Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
J Virol ; 97(2): e0194522, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651749

RESUMO

Receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL) are proteins that are critical for necroptosis, a mechanism of programmed cell death that is both activated when apoptosis is inhibited and thought to be antiviral. Here, we investigated the role of RIPK3 and MLKL in controlling the Orthopoxvirus ectromelia virus (ECTV), a natural pathogen of the mouse. We found that C57BL/6 (B6) mice deficient in RIPK3 (Ripk3-/-) or MLKL (Mlkl-/-) were as susceptible as wild-type (WT) B6 mice to ECTV lethality after low-dose intraperitoneal infection and were as resistant as WT B6 mice after ECTV infection through the natural footpad route. Additionally, after footpad infection, Mlkl-/- mice, but not Ripk3-/- mice, endured lower viral titers than WT mice in the draining lymph node (dLN) at three days postinfection and in the spleen or in the liver at seven days postinfection. Despite the improved viral control, Mlkl-/- mice did not differ from WT mice in the expression of interferons or interferon-stimulated genes or in the recruitment of natural killer (NK) cells and inflammatory monocytes (iMOs) to the dLN. Additionally, the CD8 T-cell responses in Mlkl-/- and WT mice were similar, even though in the dLNs of Mlkl-/- mice, professional antigen-presenting cells were more heavily infected. Finally, the histopathology in the livers of Mlkl-/- and WT mice at 7 dpi did not differ. Thus, the mechanism of the increased virus control by Mlkl-/- mice remains to be defined. IMPORTANCE The molecules RIPK3 and MLKL are required for necroptotic cell death, which is widely thought of as an antiviral mechanism. Here we show that C57BL/6 (B6) mice deficient in RIPK3 or MLKL are as susceptible as WT B6 mice to ECTV lethality after a low-dose intraperitoneal infection and are as resistant as WT B6 mice after ECTV infection through the natural footpad route. Mice deficient in MLKL are more efficient than WT mice at controlling virus loads in various organs. This improved viral control is not due to enhanced interferon, natural killer cell, or CD8 T-cell responses. Overall, the data indicate that deficiencies in the molecules that are critical to necroptosis do not necessarily result in worse outcomes following viral infection and may improve virus control.


Assuntos
Ectromelia Infecciosa , Animais , Camundongos , Vírus da Ectromelia , Ectromelia Infecciosa/imunologia , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Necroptose/imunologia , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia
2.
Immunity ; 43(6): 1148-59, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682986

RESUMO

Toll-like receptor 9 (TLR9), its adaptor MyD88, the downstream transcription factor interferon regulatory factor 7 (IRF7), and type I interferons (IFN-I) are all required for resistance to infection with ectromelia virus (ECTV). However, it is not known how or in which cells these effectors function to promote survival. Here, we showed that after infection with ECTV, the TLR9-MyD88-IRF7 pathway was necessary in CD11c(+) cells for the expression of proinflammatory cytokines and the recruitment of inflammatory monocytes (iMos) to the draining lymph node (dLN). In the dLN, the major producers of IFN-I were infected iMos, which used the DNA sensor-adaptor STING to activate IRF7 and nuclear factor κB (NF-κB) signaling to induce the expression of IFN-α and IFN-ß, respectively. Thus, in vivo, two pathways of DNA pathogen sensing act sequentially in two distinct cell types to orchestrate resistance to a viral disease.


Assuntos
Interferon Tipo I/imunologia , Monócitos/imunologia , Transdução de Sinais/imunologia , Animais , Infecções por Vírus de DNA/imunologia , Vírus da Ectromelia , Ectromelia Infecciosa/imunologia , Citometria de Fluxo , Fator Regulador 7 de Interferon/imunologia , Interferon Tipo I/biossíntese , Linfonodos/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Camundongos Mutantes , Fator 88 de Diferenciação Mieloide/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor Toll-Like 9/imunologia
3.
PLoS Pathog ; 17(5): e1009593, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015056

RESUMO

Type I interferons (IFN-I) are antiviral cytokines that signal through the ubiquitous IFN-I receptor (IFNAR). Following footpad infection with ectromelia virus (ECTV), a mouse-specific pathogen, C57BL/6 (B6) mice survive without disease, while B6 mice broadly deficient in IFNAR succumb rapidly. We now show that for survival to ECTV, only hematopoietic cells require IFNAR expression. Survival to ECTV specifically requires IFNAR in both natural killer (NK) cells and monocytes. However, intrinsic IFNAR signaling is not essential for adaptive immune cell responses or to directly protect non-hematopoietic cells such as hepatocytes, which are principal ECTV targets. Mechanistically, IFNAR-deficient NK cells have reduced cytolytic function, while lack of IFNAR in monocytes dampens IFN-I production and hastens virus dissemination. Thus, during a pathogenic viral infection, IFN-I coordinates innate immunity by stimulating monocytes in a positive feedback loop and by inducing NK cell cytolytic function.


Assuntos
Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Animais , Citocinas/imunologia , Resistência à Doença , Ectromelia Infecciosa/virologia , Feminino , Hepatócitos/imunologia , Hepatócitos/virologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/virologia , Receptor de Interferon alfa e beta/genética
4.
Immunity ; 41(6): 873-5, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25526299

RESUMO

Granzyme B released by leukocytes cleaves multiple intracellular substrates required for target cell lysis. In this issue of Immunity, Prakash et al. (2014) demonstrate that granzyme B cleaves basement membrane proteins and promotes cytotoxic T cell diapedesis into inflamed tissue.


Assuntos
Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Granzimas/metabolismo , Células Matadoras Naturais/fisiologia , Linfócitos T Citotóxicos/fisiologia , Animais
5.
Immunity ; 41(6): 960-72, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25526309

RESUMO

Granzyme B (GzmB) is a protease with a well-characterized intracellular role in targeted destruction of compromised cells by cytotoxic lymphocytes. However, GzmB also cleaves extracellular matrix components, suggesting that it influences the interplay between cytotoxic lymphocytes and their environment. Here, we show that GzmB-null effector T cells and natural killer (NK) cells exhibited a cell-autonomous homing deficit in mouse models of inflammation and Ectromelia virus infection. Intravital imaging of effector T cells in inflamed cremaster muscle venules revealed that GzmB-null cells adhered normally to the vessel wall and could extend lamellipodia through it but did not cross it efficiently. In vitro migration assays showed that active GzmB was released from migrating cytotoxic lymphocytes and enabled chemokine-driven movement through basement membranes. Finally, proteomic analysis demonstrated that GzmB cleaved basement membrane constituents. Our results highlight an important role for GzmB in expediting cytotoxic lymphocyte diapedesis via basement membrane remodeling.


Assuntos
Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Granzimas/metabolismo , Células Matadoras Naturais/fisiologia , Linfócitos T Citotóxicos/fisiologia , Animais , Membrana Basal/metabolismo , Movimento Celular/genética , Células Cultivadas , Quimiocinas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Granzimas/genética , Células Matadoras Naturais/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteólise , Linfócitos T Citotóxicos/virologia , Migração Transendotelial e Transepitelial/genética
6.
Int J Mol Sci ; 25(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38203729

RESUMO

Ectromelia virus (ECTV) is a causative agent of mousepox. It provides a suitable model for studying the immunobiology of orthopoxviruses, including their interaction with the host cell cytoskeleton. As professional antigen-presenting cells, dendritic cells (DCs) control the pericellular environment, capture antigens, and present them to T lymphocytes after migration to secondary lymphoid organs. Migration of immature DCs is possible due to the presence of specialized adhesion structures, such as podosomes or focal adhesions (FAs). Since assembly and disassembly of adhesive structures are highly associated with DCs' immunoregulatory and migratory functions, we evaluated how ECTV infection targets podosomes and FAs' organization and formation in natural-host bone marrow-derived DCs (BMDC). We found that ECTV induces a rapid dissolution of podosomes at the early stages of infection, accompanied by the development of larger and wider FAs than in uninfected control cells. At later stages of infection, FAs were predominantly observed in long cellular extensions, formed extensively by infected cells. Dissolution of podosomes in ECTV-infected BMDCs was not associated with maturation and increased 2D cell migration in a wound healing assay; however, accelerated transwell migration of ECTV-infected cells towards supernatants derived from LPS-conditioned BMDCs was observed. We suggest that ECTV-induced changes in the spatial organization of adhesive structures in DCs may alter the adhesiveness/migration of DCs during some conditions, e.g., inflammation.


Assuntos
Vírus da Ectromelia , Ectromelia Infecciosa , Animais , Camundongos , Adesivos , Adesividade , Células Dendríticas
7.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958732

RESUMO

The recent spread of the monkeypox virus among humans has heightened concerns regarding orthopoxvirus infections. Consequently, conducting a comprehensive study on the immunobiology of the monkeypox virus is imperative for the development of effective therapeutics. Ectromelia virus (ECTV) closely resembles the genetic and disease characteristics of monkeypox virus, making it a valuable research tool for studying orthopoxvirus-host interactions. Guanylate-binding proteins (GBPs), highly expressed interferon-stimulated genes (ISGs), have antagonistic effects against various intracellular pathogenic microorganisms. Our previous research has shown that GBP2 has a mild but statistically significant inhibitory effect on ECTV infection. The presence of a significant number of molecules in the poxvirus genome that encode the host immune response raises questions about whether it also includes proteins that counteract the antiviral activity of GBP2. Using IP/MS and co-IP technology, we discovered that the poly(A) polymerase catalytic subunit (PAPL) protein of ECTV is a viral regulatory molecule that interacts with GBP2. Further studies have shown that PAPL antagonizes the antiviral activity of GBP2 by reducing its protein levels. Knocking out the PAPL gene of ECTV with the CRISPR/Cas9 system significantly diminishes the replication ability of the virus, indicating the indispensable role of PAPL in the replication process of ECTV. In conclusion, our study presents preliminary evidence supporting the significance of PAPL as a virulence factor that can interact with GBP2.


Assuntos
Vírus da Ectromelia , Ectromelia Infecciosa , Animais , Camundongos , Humanos , Vírus da Ectromelia/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , Domínio Catalítico , Antivirais/farmacologia
8.
J Virol ; 95(19): e0056621, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34260270

RESUMO

Cytotoxic CD4 T lymphocytes (CD4-CTL) are important in antiviral immunity. For example, we have previously shown that in mice, CD4-CTL are important to control ectromelia virus (ECTV) infection. How viral infections induce CD4-CTL responses remains incompletely understood. We demonstrate here that not only ECTV but also vaccinia virus and lymphocytic choriomeningitis virus induce CD4-CTL, though the response to ECTV is stronger. Using ECTV, we also demonstrate that in contrast to CD8-CTL, CD4-CTL differentiation requires constant virus replication and ceases once the virus is controlled. We also show that major histocompatibility complex class II molecules on CD11c+ cells are required for CD4-CTL differentiation and for mousepox resistance. Transcriptional analysis indicated that antiviral CD4-CTL and noncytolytic T helper 1 (Th1) CD4 T cells have similar transcriptional profiles, suggesting that CD4-CTL are terminally differentiated classical Th1 cells. Interestingly, CD4-CTL and classical Th1 cells expressed similar mRNA levels of the transcription factors ThPOK and GATA-3, necessary for CD4 T cell linage commitment, and Runx3, required for CD8 T cell development and effector function. However, at the protein level, CD4-CTL had higher levels of the three transcription factors, suggesting that further posttranscriptional regulation is required for CD4-CTL differentiation. Finally, CRISPR/Cas9-mediated deletion of Runx3 in CD4 T cells inhibited CD4-CTL but not classical Th1 cell differentiation in response to ECTV infection. These results further our understanding of the mechanisms of CD4-CTL differentiation during viral infection and the role of posttranscriptionally regulated Runx3 in this process. IMPORTANCE While it is well established that cytotoxic CD4 T cells (CD4-CTLs) directly contribute to viral clearance, it remains unclear how CD4-CTL are induced. We now show that CD4-CTLs require sustained antigen presentation and are induced by CD11c-expressing antigen-presenting cells. Moreover, we show that CD4-CTLs are derived from the terminal differentiation of classical T helper 1 (Th1) subset of CD4 cells. Compared to Th1 cells, CD4-CTLs upregulate protein levels of the transcription factors ThPOK, Runx3, and GATA-3 posttranscriptionally. Deletion of Runx3 in differentiated CD4 T cells prevents induction of CD4-CTLs but not classical Th1 cells. These results advance our knowledge of how CD4-CTLs are induced during viral infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ectromelia Infecciosa/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Viroses/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD11/análise , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Citotoxicidade Imunológica , Vírus da Ectromelia/fisiologia , Ectromelia Infecciosa/virologia , Antígenos de Histocompatibilidade Classe II/análise , Fígado/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismo , Células Th1/metabolismo , Transcriptoma , Replicação Viral
9.
PLoS Pathog ; 16(8): e1008685, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745153

RESUMO

Smallpox and monkeypox pose severe threats to human health. Other orthopoxviruses are comparably virulent in their natural hosts, including ectromelia, the cause of mousepox. Disease severity is linked to an array of immunomodulatory proteins including the B22 family, which has homologs in all pathogenic orthopoxviruses but not attenuated vaccine strains. We demonstrate that the ectromelia B22 member, C15, is necessary and sufficient for selective inhibition of CD4+ but not CD8+ T cell activation by immunogenic peptide and superantigen. Inhibition is achieved not by down-regulation of surface MHC- II or co-stimulatory protein surface expression but rather by interference with antigen presentation. The appreciable outcome is interference with CD4+ T cell synapse formation as determined by imaging studies and lipid raft disruption. Consequently, CD4+ T cell activating stimulus shifts to uninfected antigen-presenting cells that have received antigen from infected cells. This work provides insight into the immunomodulatory strategies of orthopoxviruses by elucidating a mechanism for specific targeting of CD4+ T cell activation, reflecting the importance of this cell type in control of the virus.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas Virais/imunologia , Animais , Ectromelia Infecciosa/metabolismo , Ectromelia Infecciosa/virologia , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Virais/metabolismo , Virulência
10.
J Immunol ; 204(6): 1582-1591, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32015010

RESUMO

NK cells play an important role in antiviral resistance. The integrin α2, which dimerizes with integrin ß1, distinguishes NK cells from innate lymphoid cells 1 and other leukocytes. Despite its use as an NK cell marker, little is known about the role of α2ß1 in NK cell biology. In this study, we show that in mice α2ß1 deficiency does not alter the balance of NK cell/ innate lymphoid cell 1 generation and slightly decreases the number of NK cells in the bone marrow and spleen without affecting NK cell maturation. NK cells deficient in α2ß1 had no impairment at entering or distributing within the draining lymph node of ectromelia virus (ECTV)-infected mice or at becoming effectors but proliferated poorly in response to ECTV and did not increase in numbers following infection with mouse CMV (MCMV). Still, α2ß1-deficient NK cells efficiently protected from lethal mousepox and controlled MCMV titers in the spleen. Thus, α2ß1 is required for optimal NK cell proliferation but is dispensable for protection against ECTV and MCMV, two well-established models of viral infection in which NK cells are known to be important.


Assuntos
Ectromelia Infecciosa/imunologia , Infecções por Herpesviridae/imunologia , Integrina alfa2beta1/metabolismo , Células Matadoras Naturais/imunologia , Animais , Contagem de Células , Proliferação de Células , Modelos Animais de Doenças , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/sangue , Ectromelia Infecciosa/virologia , Feminino , Infecções por Herpesviridae/sangue , Infecções por Herpesviridae/virologia , Humanos , Imunidade Inata , Integrina alfa2beta1/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Camundongos , Muromegalovirus/imunologia , Replicação Viral/imunologia
11.
Mol Ther ; 29(9): 2769-2781, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33992803

RESUMO

It is well established that memory CD8 T cells protect susceptible strains of mice from mousepox, a lethal viral disease caused by ectromelia virus (ECTV), the murine counterpart to human variola virus. While mRNA vaccines induce protective antibody (Ab) responses, it is unknown whether they also induce protective memory CD8 T cells. We now show that immunization with different doses of unmodified or N(1)-methylpseudouridine-modified mRNA (modified mRNA) in lipid nanoparticles (LNP) encoding the ECTV gene EVM158 induced similarly strong CD8 T cell responses to the epitope TSYKFESV, albeit unmodified mRNA-LNP had adverse effects at the inoculation site. A single immunization with 10 µg modified mRNA-LNP protected most susceptible mice from mousepox, and booster vaccination increased the memory CD8 T cell pool, providing full protection. Moreover, modified mRNA-LNP encoding TSYKFESV appended to green fluorescent protein (GFP) protected against wild-type ECTV infection while lymphocytic choriomeningitis virus glycoprotein (GP) modified mRNA-LNP protected against ECTV expressing GP epitopes. Thus, modified mRNA-LNP can be used to create protective CD8 T cell-based vaccines against viral infections.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/prevenção & controle , Proteínas Virais/genética , Vacinas de mRNA/administração & dosagem , Animais , Composição de Medicamentos , Ectromelia Infecciosa/imunologia , Imunização Secundária , Memória Imunológica , Lipossomos , Masculino , Camundongos , Nanopartículas , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Pseudouridina/análogos & derivados , Pseudouridina/química , Proteínas Virais/química , Proteínas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/química , Vacinas Virais/farmacologia , Vacinas de mRNA/química , Vacinas de mRNA/farmacologia
12.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31826990

RESUMO

It is well established that chronic viral infections can cause immune suppression, resulting in increased susceptibility to other infectious diseases. However, the effects of chronic viral infection on T-cell responses and vaccination against highly pathogenic viruses are not well understood. We have recently shown that C57BL/6 (B6) mice lose their natural resistance to wild-type (WT) ectromelia virus (ECTV) when chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13). Here we compared the T-cell response to ECTV in previously immunologically naive mice that were chronically infected with CL13 or that were convalescent from acute infection with the Armstrong (Arm) strain of LCMV. Our results show that mice that were chronically infected with CL13 but not those that had recovered from Arm infection have highly defective ECTV-specific CD8+ and CD4+ T-cell responses to WT ECTV. These defects are at least partly due to the chronic infection environment. In contrast to mice infected with WT ECTV, mice chronically infected with CL13 survived without signs of disease when infected with ECTV-Δ036, a mutant ECTV strain that is highly attenuated. Strikingly, mice chronically infected with CL13 mounted a strong CD8+ T-cell response to ECTV-Δ036 and survived without signs of disease after a subsequent challenge with WT ECTV. Our work suggests that enhanced susceptibility to acute viral infections in chronically infected individuals can be partly due to poor T-cell responses but that sufficient T-cell function can be recovered and resistance to acute infection can be restored by immunization with highly attenuated vaccines.IMPORTANCE Chronic viral infections may result in immunosuppression and enhanced susceptibility to infections with other pathogens. For example, we have recently shown that mice chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13) are highly susceptible to mousepox, a disease that is caused by ectromelia virus and that is the mouse homolog of human smallpox. Here we show chronic CL13 infection severely disrupts the expansion, proliferation, activation, and cytotoxicity of T cells in response due at least in part to the suppressive effects of the chronic infection milieu. Notably, despite this profound immunodeficiency, mice chronically infected with CL13 could be protected by vaccination with a highly attenuated variant of ECTV. These results demonstrate that protective vaccination of immunosuppressed individuals is possible, provided that proper immunization tools are used.


Assuntos
Ectromelia Infecciosa/imunologia , Imunidade Inata/imunologia , Imunização , Coriomeningite Linfocítica/imunologia , Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Vírus da Ectromelia/imunologia , Feminino , Humanos , Tolerância Imunológica , Memória Imunológica , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinação
13.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31776282

RESUMO

Chronic viral infections. like those of humans with cytomegalovirus, human immunodeficiency virus (even when under antiretroviral therapy), and hepatitis C virus or those of mice with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13), result in immune dysfunction that predisposes the host to severe infections with unrelated pathogens. It is known that C57BL/6 (B6) mice are resistant to mousepox, a lethal disease caused by the orthopoxvirus ectromelia virus (ECTV), and that this resistance requires natural killer (NK) cells and other immune cells. We show that most B6 mice chronically infected with CL13 succumb to mousepox but that most of those that recovered from acute infection with the LCMV Armstrong (Arm) strain survive. We also show that B6 mice chronically infected with CL13 and those that recovered from Arm infection have a reduced frequency and a reduced number of NK cells. However, at steady state, NK cells in mice that have recovered from Arm infection mature normally and, in response to ECTV, get activated, become more mature, proliferate, and increase their cytotoxicity in vivo Conversely, in mice chronically infected with CL13, NK cells are immature and residually activated, and following ECTV infection, they do not mature, proliferate, or increase their cytotoxicity. Given the well-established importance of NK cells in resistance to mousepox, these data suggest that the NK cell dysfunction caused by CL13 persistence may contribute to the susceptibility of CL13-infected mice to mousepox. Whether chronic infections similarly affect NK cells in humans should be explored.IMPORTANCE Infection of adult mice with the clone 13 (CL13) strain of lymphocytic choriomeningitis virus (LCMV) is extensively used as a model of chronic infection. In this paper, we show that mice chronically infected with CL13 succumb to challenge with ectromelia virus (ECTV; the agent of mousepox) and that natural killer (NK) cells in CL13-infected mice are reduced in numbers and have an immature and partially activated phenotype but do respond to ECTV. These data may provide additional clues why humans chronically infected with certain pathogens are less resistant to viral diseases.


Assuntos
Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Células Matadoras Naturais/imunologia , Coriomeningite Linfocítica/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
PLoS Pathog ; 15(12): e1008239, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31877196

RESUMO

Cells sensing infection produce Type I interferons (IFN-I) to stimulate Interferon Stimulated Genes (ISGs) that confer resistance to viruses. During lympho-hematogenous spread of the mouse pathogen ectromelia virus (ECTV), the adaptor STING and the transcription factor IRF7 are required for IFN-I and ISG induction and resistance to ECTV. However, it is unknown which cells sense ECTV and which pathogen recognition receptor (PRR) upstream of STING is required for IFN-I and ISG induction. We found that cyclic-GMP-AMP (cGAMP) synthase (cGAS), a DNA-sensing PRR, is required in bone marrow-derived (BMD) but not in other cells for IFN-I and ISG induction and for resistance to lethal mousepox. Also, local administration of cGAMP, the product of cGAS that activates STING, rescues cGAS but not IRF7 or IFN-I receptor deficient mice from mousepox. Thus, sensing of infection by BMD cells via cGAS and IRF7 is critical for resistance to a lethal viral disease in a natural host.


Assuntos
Medula Óssea/virologia , Vírus da Ectromelia/patogenicidade , Ectromelia Infecciosa/virologia , Nucleotídeos Cíclicos/metabolismo , Animais , Medula Óssea/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Interferon Tipo I/metabolismo , Camundongos Transgênicos , Nucleotidiltransferases/genética , Proteínas Serina-Treonina Quinases/metabolismo
15.
J Biol Chem ; 294(13): 5214-5227, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30723161

RESUMO

Etanercept is a soluble form of the tumor necrosis factor receptor 2 (TNFR2) that inhibits pathological tumor necrosis factor (TNF) responses in rheumatoid arthritis and other inflammatory diseases. However, besides TNF, etanercept also blocks lymphotoxin-α (LTα), which has no clear therapeutic value and might aggravate some of the adverse effects associated with etanercept. Poxviruses encode soluble TNFR2 homologs, termed viral TNF decoy receptors (vTNFRs), that display unique specificity properties. For instance, cytokine response modifier D (CrmD) inhibits mouse and human TNF and mouse LTα, but it is inactive against human LTα. Here, we analyzed the molecular basis of these immunomodulatory activities in the ectromelia virus-encoded CrmD. We found that the overall molecular mechanism to bind TNF and LTα from mouse and human origin is fairly conserved in CrmD and dominated by a groove under its 50s loop. However, other ligand-specific binding determinants optimize CrmD for the inhibition of mouse ligands, especially mouse TNF. Moreover, we show that the inability of CrmD to inhibit human LTα is caused by a Glu-Phe-Glu motif in its 90s loop. Importantly, transfer of this motif to etanercept diminished its anti-LTα activity in >60-fold while weakening its TNF-inhibitory capacity in 3-fold. This new etanercept variant could potentially be used in the clinic as a safer alternative to conventional etanercept. This work is the most detailed study of the vTNFR-ligand interactions to date and illustrates that a better knowledge of vTNFRs can provide valuable information to improve current anti-TNF therapies.


Assuntos
Vírus da Ectromelia/imunologia , Fatores Imunológicos/imunologia , Linfotoxina-alfa/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Receptores Chamariz do Fator de Necrose Tumoral/imunologia , Proteínas Virais/imunologia , Sequência de Aminoácidos , Animais , Vírus da Ectromelia/química , Ectromelia Infecciosa/virologia , Humanos , Fatores Imunológicos/química , Camundongos , Modelos Moleculares , Domínios Proteicos , Fator de Necrose Tumoral alfa/imunologia , Proteínas Virais/química
16.
Immunity ; 34(4): 579-89, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21439856

RESUMO

It is well established that natural killer (NK) cells confer resistance to many viral diseases, but in only a few instances the molecular mechanisms whereby NK cells recognize virus-infected cells are known. Here we show that CD94, a molecule preferentially expressed by NK cells, is essential for the resistance of C57BL/6 mice to mousepox, a disease caused by the Orthopoxvirus ectromelia virus. Ectromelia virus-infected cells expressing the major histocompatibility complex (MHC) class Ib molecule Qa-1(b) are specifically recognized by the activating receptor formed by CD94 and NKG2E. Because CD94-NKG2 receptors and their ligands are highly conserved in rodents and humans, a similar mechanism may exist during human infections with the smallpox and monkeypox viruses, which are highly homologous to ectromelia virus.


Assuntos
Ectromelia Infecciosa/imunologia , Células Matadoras Naturais/imunologia , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Animais , Linhagem Celular , Movimento Celular , Humanos , Linfonodos/citologia , Linfonodos/imunologia , Camundongos
17.
Acta Virol ; 64(3): 307-324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32985205

RESUMO

Mitochondria are multitasking organelles that play a central role in energy production, survival and primary host defense against viral infections. Therefore, viruses target mitochondria dynamics and functions to benefit their replication and morphogenetic processes. We endeavor to understand the role of mitochondria during infection of ectromelia virus (ECTV), hence our investigations on mitochondria-related genes in non-immune (L929 fibroblasts) and immune (RAW 264.7 macrophages) cells. Our results show that during later stages of infection, ECTV significantly decreases the expression of mitochondria-related genes regulating many aspects of mitochondrial physiology and functions, including mitochondrial transport, small molecule transport, membrane polarization and potential, targeting proteins to mitochondria, inner membrane translocation, and apoptosis. Such down-regulation is cell-specific, since macrophages exhibited a more profound down-regulation of mitochondria-related genes compared to infected L929 fibroblasts. Only L929 cells exhibited up-regulation of two important genes responsible for oxidative phosphorylation and subsequent ATP production: Slc25a23 and Slc25a31. Changes in the expression of mitochondria-related genes are accompanied by altered mitochondria morphology and distribution in both types of cells. In depth Ingenuity Pathway Analysis (IPA) identified the "Sirtuin Signaling Pathway" as the most significant top canonical pathway associated with ECTV infection in both analyzed cell types. Taken together, down-regulation of mitochondria-related genes observed especially in macrophages indicates dysfunctional mitochondria, possibly contributing to energy collapse and induction of intrinsic pathway of apoptosis. Meanwhile, alteration of the expression of several mitochondria-related genes in fibroblasts without apoptosis induction may represent poxviral strategy to control cellular energy metabolism for efficient replication. Keywords: ectromelia virus; mitochondria; fibroblasts; macrophages.


Assuntos
Ectromelia Infecciosa/genética , Fibroblastos , Macrófagos , Mitocôndrias/genética , Transcriptoma , Animais , Vírus da Ectromelia , Ectromelia Infecciosa/imunologia , Camundongos , Células RAW 264.7
18.
Arch Virol ; 164(2): 559-565, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30374707

RESUMO

Ectromelia virus (ECTV) is an orthopoxvirus that productively replicates in dendritic cells (DCs), but its influence on the microtubule (MT) cytoskeleton in DCs is not known. Here, we show that ECTV infection of primary murine granulocyte-macrophage colony stimulating factor-derived bone marrow cells (GM-BM) downregulates numerous genes engaged in MT cytoskeleton organization and dynamics. In infected cells, the MT cytoskeleton undergoes dramatic rearrangement and relaxation, accompanied by disappearance of the microtubule organizing centre (MTOC) and increased acetylation and stabilization of MTs, which are exploited by progeny virions for intracellular transport. This indicates a strong ability of ECTV to subvert the MT cytoskeleton of highly specialized immune cells.


Assuntos
Citoesqueleto/metabolismo , Células Dendríticas/metabolismo , Vírus da Ectromelia/fisiologia , Ectromelia Infecciosa/metabolismo , Macrófagos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Linhagem Celular , Ectromelia Infecciosa/virologia , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos/metabolismo
19.
Immunol Invest ; 48(4): 392-409, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30884992

RESUMO

Ectromelia virus (ECTV) is the etiological agent of mousepox, an acute and systemic disease with high mortality rates in susceptible strains of mice. Resistance and susceptibility to mousepox are triggered by the dichotomous T-helper (Th) immune response generated in infected animals, with strong protective Th1 or nonprotective Th2 profile, respectively. Th1/Th2 balance is influenced by dendritic cells (DCs), which were shown to differ in their ability to polarize naïve CD4+ T cells in different mouse strains. Therefore, we have studied the inner-strain differences in the ability of conventional DCs (cDCs), generated from resistant (C57BL/6) and susceptible (BALB/c) mice, to stimulate proliferation and activation of Th cells upon ECTV infection. We found that ECTV infection of GM-CSF-derived bone marrow (GM-BM) cells, composed of cDCs and macrophages, affected initiation of allogeneic CD4+ T cells proliferation in a mouse strain-independent manner. Moreover, infected GM-BM cells from both mouse strains failed to induce and even inhibited the production of Th1 (IFN-γ and IL-2), Th2 (IL-4 and IL-10) and Th17 (IL-17A) cytokines by allogeneic CD4+ T cells. These results indicate that in in vitro conditions ECTV compromises the ability of cDCs to initiate/polarize adaptive antiviral immune response independently of the host strain resistance/susceptibility to lethal infection.


Assuntos
Células da Medula Óssea/imunologia , Células da Medula Óssea/virologia , Linfócitos T CD4-Positivos/imunologia , Vírus da Ectromelia , Ectromelia Infecciosa/imunologia , Animais , Citocinas/imunologia , Ectromelia Infecciosa/virologia , Teste de Cultura Mista de Linfócitos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade da Espécie
20.
Risk Anal ; 39(5): 975-981, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30419157

RESUMO

With the advance of biotechnology, biological information, rather than biological materials, is increasingly the object of principal security concern. We argue that both in theory and in practice, existing security approaches in biology are poorly suited to manage hazardous biological information, and use the cases of Mousepox, H5N1 gain of function, and Botulinum toxin H to highlight these ongoing challenges. We suggest that mitigation of these hazards can be improved if one can: (1) anticipate hazard potential before scientific work is performed; (2) consider how much the new information would likely help both good and bad actors; and (3) aim to disclose information in the manner that maximally disadvantages bad actors versus good ones.


Assuntos
Biotecnologia/tendências , Bioterrorismo/prevenção & controle , Segurança Computacional , Segurança , Animais , Toxinas Botulínicas , Tomada de Decisões , Ectromelia Infecciosa , Substâncias Perigosas , Humanos , Virus da Influenza A Subtipo H5N1 , Influenza Humana , Risco , Medidas de Segurança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA