Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Res ; 102(3): e25302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515319

RESUMO

Levodopa-induced dyskinesia (LID) is a common complication in patients with advanced Parkinson's disease (PD) undergoing treatment with levodopa. Glutamate receptor antagonists can suppress LID; however, the underlying mechanisms remain unclear. Here, we aimed to evaluate the effect of 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP), a metabotropic glutamate receptor 5 (mGluR5) antagonist, on dyskinesia. We recorded the neuronal activity of the entopeduncular nucleus and examined responses to cortical electric stimulation in the control group (n = 6) and three groups of rats (male PD model). Saline was intraperitoneally administered to dopamine lesioned (DL) rats (n = 6), levodopa/benserazide (L/B) was administered to LID rats (n = 8), and L/B combined with MTEP was administered to MTEP rats (n = 6) twice daily for 14 days. We administered L/B to LID and MTEP rats 48 h after the final administration of MTEP to examine the chronic effect of MTEP. The control and DL groups did not have LID. The MTEP group had less LID than the LID group (p < .01) on day 1 and day 18. The control group had a typical triphasic pattern consisting of early excitation (early-Ex), inhibition, and late excitation (late-Ex). However, the inhibition phase disappeared, was partially observed, and was fully suppressed in the DL, LID, and MTEP groups, respectively. The cortico-striato-entopeduncular pathway is important in the pathophysiology of LID. mGluR5 antagonism suppresses LID progression by preventing physiological changes in the cortico-striato-entopeduncular pathway. Future studies are required to validate these results.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Humanos , Ratos , Masculino , Animais , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Receptor de Glutamato Metabotrópico 5 , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/prevenção & controle , Discinesia Induzida por Medicamentos/metabolismo , Oxidopamina
2.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R541-R546, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33533311

RESUMO

Physical exercise attenuates the development of l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID) in 6-hydroxydopamine-induced hemiparkinsonian mice through unknown mechanisms. We now tested if exercise normalizes the aberrant corticostriatal neuroplasticity associated with experimental murine models of LID. C57BL/6 mice received two unilateral intrastriatal injections of 6-hydroxydopamine (12 µg) and were treated after 3 wk with l-DOPA/benserazide (25/12.5 mg/kg) for 4 wk, with individualized moderate-intensity running (60%-70% V̇o2peak) or not (untrained). l-DOPA converted the pattern of plasticity in corticostriatal synapses from a long-term depression (LTD) into a long-term potentiation (LTP). Exercise reduced LID severity and decreased aberrant LTP. These results suggest that exercise attenuates abnormal corticostriatal plasticity to decrease LID.


Assuntos
Antiparkinsonianos/toxicidade , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Discinesia Induzida por Medicamentos/prevenção & controle , Terapia por Exercício , Levodopa/toxicidade , Plasticidade Neuronal/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Benserazida/toxicidade , Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Di-Hidroxifenilalanina/análogos & derivados , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/fisiopatologia , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Corrida , Fatores de Tempo
3.
Molecules ; 26(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34641332

RESUMO

L-DOPA therapy in Parkinson's disease (PD) is limited due to emerging L-DOPA-induced dyskinesia. Research has identified abnormal dopamine release from serotonergic (5-HT) terminals contributing to this dyskinesia. Selective serotonin reuptake inhibitors (SSRIs) or 5-HT receptor (5-HTr) agonists can regulate 5-HT activity and attenuate dyskinesia, but they often also produce a loss of the antiparkinsonian efficacy of L-DOPA. We investigated vilazodone, a novel multimodal 5-HT agent with SSRI and 5-HTr1A partial agonist properties, for its potential to reduce dyskinesia without interfering with the prokinetic effects of L-DOPA, and underlying mechanisms. We assessed vilazodone effects on L-DOPA-induced dyskinesia (abnormal involuntary movements, AIMs) and aberrant responsiveness to corticostriatal drive in striatal medium spiny neurons (MSNs) measured with in vivo single-unit extracellular recordings, in the 6-OHDA rat model of PD. Vilazodone (10 mg/kg) suppressed all subtypes (axial, limb, orolingual) of AIMs induced by L-DOPA (5 mg/kg) and the increase in MSN responsiveness to cortical stimulation (shorter spike onset latency). Both the antidyskinetic effects and reversal in MSN excitability by vilazodone were inhibited by the 5-HTr1A antagonist WAY-100635, demonstrating a critical role for 5-HTr1A in these vilazodone actions. Our results indicate that vilazodone may serve as an adjunct therapeutic for reducing dyskinesia in patients with PD.


Assuntos
Discinesia Induzida por Medicamentos/prevenção & controle , Levodopa/administração & dosagem , Oxidopamina/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Receptor 5-HT1A de Serotonina/metabolismo , Cloridrato de Vilazodona/administração & dosagem , Animais , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/metabolismo , Regulação da Expressão Gênica , Levodopa/efeitos adversos , Masculino , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Cloridrato de Vilazodona/farmacologia
4.
Neurobiol Dis ; 141: 104892, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387338

RESUMO

The antioxidant and CB2 receptor agonist properties of Δ9-tetrahydrocannabivarin (Δ9-THCV) afforded neuroprotection in experimental Parkinson's disease (PD), whereas its CB1 receptor antagonist profile at doses lower than 5 mg/kg caused anti-hypokinetic effects. In the present study, we investigated the anti-dyskinetic potential of Δ9-THCV (administered i.p. at 2 mg/kg for two weeks), which had not been investigated before. This objective was investigated after inducing dyskinesia by repeated administration of L-DOPA (i.p. at 10 mg/kg) in a genetic model of dopaminergic deficiency, Pitx3ak mutant mice, which serves as a useful model for testing anti-dyskinetic agents. The daily treatment of these mice with L-DOPA for two weeks progressively increased the time spent in abnormal involuntary movements (AIMs) and elevated their horizontal and vertical activities (as measured in a computer-aided actimeter), signs that reflected the dyskinetic state of these mice. Interestingly, when combined with L-DOPA from the first injection, Δ9-THCV delayed the appearance of all these signs and decreased their intensity, with a reduction in the levels of FosB protein and the histone pAcH3 (measured by immunohistochemistry), which had previously been found to be elevated in the basal ganglia in L-DOPA-induced dyskinesia. In addition to the anti-dyskinetic effects of Δ9-THCV when administered at the onset of L-DOPA treatment, Δ9-THCV was also effective in attenuating the intensity of dyskinesia when administered for three consecutive days once these signs were already present (two weeks after the onset of L-DOPA treatment). In summary, our data support the anti-dyskinetic potential of Δ9-THCV, both to delay the occurrence and to attenuate the magnitude of dyskinetic signs. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for patients with PD.


Assuntos
Antidiscinéticos/administração & dosagem , Dronabinol/análogos & derivados , Discinesia Induzida por Medicamentos/prevenção & controle , Levodopa/administração & dosagem , Doença de Parkinson/complicações , Animais , Modelos Animais de Doenças , Dronabinol/administração & dosagem , Proteínas de Homeodomínio/genética , Masculino , Fatores de Transcrição/genética
5.
Neurobiol Dis ; 121: 120-130, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30261284

RESUMO

Although 1-3,4-dihydroxyphenylalanine (L-DOPA) is the mainstay therapy for treating Parkinson's disease (PD), its long-term administration is accompanied by the development of motor complications, particularly L-DOPA induced dyskinesia (LID), that dramatically affects patients' quality of life. LID has consistently been related to an excessive dopamine receptor transmission, particularly at the down-stream signaling of the striatal D1 receptors (D1R), resulting in an exaggerated stimulation of cAMP-dependent protein kinase and extracellular signal-regulated kinase (ERK) pathway. We previously reported that pharmacological blockade of 5alpha-reductase (5AR), the rate-limiting enzyme in neurosteroids synthesis, attenuates the severity of a broad set of behavioral alterations induced by D1R and D3R activation, without inducing extrapyramidal symptoms. In line with this evidence, in a recent study, we found that inhibition of 5AR by finasteride (FIN) produced a significant reduction of dyskinesia induced by L-DOPA and direct dopaminergic agonists in 6-OHDA-lesioned rats. In the attempt to further investigate the effect of 5AR inhibitors on dyskinesia and shed light on the mechanism of action, in the present study we compared the effect of FIN and dutasteride (DUTA), a potent dual 5AR inhibitor, on the development of LID, on the therapeutic efficacy of L-DOPA, on the molecular alterations downstream to the D1R, as well as on D1R-D3R interaction. The results indicated that both FIN and DUTA administration significantly reduced development and expression of LID; however, DUTA appeared more effective than FIN at a lower dose and produced its antidyskinetic effect without impacting the ability of L-DOPA to increase motor activation, or ameliorate forelimb use in parkinsonian rats. Moreover, this study demonstrates for the first time that 5AR inhibitors are able to prevent key events in the appearance of dyskinesia, such as L-DOPA-induced upregulation of striatal D1R-related cAMP/PKA/ERK signaling pathways and D1R-D3R coimmunoprecipitation, an index of heteromer formation. These findings are relevant as they confirm the 5AR enzyme as a potential therapeutic target for treatment of dyskinesia in PD, suggesting the first ever evidence that neurosteroidogenesis may affect functional interaction between dopamine D1R and D3R.


Assuntos
Inibidores de 5-alfa Redutase/administração & dosagem , Dutasterida/administração & dosagem , Discinesia Induzida por Medicamentos/prevenção & controle , Finasterida/administração & dosagem , Levodopa/administração & dosagem , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D3/metabolismo , Animais , Antiparkinsonianos/administração & dosagem , Discinesia Induzida por Medicamentos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley
6.
Mov Disord ; 34(5): 697-707, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31002755

RESUMO

BACKGROUND: Levodopa-induced dyskinesias are an often debilitating side effect of levodopa therapy in Parkinson's disease. Although up to 90% of individuals with PD develop this side effect, uniformly effective and well-tolerated antidyskinetic treatment remains a significant unmet need. The pathognomonic loss of striatal dopamine in PD results in dysregulation and disinhibition of striatal CaV1.3 calcium channels, leading to synaptopathology that appears to be involved in levodopa-induced dyskinesias. Although there are clinically available drugs that can inhibit CaV1.3 channels, they are not adequately potent and have only partial and transient impact on levodopa-induced dyskinesias. METHODS: To provide unequivocal target validation, free of pharmacological limitations, we developed a CaV1.3 shRNA to provide high-potency, target-selective, mRNA-level silencing of striatal CaV1.3 channels and examined its ability to impact levodopa-induced dyskinesias in severely parkinsonian rats. RESULTS: We demonstrate that vector-mediated silencing of striatal CaV1.3 expression in severely parkinsonian rats prior to the introduction of levodopa can uniformly and completely prevent induction of levodopa-induced dyskinesias, and this antidyskinetic benefit persists long term and with high-dose levodopa. In addition, this approach is capable of ameliorating preexisting severe levodopa-induced dyskinesias. Importantly, motoric responses to low-dose levodopa remained intact in the presence of striatal CaV1.3 silencing, indicating preservation of levodopa benefit without dyskinesia liability. DISCUSSION: The current data provide some of the most profound antidyskinetic benefit reported to date and suggest that genetic silencing of striatal CaV1.3 channels has the potential to transform treatment of individuals with PD by allowing maintenance of motor benefit of levodopa in the absence of the debilitating levodopa-induced dyskinesia side effect. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/efeitos adversos , Canais de Cálcio/genética , Discinesia Induzida por Medicamentos/prevenção & controle , Levodopa/efeitos adversos , Neostriado/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Adrenérgicos/toxicidade , Animais , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/terapia , Proteínas de Fluorescência Verde , Substâncias Luminescentes , Feixe Prosencefálico Mediano , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Interferência de RNA , RNA Interferente Pequeno , Ratos , Substância Negra , Tirosina 3-Mono-Oxigenase/metabolismo
7.
J Clin Psychopharmacol ; 39(6): 591-596, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31688397

RESUMO

PURPOSE: Given that switching to clozapine is an important treatment option for tardive movement syndrome (TMS), its effect and clinical correlates have not been fully explored yet. This study investigated the improvement of TMS after switching to clozapine and factors associated with the response in a naturalistic outpatient setting. METHODS: Subjects were 35 patients with schizophrenia or bipolar disorder receiving only clozapine as an antipsychotic drug for more than 12 months. Their prior antipsychotics were switched to clozapine after the onset of tardive dyskinesia and/or tardive dystonia. Tardive movement syndrome and clinical characteristics were assessed through direct examination and review of hospital records. FINDINGS: Offending antipsychotics administered at the time of TMS onset were second-generation antipsychotics in 88.6% of patients. Tardive movement syndrome symptoms were remitted in 65.7% of patients after switching to clozapine. Younger age, younger age at onset of TMS, and lower baseline Abnormal Involuntary Movement Scale score were significantly associated with remission of TMS. Female sex and good antipsychotic effects of clozapine showed a trend of association with better response. IMPLICATIONS: Clozapine seems to be an excellent treatment option for TMS in the era of second-generation antipsychotics, especially for younger patients with mild tardive dyskinesia. Clinical trials comparing the effect of switching antipsychotics to clozapine with add-on therapy of new drugs targeting TMS are difficult to design in ordinary clinical settings. Therefore, more naturalistic observational studies are warranted to identify predictors of TMS response to clozapine.


Assuntos
Antipsicóticos/farmacologia , Transtorno Bipolar/tratamento farmacológico , Clozapina/farmacologia , Discinesia Induzida por Medicamentos/prevenção & controle , Distonia/induzido quimicamente , Distonia/prevenção & controle , Avaliação de Resultados em Cuidados de Saúde , Transtornos Psicóticos/tratamento farmacológico , Esquizofrenia/tratamento farmacológico , Adulto , Fatores Etários , Idade de Início , Antipsicóticos/administração & dosagem , Antipsicóticos/efeitos adversos , Clozapina/administração & dosagem , Substituição de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Indução de Remissão , Índice de Gravidade de Doença , Fatores Sexuais
8.
Int J Neurosci ; 129(4): 384-392, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30359152

RESUMO

AIM: L-dopa remains the most effective symptomatic therapy for Parkinson's disease (PD) but unfortunately, its chronic use is often associated with motor complications. This review highlights the importance of pharmacogenetics in an individualised PD therapeutic approach. MATERIAL AND METHODS: review of the literature was done. RESULTS: PD patients show remarkable heterogeneity in their response to L-dopa and this profound interindividual heterogeneity suggests that there is a genetic predisposition. CONCLUSIONS: The impact of the genetic makeup of every individual on PD treatment appears to be of great importance in order to achieve not only the optimum therapeutic effect, but also with minimal side effects.


Assuntos
Dopaminérgicos/farmacologia , Discinesia Induzida por Medicamentos , Levodopa/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Farmacogenética , Dopaminérgicos/efeitos adversos , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/genética , Discinesia Induzida por Medicamentos/prevenção & controle , Humanos , Levodopa/efeitos adversos
9.
Fortschr Neurol Psychiatr ; 87(4): 217-224, 2019 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-29996156

RESUMO

Tardive dyskinesias (TDs) are still common long-term sequelae of antipsychotic treatment. They are generally irreversible and associated with cognitive deficits, a decrease in quality of life and increased mortality. Furthermore, they potentially contribute to further stigmatization of the affected patients. However due to limited treatment options, antipsychotic drugs are still one of the cornerstones in treatment of most severe mental illnesses. Therefore, knowledge about risk factors and prevention of TDs is crucial. If TDs occur, the immediate optimization of the antipsychotic drug regimen is required. Targeted medical treatments such as VMAT - 2 inhibitors can be considered. The novel VMAT-2 inhibitors are not yet approved in Germany. Other drugs that are currently used to treat TDs include clonazepam and gingko biloba. This review summarizes the current evidence of treatment options of TDs and seeks to formulate clinical recommendations for the prevention and management of TDs.


Assuntos
Antipsicóticos/efeitos adversos , Discinesia Induzida por Medicamentos , Discinesia Tardia , Discinesia Induzida por Medicamentos/prevenção & controle , Discinesia Induzida por Medicamentos/terapia , Alemanha , Humanos , Qualidade de Vida , Discinesia Tardia/induzido quimicamente , Discinesia Tardia/prevenção & controle , Discinesia Tardia/terapia
10.
J Neural Transm (Vienna) ; 125(9): 1355-1360, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29247391

RESUMO

Trazodone is a clinically available anti-depressant that exhibits affinity for serotonin 1A and 2A receptors, as well as for alpha-adrenoceptors, suggesting that it may be useful to treat L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia and psychosis that are encountered in advanced Parkinson's disease (PD). Here, we investigated the anti-dyskinetic and anti-psychotic effects of trazodone in the parkinsonian non-human primate. 6 common marmosets were rendered parkinsonian by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Following repeated administration of L-DOPA to induce stable dyskinesia and psychosis-like behaviours (PLBs), trazodone (0.1, 1 and 10 mg/kg) or vehicle was administered in combination with L-DOPA and its effects on dyskinesia, PLBs and parkinsonism were determined. The addition of trazodone 10 mg/kg to L-DOPA reduced peak dose dyskinesia by ≈ 39% (P < 0.01) and peak dose PLBs by ≈ 17% (P < 0.01). However, parkinsonian disability was significantly worsened by trazodone 10 mg/kg (P < 0.05) and duration of anti-parkinsonian action was diminished by ≈ 21% (P < 0.05). Our results suggest that trazodone may be effective in alleviating L-DOPA-induced dyskinesia and psychosis in PD, but its deleterious effect on motor function is a concern and may limit its tolerability and usefulness in clinical settings.


Assuntos
Antiparkinsonianos/toxicidade , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/toxicidade , Intoxicação por MPTP/fisiopatologia , Transtornos Parkinsonianos/fisiopatologia , Agonistas do Receptor de Serotonina/uso terapêutico , Trazodona/uso terapêutico , Animais , Antiparkinsonianos/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Callithrix , Distúrbios do Sono por Sonolência Excessiva/induzido quimicamente , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/prevenção & controle , Feminino , Levodopa/uso terapêutico , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/psicologia , Masculino , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/psicologia , Agonistas do Receptor de Serotonina/farmacologia , Trazodona/farmacologia , Trazodona/toxicidade
11.
J Pharm Pharm Sci ; 21(1): 340-346, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30075828

RESUMO

PURPOSE: Parkinson's disease (PD), a common neurodegenerative disorder, is usually treated with Levodopa (L-DOPA). The use of this drug, however, is severely limited by the development of side effects of the motor system: Levodopa-induced dyskinesia (LID). The aim of this study is to investigate the association between seven COMT gene single-nucleotide polymorphisms (SNPs) and the development of LID in patients with PD. METHODS: 232 Caucasian patients with PD were investigated. 212 patients with PD received Levodopa therapy. Dyskinesia was assessed with the use of the Abnormal Involuntary Movement Scale (AIMS).  Genotyping was carried out on seven SNPs of the COMT gene (rs4680, rs6269, rs4633, rs4818, rs769224, rs165774, rs174696) using a real-time PCR method, and blind to the clinical status of the subjects. RESULTS: We found association between four SNPs, rs165774, rs4818, rs4633, rs4680, and LID. When the duration of disease was added as a covariate in regression analysis, however, the results did not reach statistical significance. Only the additive model for rs165774 was found to be close to be statistical significance (OR = 1.627 [0.976-2.741], permutation p = 0.057). CONCLUSIONS: The results failed to clearly support a contribution of the studied polymorphisms; this may be related to a dominant relationship with the disease duration confounding the effect on the prevalence of LID.


Assuntos
Antiparkinsonianos/efeitos adversos , Catecol O-Metiltransferase/genética , Discinesia Induzida por Medicamentos/genética , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antiparkinsonianos/uso terapêutico , Discinesia Induzida por Medicamentos/enzimologia , Discinesia Induzida por Medicamentos/prevenção & controle , Feminino , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Análise de Regressão
12.
Cochrane Database Syst Rev ; 2: CD000459, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409162

RESUMO

BACKGROUND: Since the 1950s antipsychotic medication has been extensively used to treat people with chronic mental illnesses such as schizophrenia. These drugs, however, have also been associated with a wide range of adverse effects, including movement disorders such as tardive dyskinesia (TD) - a problem often seen as repetitive involuntary movements around the mouth and face. Various strategies have been examined to reduce a person's cumulative exposure to antipsychotics. These strategies include dose reduction, intermittent dosing strategies such as drug holidays, and antipsychotic cessation. OBJECTIVES: To determine whether a reduction or cessation of antipsychotic drugs is associated with a reduction in TD for people with schizophrenia (or other chronic mental illnesses) who have existing TD. Our secondary objective was to determine whether the use of specific antipsychotics for similar groups of people could be a treatment for TD that was already established. SEARCH METHODS: We updated previous searches of Cochrane Schizophrenia's study-based Register of Trials including the registers of clinical trials (16 July 2015 and 26 April 2017). We searched references of all identified studies for further trial citations. We also contacted authors of trials for additional information. SELECTION CRITERIA: We included reports if they assessed people with schizophrenia or other chronic mental illnesses who had established antipsychotic-induced TD, and had been randomly allocated to (a) antipsychotic maintenance versus antipsychotic cessation (placebo or no intervention), (b) antipsychotic maintenance versus antipsychotic reduction (including intermittent strategies), (c) specific antipsychotics for the treatment of TD versus placebo or no intervention, and (d) specific antipsychotics versus other antipsychotics or versus any other drugs for the treatment of TD. DATA COLLECTION AND ANALYSIS: We independently extracted data from these trials and estimated risk ratios (RR) or mean differences (MD), with 95% confidence intervals (CI). We assumed that people who dropped out had no improvement. MAIN RESULTS: We included 13 RCTs with 711 participants; eight of these studies were newly included in this 2017 update. One trial is ongoing.There was low-quality evidence of a clear difference on no clinically important improvement in TD favouring switch to risperidone compared with antipsychotic cessation (with placebo) (1 RCT, 42 people, RR 0.45 CI 0.23 to 0.89, low-quality evidence). Because evidence was of very low quality for antipsychotic dose reduction versus antipsychotic maintenance (2 RCTs, 17 people, RR 0.42 95% CI 0.17 to 1.04, very low-quality evidence), and for switch to a new antipsychotic versus switch to another new antipsychotic (5 comparisons, 5 RCTs, 140 people, no meta-analysis, effects for all comparisons equivocal), we are uncertain about these effects. There was low-quality evidence of a significant difference on extrapyramidal symptoms: use of antiparkinsonism medication favouring switch to quetiapine compared with switch to haloperidol (1 RCT, 45 people, RR 0.45 CI 0.21 to 0.96, low-quality evidence). There was no evidence of a difference for switch to risperidone or haloperidol compared with antipsychotic cessation (with placebo) (RR 1 RCT, 48 people, RR 2.08 95% CI 0.74 to 5.86, low-quality evidence) and switch to risperidone compared with switch to haloperidol (RR 1 RCT, 37 people, RR 0.68 95% CI 0.34 to 1.35, very low-quality evidence).Trials also reported on secondary outcomes such as other TD symptom outcomes, other adverse events outcomes, mental state, and leaving the study early, but the quality of the evidence for all these outcomes was very low due mainly to small sample sizes, very wide 95% CIs, and risk of bias. No trials reported on social confidence, social inclusion, social networks, or personalised quality of life, outcomes that we designated as being important to patients. AUTHORS' CONCLUSIONS: Limited data from small studies using antipsychotic reduction or specific antipsychotic drugs as treatments for TD did not provide any convincing evidence of the value of these approaches. There is a need for larger trials of a longer duration to fully investigate this area.


Assuntos
Antipsicóticos/administração & dosagem , Antipsicóticos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Relação Dose-Resposta a Droga , Esquema de Medicação , Substituição de Medicamentos , Discinesia Induzida por Medicamentos/prevenção & controle , Feminino , Humanos , Masculino , Transtornos Mentais/tratamento farmacológico , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Esquizofrenia/tratamento farmacológico , Suspensão de Tratamento
13.
Mov Disord ; 32(11): 1547-1556, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28631864

RESUMO

BACKGROUND: Increased extracellular glutamate may contribute to l-dopa induced dyskinesia, a debilitating side effect faced by Parkinson's disease patients 5 to 10 years after l-dopa treatment. Therapeutic strategies targeting postsynaptic glutamate receptors to mitigate dyskinesia may have limited success because of significant side effects. Increasing glutamate uptake may be another approach to attenuate excess glutamatergic neurotransmission to mitigate dyskinesia severity or prolong the time prior to onset. Initiation of a ceftriaxone regimen at the time of nigrostriatal lesion can attenuate tyrosine hydroxylase loss in conjunction with increased glutamate uptake and glutamate transporter GLT-1 expression in a rat 6-hydroxydopamine model. In this article, we examined if a ceftriaxone regimen initiated 1 week after nigrostriatal lesion, but prior to l-dopa, could reduce l-dopa-induced dyskinesia in an established dyskinesia model. METHODS: Ceftriaxone (200 mg/kg, intraperitoneal, once daily, 7 consecutive days) was initiated 7 days post-6-hydroxydopamine lesion (days 7-13) and continued every other week (days 21-27, 35-39) until the end of the study (day 39 postlesion, 20 days of l-dopa). RESULTS: Ceftriaxone significantly reduced abnormal involuntary movements at 5 time points examined during chronic l-dopa treatment. Partial recovery of motor impairment from nigrostriatal lesion by l-dopa was unaffected by ceftriaxone. The ceftriaxone-treated l-dopa group had significantly increased striatal GLT-1 expression and glutamate uptake. Striatal tyrosine hydroxylase loss in this group was not significantly different when compared with the l-dopa alone group. CONCLUSIONS: Initiation of ceftriaxone after nigrostriatal lesion, but prior to and during l-dopa, may reduce dyskinesia severity without affecting l-dopa efficacy or the reduction of striatal tyrosine hydroxylase loss. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Antibacterianos/farmacologia , Ceftriaxona/farmacologia , Dopaminérgicos/farmacologia , Discinesia Induzida por Medicamentos/prevenção & controle , Transportador 2 de Aminoácido Excitatório/efeitos dos fármacos , Levodopa/farmacologia , Doença de Parkinson/tratamento farmacológico , Animais , Antibacterianos/administração & dosagem , Ceftriaxona/administração & dosagem , Modelos Animais de Doenças , Dopaminérgicos/administração & dosagem , Dopaminérgicos/efeitos adversos , Levodopa/administração & dosagem , Levodopa/efeitos adversos , Masculino , Oxidopamina/farmacologia , Ratos , Ratos Sprague-Dawley , Simpatolíticos/farmacologia
14.
BMC Complement Altern Med ; 17(1): 220, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28424060

RESUMO

BACKGROUND: Although the dopamine precursor L-3, 4-dihydroxyphenylalanine ( l -dopa) remains the gold standard pharmacological therapy for patients with Parkinson's disease (PD), long-term treatment with this drug has been known to result in several adverse effects, including l -dopa-induced dyskinesia (LID). Recently, our group reported that KD5040, a modified herbal remedy, had neuroprotective effects in both in vitro and in vivo models of PD. Thus, the present study investigated whether KD5040 would have synergistic effects with l -dopa and antidyskinetic effects caused by l -dopa as well. METHODS: The effects of KD5040 and l -dopa on motor function, expression levels of substance P (SP) and enkephalin (ENK) in the basal ganglia, and glutamate content in the motor cortex were assessed using behavioral assays, immunohistochemistry, Western blot analyses, and liquid chromatography tandem mass spectrometry in a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In addition, the antidyskinetic effects of KD5040 on pathological movements triggered by l -dopa were investigated by testing abnormal involuntary movements (AIMs) and measuring the activations of FosB, cAMP-dependent phosphor protein of 32 kDa (DARPP-32), extracellular signal-regulated kinases (ERK), and cAMP response element-binding (CREB) protein in the striatum. RESULTS: KD5040 synergistically improved the motor function when low-dose l -dopa (LL) was co-administered. In addition, it significantly reversed MPTP-induced lowering of SP, improved ENK levels in the basal ganglia, and ameliorated abnormal reduction in glutamate content in the motor cortex. Furthermore, KD5040 significantly lowered AIMs and controlled abnormal levels of striatal FosB, pDARPP-32, pERK, and pCREB induced by high-dose l -dopa. CONCLUSIONS: KD5040 lowered the effective dose of l -dopa and alleviated LID. These findings suggest that KD5040 may be used as an adjunct therapy to enhance the efficacy of l -dopa and alleviate its adverse effects in patients with PD.


Assuntos
Encéfalo/efeitos dos fármacos , Discinesia Induzida por Medicamentos/prevenção & controle , Levodopa/uso terapêutico , Magnoliopsida , Doença de Parkinson/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Discinesia Induzida por Medicamentos/etiologia , Encefalinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Levodopa/administração & dosagem , Levodopa/efeitos adversos , Levodopa/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Movimento , Doença de Parkinson/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Substância P/metabolismo
15.
J Neurosci ; 35(45): 14983-99, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558771

RESUMO

The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion of the transporter from CINs, surprisingly, does not alter evoked DA release in the dorsal striatum or baseline locomotor activity. The mice do, however, display changes in rearing behavior and sensorimotor gating. Elevation of DA release in the global KO raised the possibility that motor deficits in a Parkinson's disease model would be reduced. Remarkably, after a partial 6-hydroxydopamine (6-OHDA)-mediated DA depletion (∼70% in dorsal striatum), KO mice, in contrast to WT mice, showed normal motor behavior across the entire circadian cycle. l-3,4-dihydroxyphenylalanine-mediated dyskinesias were also significantly attenuated. These findings thus point to new mechanisms to regulate basal ganglia function and potentially treat Parkinson's disease and related disorders. SIGNIFICANCE STATEMENT: Dopaminergic signaling is critical for both motor and cognitive functions in the mammalian nervous system. Impairments, such as those found in Parkinson's disease patients, can lead to severe motor deficits. Vesicular glutamate transporter 3 (VGLUT3) loads glutamate into secretory vesicles for neurotransmission and is expressed by discrete neuron populations throughout the nervous system. Here, we report that the absence of VGLUT3 in mice leads to an upregulation of the midbrain dopamine system. Remarkably, in a Parkinson's disease model, the mice show normal motor behavior. They also show fewer abnormal motor behaviors (dyskinesias) in response to l-3,4-dihydroxyphenylalanine, the principal treatment for Parkinson's disease. The work thus suggests new avenues for the development of novel treatment strategies for Parkinson's disease and potentially other basal-ganglia-related disorders.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Ritmo Circadiano/fisiologia , Dopamina/biossíntese , Discinesia Induzida por Medicamentos/metabolismo , Transtornos das Habilidades Motoras/metabolismo , Transtornos Parkinsonianos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/prevenção & controle , Feminino , Levodopa/toxicidade , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transtornos das Habilidades Motoras/prevenção & controle , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/prevenção & controle
16.
Mov Disord ; 31(4): 512-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26898243

RESUMO

BACKGROUND: Dyskinesia, the major side effect of l-dopa therapy in PD, is mainly associated with nonphysiological stimulation of denervated receptors in the striatum. In particular, DA D1 receptor-mediated aberrant extracellular signal-regulated protein kinases 1 and 2 activation have been associated with striatal changes leading to dyskinesia. We recently identified the tyrosine phosphatase Shp-2 as a crucial effector transmitting D1 receptor signaling to extracellular signal-regulated protein kinases 1 and 2 activation and reported the involvement of the D1 receptor/Shp-2/extracellular signal-regulated protein kinases 1 and 2 pathway in the development of l-dopa-induced dyskinesia. OBJECTIVES: In this study, the role of Shp-2 in l-dopa-induced dyskinesia development was investigated by in vivo silencing of Shp-2 in the striatum of the 6-hydroxy-dopamine rat model of PD. METHODS: Lentiviral particles delivering short hairpin RNA were used to obtain long-term striatal Shp-2 downregulation. Rats were then treated with l-dopa and analyzed for both the improvement of akinesia and the development of l-dopa-induced dyskinesia. RESULTS: The results show that Shp-2 knockdown remarkably decreased extracellular signal-regulated protein kinases 1 and 2 phosphorylation and attenuated the severity of l-dopa-induced dyskinesia likely without compromising the therapeutic efficacy of l-dopa. CONCLUSION: These data suggest that the striatal D1 receptor/Shp-2 complex may represent a promising novel target for the development of antidyskinetic drugs.


Assuntos
Antiparkinsonianos/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/efeitos adversos , Neostriado/metabolismo , Doença de Parkinson/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Modelos Animais de Doenças , Regulação para Baixo , Discinesia Induzida por Medicamentos/prevenção & controle , Masculino , Neostriado/efeitos dos fármacos , Ratos , Ratos Wistar
17.
Mov Disord ; 31(4): 530-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26817533

RESUMO

OBJECTIVE: The purpose of this study was to assess the effect of levodopa-carbidopa intestinal gel (carbidopa-levodopa enteral suspension) in advanced Parkinson's disease patients with troublesome dyskinesia. METHODS: Post hoc analyses of patient data from a 12-week, randomized, double-blind study and a 54-week open-label study were performed. Efficacy was assessed in the subgroup of patients defined by ≥1 hour of "on" time with troublesome dyskinesia at baseline as recorded in Parkinson's disease symptom diaries (double blind: n = 11 levodopa-carbidopa intestinal gel, n = 12 oral levodopa-carbidopa; open label: n = 144 levodopa-carbidopa intestinal gel). The changes in "off" time, "on" time with and without troublesome dyskinesia, and the overall safety and tolerability of levodopa-carbidopa intestinal gel were analyzed. RESULTS: Although not significantly different from oral levodopa treatment (P > .05) in the double-blind study, levodopa-carbidopa intestinal gel treatment resulted in a reduction from baseline in "on" time with troublesome dyskinesia (mean [standard deviation] hours: baseline = 3.1 [1.7], change from baseline to final = -1.8 [1.8], P = .014), increase in "on" time without troublesome dyskinesia (baseline = 7.4 [2.2], change = 4.4 [3.6], P = .004), and decrease in "off" time (baseline = 5.5 [1.3], change = -2.7 [2.8], P = .015). Similar trends were found in the open-label study. An increase in levodopa-carbidopa intestinal gel dose was not significantly correlated with increased "on" time with troublesome dyskinesia in either study (double blind: r = -.073, P = .842; open label: r = -0.001, P = .992). Adverse events were usually mild to moderate in severity and related to the gastrointestinal procedure. CONCLUSION: Our exploratory analyses suggest that optimizing levodopa delivery with levodopa-carbidopa intestinal gel may reduce troublesome dyskinesia in advanced Parkinson's disease.


Assuntos
Antiparkinsonianos/administração & dosagem , Carbidopa/administração & dosagem , Discinesia Induzida por Medicamentos/prevenção & controle , Levodopa/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Administração através da Mucosa , Idoso , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/farmacologia , Carbidopa/efeitos adversos , Carbidopa/farmacologia , Método Duplo-Cego , Combinação de Medicamentos , Feminino , Géis , Humanos , Levodopa/efeitos adversos , Levodopa/farmacologia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
18.
Mov Disord ; 31(4): 501-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26871939

RESUMO

BACKGROUND: The serotonin 5-HT1A/1B receptor agonist eltoprazine suppressed dyskinetic-like behavior in animal models of Parkinson's disease (PD) but simultaneously reduced levodopa (l-dopa)-induced motility. Moreover, adenosine A2A receptor antagonists, such as preladenant, significantly increased l-dopa efficacy in PD without exacerbating dyskinetic-like behavior. OBJECTIVES: We evaluated whether a combination of eltoprazine and preladenant may prevent or suppress l-dopa-induced dyskinesia, without impairing l-dopa's efficacy in relieving motor signs, in 2 PD models: unilateral 6-hydroxydopamine-lesioned rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. METHODS: Rotational behavior and abnormal involuntary movements, or disability and l-dopa-induced dyskinesia were evaluated in 6-hydroxydopamine-lesioned rats and MPTP-treated monkeys, respectively. Moreover, in the rodent striatum, induction of immediate-early gene zif-268, an index of long-term changes, was correlated with dyskinesia. RESULTS: In 6-hydroxydopamine-lesioned rats, combined administration of l-dopa (4 mg/kg) plus eltoprazine (0.6 mg/kg) plus preladenant (0.3 mg/kg) significantly prevented or reduced dyskinetic-like behavior without impairing motor activity. Zif-268 was increased in the striatum of rats treated with l-dopa and l-dopa plus preladenant compared with vehicle. In contrast, rats treated with eltoprazine (with or without preladenant) had lower zif-268 activation after chronic treatment in both the dyskinetic and l-dopa-non-primed groups. Moreover, acute l-dopa plus eltoprazine plus preladenant prevented worsening of motor performance (adjusting step) and sensorimotor integration deficit. Similar results were obtained in MPTP-treated monkeys, where a combination of preladenant with eltoprazine was found to counteract dyskinesia and maintain the full therapeutic effects of a low dose of l-dopa. CONCLUSIONS: Our results suggest a promising nondopaminergic pharmacological strategy for the treatment of dyskinesia in PD. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/farmacologia , Doença de Parkinson/tratamento farmacológico , Piperazinas/farmacologia , Pirimidinas/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Triazóis/farmacologia , Animais , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/efeitos adversos , Modelos Animais de Doenças , Quimioterapia Combinada , Discinesia Induzida por Medicamentos/prevenção & controle , Feminino , Levodopa/administração & dosagem , Levodopa/efeitos adversos , Macaca fascicularis , Masculino , Piperazinas/administração & dosagem , Pirimidinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor de Serotonina/administração & dosagem , Triazóis/administração & dosagem
19.
Biol Res ; 49(1): 32, 2016 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-27378167

RESUMO

BACKGROUND: Chitosan, the N-deacetylated derivative of chitin, is a cationic polyelectrolyte due to the presence of amino groups, one of the few occurring in nature. The use of chitosan in protein and drug delivery systems is being actively researched and reported in the literature. RESULTS: In this study, we used chitosan-coated levodopa liposomes to investigate the behavioral character and the expression of phosphorylated extracellular signal-regulated kinase (ERK1/2), dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and FosB/ΔFosB in striatum of rat model of levodopa-induced dyskinesia (LID). We found that scores of abnormal involuntary movement (AIM) decreased significantly in liposome group (P < 0.05), compared with levodopa group. Levels of phospho-ERK1/2, phospho-Thr34 DARPP-32 and FosB/ΔFosB in striatum decreased significantly in liposome group lesion side compared with levodopa group (P < 0.05). However, both of two groups above have significantly differences compared with the control group (P < 0.05). CONCLUSION: Chitosan-coated levodopa liposomes may be useful in reducing dyskinesias inducing for Parkinson disease. The mechanism might be involved the pathway of signaling molecular phospho-ERK1/2, phospho-Thr34 DARPP-32 and ΔFosB in striatum.


Assuntos
Quitosana/farmacologia , Dopaminérgicos/farmacologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Discinesia Induzida por Medicamentos/prevenção & controle , Levodopa/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Materiais Biocompatíveis/farmacologia , Western Blotting , Corpo Estriado/efeitos dos fármacos , Fosfoproteína 32 Regulada por cAMP e Dopamina/análise , Fosfoproteína 32 Regulada por cAMP e Dopamina/efeitos dos fármacos , Discinesia Induzida por Medicamentos/etiologia , MAP Quinases Reguladas por Sinal Extracelular/análise , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Imuno-Histoquímica , Lipossomos , Sistema de Sinalização das MAP Quinases , Masculino , Nanopartículas , Doença de Parkinson/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/análise , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Distribuição Aleatória , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Resultado do Tratamento
20.
J Neurosci ; 34(35): 11744-53, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25164669

RESUMO

The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) is widely used as a therapeutic choice for the treatment of patients with Parkinson's disease. However, the long-term use of L-DOPA leads to the development of debilitating involuntary movements, called L-DOPA-induced dyskinesia (LID). The cAMP/protein kinase A (PKA) signaling in the striatum is known to play a role in LID. However, from among the nine known adenylyl cyclases (ACs) present in the striatum, the AC that mediates LID remains unknown. To address this issue, we prepared an animal model with unilateral 6-hydroxydopamine lesions in the substantia nigra in wild-type and AC5-knock-out (KO) mice, and examined behavioral responses to short-term or long-term treatment with L-DOPA. Compared with the behavioral responses of wild-type mice, LID was profoundly reduced in AC5-KO mice. The behavioral protection of long-term treatment with L-DOPA in AC5-KO mice was preceded by a decrease in the phosphorylation levels of PKA substrates ERK (extracellular signal-regulated kinase) 1/2, MSK1 (mitogen- and stress-activated protein kinase 1), and histone H3, levels of which were all increased in the lesioned striatum of wild-type mice. Consistently, FosB/ΔFosB expression, which was induced by long-term L-DOPA treatment in the lesioned striatum, was also decreased in AC5-KO mice. Moreover, suppression of AC5 in the dorsal striatum with lentivirus-shRNA-AC5 was sufficient to attenuate LID, suggesting that the AC5-regulated signaling cascade in the striatum mediates LID. These results identify the AC5/cAMP system in the dorsal striatum as a therapeutic target for the treatment of LID in patients with Parkinson's disease.


Assuntos
Inibidores de Adenilil Ciclases , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/enzimologia , Levodopa/efeitos adversos , Transtornos Parkinsonianos/metabolismo , Adenilil Ciclases , Animais , Western Blotting , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/prevenção & controle , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA