Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 904
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(7): 1454-1458, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916725

RESUMO

Few cases of hantavirus pulmonary syndrome have been reported in northeastern Argentina. However, neighboring areas show a higher incidence, suggesting underreporting. We evaluated the presence of antibodies against orthohantavirus in small rodents throughout Misiones province. Infected Akodon affinis montensis and Oligoryzomys nigripes native rodents were found in protected areas of Misiones.


Assuntos
Anticorpos Antivirais , Orthohantavírus , Animais , Argentina/epidemiologia , Orthohantavírus/imunologia , Orthohantavírus/classificação , Orthohantavírus/isolamento & purificação , Anticorpos Antivirais/sangue , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/veterinária , Infecções por Hantavirus/virologia , Roedores/virologia , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/virologia , Humanos , Síndrome Pulmonar por Hantavirus/epidemiologia , Reservatórios de Doenças/virologia
2.
J Anim Ecol ; 93(6): 650-653, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706185

RESUMO

Research Highlight: Mistrick, J., Veitch, J. S. M., Kitchen, S. M., Clague, S., Newman, B. C., Hall, R. J., Budischak, S. A., Forbes, K. M., & Craft, M. E. (2024). Effects of food supplementation and helminth removal on space use and spatial overlap in wild rodent populations. Journal of Animal Ecology. http://doi.org/10.1111/1365-2656.14067. The spread of pathogens has been of long-standing interest, even before dramatic outbreaks of avian influenza and the coronavirus pandemic spiked broad public interest. However, the dynamics of pathogen spread in wild populations are complex, with multiple effects shaping where animals go (their space use), population density and, more fundamentally, the resultant patterns of contacts (direct or indirect) among individuals. Thus, experimental studies exploring the dynamics of contact under different sets of conditions are needed. In the current field study, Mistrick et al. (2024) used a multifactorial experimental design, manipulating food availability and individual pathogen infection state in wild bank voles (Clethrionomys glareolus). They found that while food availability, individual traits and seasonality can affect how far individual voles moved, the degree of overlap between individual voles remained largely the same despite a high variation in population density-which itself was affected by food availability. These results highlight how biotic and abiotic factors can shape patterns of space use and balance the level of spatial overlap through multiple pathways.


Assuntos
Arvicolinae , Animais , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/parasitologia , Doenças dos Roedores/virologia , Prevalência , Animais Selvagens , Masculino , Feminino
3.
J Anim Ecol ; 93(6): 663-675, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38494654

RESUMO

Mathematical models highlighted the importance of pathogen-mediated invasion, with the replacement of red squirrels by squirrelpox virus (SQPV) carrying grey squirrels in the UK, a well-known example. In this study, we combine new epidemiological models, with a range of infection characteristics, with recent longitudinal field and experimental studies on the SQPV dynamics in red and grey squirrel populations to better infer the mechanistic basis of the disease interaction. A key finding is that a model with either partial immunity or waning immunity and reinfection, where individuals become seropositive on the second exposure to infection, that up to now has been shown in experimental data only, can capture the key aspects of the field study observations. By fitting to SQPV epidemic observations in isolated red squirrel populations, we can infer that SQPV transmission between red squirrels is significantly (4×) higher than the transmission between grey squirrels and as a result our model shows that disease-mediated replacement of red squirrels by greys is considerably more rapid than replacement in the absence of SQPV. Our findings recover the key results of the previous model studies, which highlights the value of simple strategic models that are appropriate when there are limited data, but also emphasise the likely complexity of immune interactions in wildlife disease and how models can help infer disease processes from field data.


Assuntos
Infecções por Poxviridae , Sciuridae , Animais , Sciuridae/virologia , Sciuridae/imunologia , Sciuridae/fisiologia , Reino Unido/epidemiologia , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/transmissão , Infecções por Poxviridae/virologia , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/epidemiologia , Doenças dos Roedores/virologia , Doenças dos Roedores/transmissão , Doenças dos Roedores/imunologia , Doenças dos Roedores/epidemiologia , Modelos Biológicos , Poxviridae/fisiologia , Poxviridae/imunologia , Espécies Introduzidas
4.
PLoS Pathog ; 17(5): e1009585, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010360

RESUMO

Coronavirus disease-19 (COVID-19) emerged in late 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and may have infected an intermediate host prior to spillover into humans. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 6 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood-brain barrier. Despite this, no conspicuous signs of disease were observed, and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, including IFNα, IFNß, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8ß expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission and localization into the olfactory bulb, recapitulating human neuropathology. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources determined the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 respiratory disease and neuropathogenesis, and that they have the potential to serve as secondary reservoir hosts in North America.


Assuntos
COVID-19/fisiopatologia , COVID-19/transmissão , Peromyscus/virologia , Doenças dos Roedores/transmissão , Animais , Encéfalo/patologia , Encéfalo/virologia , COVID-19/patologia , Modelos Animais de Doenças , Reservatórios de Doenças , Suscetibilidade a Doenças , Feminino , Masculino , Doenças dos Roedores/patologia , Doenças dos Roedores/virologia , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral
5.
Proc Natl Acad Sci U S A ; 117(30): 17977-17983, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32651267

RESUMO

Hepatitis delta virus (HDV) is a human hepatitis-causing RNA virus, unrelated to any other taxonomic group of RNA viruses. Its occurrence as a satellite virus of hepatitis B virus (HBV) is a singular case in animal virology for which no consensus evolutionary explanation exists. Here we present a mammalian deltavirus that does not occur in humans, identified in the neotropical rodent species Proechimys semispinosus The rodent deltavirus is highly distinct, showing a common ancestor with a recently described deltavirus in snakes. Reverse genetics based on a tandem minus-strand complementary DNA genome copy under the control of a cytomegalovirus (CMV) promoter confirms autonomous genome replication in transfected cells, with initiation of replication from the upstream genome copy. In contrast to HDV, a large delta antigen is not expressed and the farnesylation motif critical for HBV interaction is absent from a genome region that might correspond to a hypothetical rodent large delta antigen. Correspondingly, there is no evidence for coinfection with an HBV-related hepadnavirus based on virus detection and serology in any deltavirus-positive animal. No other coinfecting viruses were detected by RNA sequencing studies of 120 wild-caught animals that could serve as a potential helper virus. The presence of virus in blood and pronounced detection in reproductively active males suggest horizontal transmission linked to competitive behavior. Our study establishes a nonhuman, mammalian deltavirus that occurs as a horizontally transmitted infection, is potentially cleared by immune response, is not focused in the liver, and possibly does not require helper virus coinfection.


Assuntos
Coinfecção , Infecções por Hepadnaviridae/veterinária , Hepadnaviridae/fisiologia , Hepatite D/veterinária , Vírus Delta da Hepatite/fisiologia , Doenças dos Roedores/virologia , Roedores/virologia , Animais , Linhagem Celular Tumoral , Genoma Viral , Genômica/métodos , Hepadnaviridae/classificação , Vírus Delta da Hepatite/classificação , Humanos , Filogenia
6.
J Virol ; 95(23): e0153421, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549977

RESUMO

Sin Nombre orthohantavirus (SNV), a negative-sense, single-stranded RNA virus that is carried and transmitted by the North American deer mouse Peromyscus maniculatus, can cause infection in humans through inhalation of aerosolized excreta from infected rodents. This infection can lead to hantavirus cardiopulmonary syndrome (HCPS), which has an ∼36% case-fatality rate. We used reverse transcriptase quantitative PCR (RT-qPCR) to confirm SNV infection in a patient and identified SNV in lung tissues in wild-caught rodents from potential sites of exposure. Using viral whole-genome sequencing (WGS), we identified the likely site of transmission and discovered SNV in multiple rodent species not previously known to carry the virus. Here, we report, for the first time, the use of SNV WGS to pinpoint a likely site of human infection and identify SNV simultaneously in multiple rodent species in an area of known host-to-human transmission. These results will impact epidemiology and infection control for hantaviruses by tracing zoonotic transmission and investigating possible novel host reservoirs. IMPORTANCE Orthohantaviruses cause severe disease in humans and can be lethal in up to 40% of cases. Sin Nombre orthohantavirus (SNV) is the main cause of hantavirus disease in North America. In this study, we sequenced SNV from an infected patient and wild-caught rodents to trace the location of infection. We also discovered SNV in rodent species not previously known to carry SNV. These studies demonstrate for the first time the use of virus sequencing to trace the transmission of SNV and describe infection in novel rodent species.


Assuntos
Reservatórios de Doenças/virologia , Síndrome Pulmonar por Hantavirus/transmissão , Síndrome Pulmonar por Hantavirus/veterinária , Síndrome Pulmonar por Hantavirus/virologia , Doenças dos Roedores/transmissão , Doenças dos Roedores/virologia , Roedores/virologia , Vírus Sin Nombre , Animais , Anticorpos Antivirais , Sequência de Bases , Feminino , Orthohantavírus/genética , Infecções por Hantavirus/genética , Infecções por Hantavirus/transmissão , Infecções por Hantavirus/veterinária , Síndrome Pulmonar por Hantavirus/epidemiologia , Humanos , Pulmão , Masculino , Camundongos , América do Norte , Peromyscus/virologia , Prevalência , RNA Viral/genética , Doenças dos Roedores/epidemiologia , Vírus Sin Nombre/genética , População Branca , Sequenciamento Completo do Genoma
7.
PLoS Pathog ; 16(1): e1008262, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971979

RESUMO

Mouse kidney parvovirus (MKPV) is a member of the provisional genus Chapparvovirus that causes renal disease in immune-compromised mice, with a disease course reminiscent of polyomavirus-associated nephropathy in immune-suppressed kidney transplant patients. Here we map four major MKPV transcripts, created by alternative splicing, to a common initiator region, and use mass spectrometry to identify "p10" and "p15" as novel chapparvovirus accessory proteins produced in MKPV-infected kidneys. p15 and the splicing-dependent putative accessory protein NS2 are conserved in all near-complete amniote chapparvovirus genomes currently available (from mammals, birds and a reptile). In contrast, p10 may be encoded only by viruses with >60% amino acid identity to MKPV. We show that MKPV is kidney-tropic and that the bat chapparvovirus DrPV-1 and a non-human primate chapparvovirus, CKPV, are also found in the kidneys of their hosts. We propose, therefore, that many mammal chapparvoviruses are likely to be nephrotropic.


Assuntos
Rim/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvovirinae/fisiologia , Doenças dos Roedores/virologia , Proteínas Virais/metabolismo , Tropismo Viral , Animais , Humanos , Camundongos , Parvovirinae/genética , Proteínas Virais/genética
8.
PLoS Pathog ; 16(4): e1008438, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32353066

RESUMO

One of the defining characteristics of the B cell receptor (BCR) is the extensive diversity in the repertoire of immunoglobulin genes that make up the BCR, resulting in broad range of specificity. Gammaherpesviruses are B lymphotropic viruses that establish life-long infection in B cells, and although the B cell receptor plays a central role in B cell biology, very little is known about the immunoglobulin repertoire of gammaherpesvirus infected cells. To begin to characterize the Ig genes expressed by murine gammaherpesvirus 68 (MHV68) infected cells, we utilized single cell sorting to sequence and clone the Ig variable regions of infected germinal center (GC) B cells and plasma cells. We show that MHV68 infection is biased towards cells that express the Igλ light chain along with a single heavy chain variable gene, IGHV10-1*01. This population arises through clonal expansion but is not viral antigen specific. Furthermore, we show that class-switching in MHV68 infected cells differs from that of uninfected cells. Fewer infected GC B cells are class-switched compared to uninfected GC B cells, while more infected plasma cells are class-switched compared to uninfected plasma cells. Additionally, although they are germinal center derived, the majority of class switched plasma cells display no somatic hypermutation regardless of infection status. Taken together, these data indicate that selection of infected B cells with a specific BCR, as well as virus mediated manipulation of class switching and somatic hypermutation, are critical aspects in establishing life-long gammaherpesvirus infection.


Assuntos
Linfócitos B/imunologia , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/veterinária , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/imunologia , Cadeias lambda de Imunoglobulina/imunologia , Doenças dos Roedores/imunologia , Animais , Linfócitos B/virologia , Feminino , Gammaherpesvirinae/genética , Centro Germinativo/imunologia , Centro Germinativo/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Plasmócitos/imunologia , Plasmócitos/virologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Doenças dos Roedores/genética , Doenças dos Roedores/virologia
9.
PLoS Biol ; 17(2): e3000142, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30785873

RESUMO

The diversity of viruses probably exceeds biodiversity of eukaryotes, but little is known about the origin and emergence of novel virus species. Experimentation and disease outbreak investigations have allowed the characterization of rapid molecular virus adaptation. However, the processes leading to the establishment of functionally distinct virus taxa in nature remain obscure. Here, we demonstrate that incipient speciation in a natural host species has generated distinct ecological niches leading to adaptive isolation in an RNA virus. We found a very strong association between the distributions of two major phylogenetic clades in Tula orthohantavirus (TULV) and the rodent host lineages in a natural hybrid zone of the European common vole (Microtus arvalis). The spatial transition between the virus clades in replicated geographic clines is at least eight times narrower than between the hybridizing host lineages. This suggests a strong barrier for effective virus transmission despite frequent dispersal and gene flow among local host populations, and translates to a complete turnover of the adaptive background of TULV within a few hundred meters in the open, unobstructed landscape. Genetic differences between TULV clades are homogenously distributed in the genomes and mostly synonymous (93.1%), except for a cluster of nonsynonymous changes in the 5' region of the viral envelope glycoprotein gene, potentially involved in host-driven isolation. Evolutionary relationships between TULV clades indicate an emergence of these viruses through rapid differential adaptation to the previously diverged host lineages that resulted in levels of ecological isolation exceeding the progress of speciation in their vertebrate hosts.


Assuntos
Arvicolinae/virologia , Especiação Genética , Genoma , Infecções por Hantavirus/veterinária , Interações Hospedeiro-Patógeno/genética , Orthohantavírus/genética , Animais , Arvicolinae/classificação , Arvicolinae/genética , Europa (Continente)/epidemiologia , Fluxo Gênico , Orthohantavírus/classificação , Orthohantavírus/patogenicidade , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/genética , Infecções por Hantavirus/virologia , Hibridização Genética , Filogenia , Isolamento Reprodutivo , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/genética , Doenças dos Roedores/virologia
10.
Emerg Infect Dis ; 27(4): 1193-1195, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33754987

RESUMO

After experimental inoculation, severe acute respiratory syndrome coronavirus 2 infection was confirmed in bank voles by seroconversion within 8 days and detection of viral RNA in nasal tissue for up to 21 days. However, transmission to contact animals was not detected. Thus, bank voles are unlikely to establish effective transmission cycles in nature.


Assuntos
Arvicolinae , COVID-19 , Transmissão de Doença Infecciosa , Doenças dos Roedores , Soroconversão , Eliminação de Partículas Virais , Animais , Anticorpos Antivirais , COVID-19/imunologia , COVID-19/transmissão , COVID-19/virologia , Teste Sorológico para COVID-19 , Modelos Animais de Doenças , Suscetibilidade a Doenças , Mucosa Nasal/virologia , Doenças dos Roedores/imunologia , Doenças dos Roedores/transmissão , Doenças dos Roedores/virologia
11.
J Gen Virol ; 102(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33206033

RESUMO

Astroviruses are non-enveloped, positive-sense, ssRNA viruses and often associated with gastrointestinal diseases. Murine astrovirus (MuAstV) was first confirmed in a laboratory mouse colony in 2011. Although infected mice do not present significant clinical symptoms, the virus might interfere with research results. A recent surveillance has shown that MuAstV is highly prevalent in laboratory mice. The aims of the present study were to identify and characterize MuAstV strains as well as to investigate the prevalence rate of viral RNA in laboratory mice in Taiwan, and to estimate the origin and past population demography of MuAstVs. Based on molecular surveillance, MuAstV RNA was detected in 45.7 % of laboratory mice (48/105) from seven of nine colonies. Three fully sequenced MuAstV strains, MuAstV TW1, TW2 and TW3, exhibited 89.1-94.4 % and 89.1-90.0 % nucleotide identities with the reference strains MuAstV STL1 and STL2, respectively. Phylogenetic analyses of the partial regions of the RNA-dependent RNA polymerase (RdRp) and capsid protein (CP) genes of 18 Taiwan strains along with other astroviruses revealed that there are three distinct lineages of mouse astrovirus, MuAstV1, MuAstV2 and mouse astrovirus JF755422. The mutation rates of MuAstV1 were 2.6×10-4 and 6.2×10-4 substitutions/site/year for the RdRp and CP regions, respectively. Based on the above molecular clock, the colonization of MuAstV1 in laboratory mice was between 1897 and 1912, in good agreement with the establishment of 'modern' laboratory mouse facilities. Since its initial infection, the population size of MuAstV1 has increased 15-60-fold, probably consistent with the increased use of laboratory mice. In conclusion, MuAstV1 has been associated with modern laboratory mice since the beginning, and its influence on research results may require further investigation.


Assuntos
Infecções por Astroviridae/veterinária , Astroviridae/genética , Astroviridae/isolamento & purificação , Doenças dos Roedores/epidemiologia , Animais , Animais de Laboratório/virologia , Infecções por Astroviridae/virologia , Proteínas do Capsídeo/genética , Demografia , Camundongos , Filogenia , RNA Viral/genética , RNA Polimerase Dependente de RNA , Doenças dos Roedores/virologia , Taiwan
12.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34486970

RESUMO

Recently, murine kobuvirus (MuKV), a novel member of the family Picornaviridae, was identified in faecal samples of Rattus norvegicus in China. The limited information on the circulation of MuKV in other murine rodent species prompted us to investigate its prevalence and conduct a genetic characterization of MuKV in Rattus losea, Rattus tanezumi and Rattus norvegicus in China. Between 2015 and 2017, 243 faecal samples of these three murine rodent species from three regions in southern China were screened for the presence of MuKV. The overall prevalence was 23.0% (56/243). Three complete MuKV polyprotein sequences were acquired, and the genome organization was determined. Phylogenetic analyses suggested that our sequences were closely related to Chinese strains and belong to the species Aichivirus A in the genus Kobuvirus. Additional studies are required to understand the true prevalence of MuKV in murine rodent populations in China.


Assuntos
Fezes/virologia , Kobuvirus/genética , Infecções por Picornaviridae/veterinária , Ratos/virologia , Doenças dos Roedores/virologia , Animais , China/epidemiologia , Genoma Viral , Kobuvirus/isolamento & purificação , Filogenia , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/virologia , Poliproteínas/genética , Prevalência , Doenças dos Roedores/epidemiologia , Proteínas Virais/genética
13.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33533710

RESUMO

Encephalomyocarditis virus (EMCV) infects a wide range of hosts and can cause encephalitis, myocarditis, reproductive disorders and diabetes mellitus in selected mammalian species. As for humans, EMCV infection seems to occur by the contact with animals and can cause febrile illnesses in some infected patients. Here we isolated EMCV strain ZM12/14 from a natal multimammate mouse (Mastomys natalensis: M. natalensis) in Zambia. Pairwise sequence similarity of the ZM12/14 P1 region consisting of antigenic capsid proteins showed the highest similarity of nucleotide (80.7 %) and amino acid (96.2%) sequence with EMCV serotype 1 (EMCV-1). Phylogenetic analysis revealed that ZM12/14 clustered into EMCV-1 at the P1 and P3 regions but segregated from known EMCV strains at the P2 region, suggesting a unique evolutionary history. Reverse transcription PCR (RT-PCR) screening and neutralizing antibody assays for EMCV were performed using collected tissues and serum from various rodents (n=179) captured in different areas in Zambia. We detected the EMCV genome in 19 M. natalensis (19/179=10.6 %) and neutralizing antibody for EMCV in 33 M. natalensis (33/179=18.4 %). However, we did not detect either the genome or neutralizing antibody in other rodent species. High neutralizing antibody litres (≧320) were observed in both RT-PCR-negative and -positive animals. Inoculation of ZM12/14 caused asymptomatic persistent infection in BALB/c mice with high antibody titres and high viral loads in some organs, consistent with the above epidemiological results. This study is the first report of the isolation of EMCV in Zambia, suggesting that M. natalensis may play a role as a natural reservoir of infection.


Assuntos
Infecções por Cardiovirus/veterinária , Reservatórios de Doenças/virologia , Vírus da Encefalomiocardite/isolamento & purificação , Murinae/virologia , Doenças dos Roedores/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Infecções por Cardiovirus/epidemiologia , Infecções por Cardiovirus/virologia , Vírus da Encefalomiocardite/genética , Vírus da Encefalomiocardite/imunologia , Vírus da Encefalomiocardite/patogenicidade , Evolução Molecular , Genoma Viral , Camundongos Endogâmicos BALB C , Filogenia , Prevalência , Doenças dos Roedores/epidemiologia , Musaranhos/virologia , Zâmbia/epidemiologia
14.
Epidemiol Infect ; 149: e97, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33612134

RESUMO

European orthohantaviruses (Puumala orthohantavirus (PUUV); Dobrava-Belgrade orthohantavirus (DOBV), genotype Kurkino; Tula orthohantavirus (TULV)), and Leptospira spp. are small mammal-associated zoonotic pathogens that cause diseases with potentially similar symptoms in humans. We investigated the frequency of Leptospira spp. and hantavirus single and double infections in small mammals from 22 sites in Thuringia, central Germany, during 2017. TULV infections were detected at 18 of 22 sites (mean prevalence 13.8%, 93/674). PUUV infections were detected at four of 22 sites (mean prevalence 1.5%, 7/471), and respective PUUV sequences formed a novel phylogenetic clade, but DOBV infections were not detected at all. Leptospira infections were detected at 21 of 22 sites with the highest overall prevalence in field voles (Microtus agrestis) with 54.5% (6/11) and common voles (Microtus arvalis) with 30.3% (205/676). Leptospira-hantavirus coinfections were found in 6.6% (44/671) of common voles but only in two of 395 bank voles. TULV and Leptospira coinfection probability in common voles was driven by individual (age) and population-level factors. Coinfections seemed to be particularly associated with sites where Leptospira spp. prevalence exceeded 35%. Future investigations should evaluate public health consequences of this strong spatial clustering of coinfections.


Assuntos
Coinfecção/veterinária , Infecções por Hantavirus/veterinária , Leptospirose/veterinária , Doenças dos Roedores/epidemiologia , Animais , Arvicolinae/microbiologia , Arvicolinae/virologia , Coinfecção/epidemiologia , Coinfecção/microbiologia , Coinfecção/virologia , DNA Bacteriano/genética , Alemanha/epidemiologia , Orthohantavírus/classificação , Orthohantavírus/genética , Orthohantavírus/isolamento & purificação , Infecções por Hantavirus/epidemiologia , Leptospira/classificação , Leptospira/genética , Leptospira/isolamento & purificação , Leptospirose/epidemiologia , Filogenia , RNA Viral/genética , Doenças dos Roedores/microbiologia , Doenças dos Roedores/virologia
15.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554682

RESUMO

In 2013, a novel orthopoxvirus was detected in skin lesions of two cattle herders from the Kakheti region of Georgia (country); this virus was named Akhmeta virus. Subsequent investigation of these cases revealed that small mammals in the area had serological evidence of orthopoxvirus infections, suggesting their involvement in the maintenance of these viruses in nature. In October 2015, we began a longitudinal study assessing the natural history of orthopoxviruses in Georgia. As part of this effort, we trapped small mammals near Akhmeta (n = 176) and Gudauri (n = 110). Here, we describe the isolation and molecular characterization of Akhmeta virus from lesion material and pooled heart and lung samples collected from five wood mice (Apodemus uralensis and Apodemus flavicollis) in these two locations. The genomes of Akhmeta virus obtained from rodents group into 2 clades: one clade represented by viruses isolated from A. uralensis samples, and one clade represented by viruses isolated from A. flavicollis samples. These genomes also display several presumptive recombination events for which gene truncation and identity have been examined.IMPORTANCE Akhmeta virus is a unique Orthopoxvirus that was described in 2013 from the country of Georgia. This paper presents the first isolation of this virus from small mammal (Rodentia; Apodemus spp.) samples and the molecular characterization of those isolates. The identification of the virus in small mammals is an essential component to understanding the natural history of this virus and its transmission to human populations and could guide public health interventions in Georgia. Akhmeta virus genomes harbor evidence suggestive of recombination with a variety of other orthopoxviruses; this has implications for the evolution of orthopoxviruses, their ability to infect mammalian hosts, and their ability to adapt to novel host species.


Assuntos
Murinae/virologia , Orthopoxvirus/classificação , Orthopoxvirus/isolamento & purificação , Filogenia , Infecções por Poxviridae/virologia , Animais , Genes Virais/genética , Genoma Viral , República da Geórgia , Humanos , Estudos Longitudinais , Orthopoxvirus/genética , Infecções por Poxviridae/transmissão , Infecções por Poxviridae/veterinária , Doenças dos Roedores/transmissão , Doenças dos Roedores/virologia
16.
Arch Virol ; 165(10): 2291-2299, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32754877

RESUMO

The multimammate mouse (Mastomys natalensis; M. natalensis) serves as the main reservoir for the zoonotic arenavirus Lassa virus (LASV), and this has led to considerable investigation into the distribution of LASV and other related arenaviruses in this host species. In contrast to the situation with arenaviruses, the presence of other viruses in M. natalensis remains largely unexplored. In this study, herpesviruses and polyomaviruses were identified and partially characterized by PCR methods, sequencing, and phylogenetic analysis. In tissues sampled from M. natalensis populations in Côte d'Ivoire and Mali, six new DNA viruses (four betaherpesviruses, one gammaherpesvirus and one polyomavirus) were identified. Phylogenetic analysis based on glycoprotein B amino acid sequences showed that the herpesviruses clustered with cytomegaloviruses and rhadinoviruses of multiple rodent species. The complete circular genome of the newly identified polyomavirus was amplified by PCR. Amino acid sequence analysis of the large T antigen or VP1 showed that this virus clustered with a known polyomavirus from a house mouse (species Mus musculus polyomavirus 1). These two polyomaviruses form a clade with other rodent polyomaviruses, and the newly identified virus represents the third known polyomavirus of M. natalensis. This study represents the first identification of herpesviruses and the discovery of a novel polyomavirus in M. natalensis. In contrast to arenaviruses, we anticipate that these newly identified viruses represent a low zoonotic risk due to the normally highly restricted specificity of members of these two DNA virus families to their individual mammalian host species.


Assuntos
Genoma Viral , Infecções por Herpesviridae/epidemiologia , Herpesviridae/genética , Filogenia , Infecções por Polyomavirus/epidemiologia , Polyomavirus/genética , Doenças dos Roedores/epidemiologia , África Subsaariana/epidemiologia , Animais , Antígenos Virais de Tumores/genética , Proteínas do Capsídeo/genética , Reservatórios de Doenças/virologia , Herpesviridae/classificação , Herpesviridae/isolamento & purificação , Infecções por Herpesviridae/virologia , Especificidade de Hospedeiro , Tipagem Molecular , Murinae/virologia , Polyomavirus/classificação , Polyomavirus/isolamento & purificação , Infecções por Polyomavirus/virologia , Doenças dos Roedores/virologia , Proteínas do Envelope Viral/genética
17.
Virus Genes ; 56(1): 95-98, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31654295

RESUMO

To date, only two rodent-borne hantaviruses have been detected in sub-Saharan Africa. Here, we report the detection of a yet unknown hantavirus in a Natal mastomys (Mastomys natalensis) in Méliandou, Guinea, in 2014. The phylogenetic placement of this virus suggests that it might represent a cross-order spillover event from an unknown bat or eulipotyphlan host.


Assuntos
Infecções por Hantavirus/veterinária , Murinae/virologia , Orthohantavírus/isolamento & purificação , Doenças dos Roedores/virologia , Animais , Guiné , Orthohantavírus/classificação , Orthohantavírus/genética , Infecções por Hantavirus/virologia , Filogenia
18.
Proc Natl Acad Sci U S A ; 114(13): E2786-E2795, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28292903

RESUMO

The complex interplay between caspase-8 and receptor-interacting protein (RIP) kinase RIP 3 (RIPK3) driving extrinsic apoptosis and necroptosis is not fully understood. Murine cytomegalovirus triggers both apoptosis and necroptosis in infected cells; however, encoded inhibitors of caspase-8 activity (M36) and RIP3 signaling (M45) suppress these antiviral responses. Here, we report that this virus activates caspase-8 in macrophages to trigger apoptosis that gives rise to secondary necroptosis. Infection with double-mutant ΔM36/M45mutRHIM virus reveals a signaling pattern in which caspase-8 activates caspase-3 to drive apoptosis with subsequent RIP3-dependent activation of mixed lineage kinase domain-like (MLKL) leading to necroptosis. This combined cell death signaling is highly inflammatory, greater than either apoptosis induced by ΔM36 or necroptosis induced by M45mutRHIM virus. IL-6 production by macrophages is dramatically increased during double-mutant virus infection and correlates with faster antiviral responses in the host. Collaboratively, M36 and M45 target caspase-8 and RIP3 pathways together to suppress this proinflammatory cell death. This study reveals the effect of antiviral programmed cell death pathways on inflammation, shows that caspase-8 activation may go hand-in-hand with necroptosis in macrophages, and revises current understanding of independent and collaborative functions of M36 and M45 in blocking apoptotic and necroptotic cell death responses.


Assuntos
Apoptose , Infecções por Herpesviridae/veterinária , Muromegalovirus/metabolismo , Ribonucleotídeo Redutases/metabolismo , Doenças dos Roedores/fisiopatologia , Proteínas Virais/metabolismo , Animais , Caspase 8/genética , Caspase 8/imunologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/fisiopatologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Camundongos , Muromegalovirus/classificação , Muromegalovirus/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Ribonucleotídeo Redutases/genética , Doenças dos Roedores/genética , Doenças dos Roedores/imunologia , Doenças dos Roedores/virologia , Proteínas Virais/genética
19.
Emerg Infect Dis ; 25(8): 1607-1609, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31310209

RESUMO

Bank voles in Poland are reservoirs of zoonotic viruses. To determine seroprevalence of hantavirus, arenavirus, and cowpox virus and factors affecting seroprevalence, we screened for antibodies against these viruses over 9 years. Cowpox virus was most prevalent and affected by extrinsic and intrinsic factors. Long-term and multisite surveillance is crucial.


Assuntos
Arvicolinae/virologia , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/virologia , Animais , Estudos Transversais , Feminino , História do Século XXI , Masculino , Polônia/epidemiologia , Estudos Soroepidemiológicos , Zoonoses
20.
PLoS Pathog ; 13(1): e1006073, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28076397

RESUMO

Many emerging infections are RNA virus spillovers from animal reservoirs. Reservoir identification is necessary for predicting the geographic extent of infection risk, but rarely are taxonomic levels below the animal species considered as reservoir, and only key circumstances in nature and methodology allow intrinsic virus-host associations to be distinguished from simple geographic (co-)isolation. We sampled and genetically characterized in detail a contact zone of two subtaxa of the rodent Mastomys natalensis in Tanzania. We find two distinct arenaviruses, Gairo and Morogoro virus, each spatially confined to a single M. natalensis subtaxon, only co-occurring at the contact zone's centre. Inter-subtaxon hybridization at this centre and a continuum of quality habitat for M. natalensis show that both viruses have the ecological opportunity to spread into the other substaxon's range, but do not, strongly suggesting host-intrinsic barriers. Such barriers could explain why human cases of another M. natalensis-borne arenavirus, Lassa virus, are limited to West Africa.


Assuntos
Arenavirus/classificação , Arenavirus/metabolismo , Reservatórios de Doenças/virologia , Murinae/virologia , Doenças dos Roedores/virologia , Animais , Arenavirus/fisiologia , Humanos , Febre Lassa/virologia , Vírus Lassa/fisiologia , Filogeografia , Especificidade da Espécie , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA