injury in neonatal rats. METHODS: We intraperitoneally immunized female Sprague-Dawley rats (6 weeks old) with Tn immunogen (50 µg/dose) or carrier protein five times at biweekly intervals on 8, 6, 4, 2, and 0 weeks before the delivery day. The pups were reared for 2 weeks in either room air (RA) or in 85% oxygen-enriched atmosphere (O2), thus generating four study groups, namely carrier protein + RA, Tn vaccine + RA, carrier protein + O2, and Tn vaccine + O2. On postnatal day 14, the kidneys were harvested for the oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG), nuclear factor-κB (NF-κB), and collagen expression and histological analyses. RESULTS: Hyperoxia reduced body weight, induced tubular and glomerular injuries, and increased 8-OHdG and NF-κB expression and collagen deposition in the kidneys. By contrast, maternal Tn immunization reduced kidney injury and collagen deposition in neonatal rats. Furthermore, kidney injury attenuation was accompanied by a reduction in 8-OHdG and NF-κB expression. CONCLUSION: Maternal Tn immunization protects against hyperoxia-induced kidney injury in neonatal rats by attenuating oxidative stress and NF-κB activity. IMPACT: Hyperoxia increased nuclear factor-κB (NF-κB) activity and collagen deposition in neonatal rat kidney. Maternal Tn immunization reduced kidney injury as well as collagen deposition in neonatal rats. Maternal Tn immunization reduced kidney injury and was associated with a reduction in 8-hydroxy-2'-deoxyguanosine and NF-κB activity. Tn vaccine can be a promising treatment modality against hyperoxia-induced kidney injury in neonates.


Assuntos
Injúria Renal Aguda/prevenção & controle , Antígenos Glicosídicos Associados a Tumores/imunologia , Hiperóxia/complicações , Imunoterapia Ativa/métodos , Injúria Renal Aguda/etiologia , Animais , Animais Recém-Nascidos , Peso Corporal , Colágeno/análise , Desoxiadenosinas/metabolismo , Feminino , Túbulos Renais/química , Túbulos Renais/patologia , NF-kappa B/metabolismo , Tamanho do Órgão , Estresse Oxidativo , Gravidez , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Vacinação , Vacúolos/ultraestrutura
19.
Microb Cell Fact ; 20(1): 206, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715875

RESUMO

BACKGROUND: Fluorinases play a unique role in the production of fluorine-containing organic molecules by biological methods. Whole-cell catalysis is a better choice in the large-scale fermentation processes, and over 60% of industrial biocatalysis uses this method. However, the in vivo catalytic efficiency of fluorinases is stuck with the mass transfer of the substrates. RESULTS: A gene sequence encoding a protein with fluorinase function was fused to the N-terminal of ice nucleation protein, and the fused fluorinase was expressed in Escherichia coli BL21(DE3) cells. SDS-PAGE and immunofluorescence microscopy were used to demonstrate the surface localization of the fusion protein. The fluorinase displayed on the surface showed good stability while retaining the catalytic activity. The engineered E.coli with surface-displayed fluorinase could be cultured to obtain a larger cell density, which was beneficial for industrial application. And 55% yield of 5'-fluorodeoxyadenosine (5'-FDA) from S-adenosyl-L-methionine (SAM) was achieved by using the whole-cell catalyst. CONCLUSIONS: Here, we created the fluorinase-containing surface display system on E.coli cells for the first time. The fluorinase was successfully displayed on the surface of E.coli and maintained its catalytic activity. The surface display provides a new solution for the industrial application of biological fluorination.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Biocatálise , Desoxiadenosinas/metabolismo , Escherichia coli/metabolismo , Oxirredutases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Microbiologia Industrial , Oxirredutases/genética , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética
20.
J Pharmacol Sci ; 146(2): 82-87, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33941324

RESUMO

Islatravir (ISL; 4'-ethynyl-2-fluoro-2'-deoxyadenosine or EFdA) is a novel reverse transcriptase translocation inhibitor and has a unique structure and high antiviral activity against wild-type and multidrug resistant HIV strains. In this study, we investigated whether islatravir (ISL) can cause kidney damage compared to tenofovir disoproxil fumarate (TDF) and tenofovir (TFV). We also investigated interactions of these drugs with organic anion transporters (OATs). There is a large gap in ISL concentration between the pharmacological dose to proximal tubular cells and the clinical dose. ISL is unlikely to be taken up via OAT1 or OAT3; therefore, OAT1 and OAT3 may not be involved in the injury to tubular cells. Present data strongly suggests that ISL is not toxic to proximal tubules because blood levels of ISL are not high enough to cause kidney damage in the clinical setting.


Assuntos
Desoxiadenosinas/efeitos adversos , Desoxiadenosinas/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Transportadores de Ânions Orgânicos/metabolismo , Inibidores da Transcriptase Reversa/efeitos adversos , Inibidores da Transcriptase Reversa/metabolismo , Injúria Renal Aguda/etiologia , Células Cultivadas , Desoxiadenosinas/sangue , Relação Dose-Resposta a Droga , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA