Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 774
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 180(5): 847-861.e15, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142678

RESUMO

Early life environmental exposure, particularly during perinatal period, can have a life-long impact on organismal development and physiology. The biological rationale for this phenomenon is to promote physiological adaptations to the anticipated environment based on early life experience. However, perinatal exposure to adverse environments can also be associated with adult-onset disorders. Multiple environmental stressors induce glucocorticoids, which prompted us to investigate their role in developmental programming. Here, we report that perinatal glucocorticoid exposure had long-term consequences and resulted in diminished CD8 T cell response in adulthood and impaired control of tumor growth and bacterial infection. We found that perinatal glucocorticoid exposure resulted in persistent alteration of the hypothalamic-pituitary-adrenal (HPA) axis. Consequently, the level of the hormone in adults was significantly reduced, resulting in decreased CD8 T cell function. Our study thus demonstrates that perinatal stress can have long-term consequences on CD8 T cell immunity by altering HPA axis activity.


Assuntos
Infecções Bacterianas/imunologia , Desenvolvimento Embrionário/imunologia , Glucocorticoides/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/efeitos dos fármacos , Dexametasona/farmacologia , Desenvolvimento Embrionário/genética , Feminino , Glucocorticoides/imunologia , Glucocorticoides/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Interleucina-4/farmacologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Neoplasias/induzido quimicamente , Neoplasias/genética , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Receptores de Glucocorticoides/genética , Transdução de Sinais/genética
2.
Immunity ; 55(1): 145-158.e7, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34879222

RESUMO

Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life. In contrast to its prenatal role in neurodevelopmental phenotypes, interleukin-17A (IL-17A) generated immune-primed phenotypes in offspring through changes in the maternal gut microbiota that led to postnatal alterations in the chromatin landscape of naive CD4+ T cells. The transfer of stool samples from pregnant mice with enhanced IL-17A responses into germ-free dams produced immune-primed phenotypes in offspring. Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista/imunologia , Linfócitos T CD4-Positivos/imunologia , Cromatina/metabolismo , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Interleucina-17/metabolismo , Intestinos/imunologia , Transtornos do Neurodesenvolvimento/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Transtorno do Espectro Autista/microbiologia , Criança , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Feminino , Humanos , Imunização , Inflamação/microbiologia , Camundongos , Transtornos do Neurodesenvolvimento/microbiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/microbiologia
4.
Nature ; 610(7931): 327-334, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171283

RESUMO

Recent studies suggested that microglia, the primary brain immune cells, can affect circuit connectivity and neuronal function1,2. Microglia infiltrate the neuroepithelium early in embryonic development and are maintained in the brain throughout adulthood3,4. Several maternal environmental factors-such as an aberrant microbiome, immune activation and poor nutrition-can influence prenatal brain development5,6. Nevertheless, it is unknown how changes in the prenatal environment instruct the developmental trajectory of infiltrating microglia, which in turn affect brain development and function. Here we show that, after maternal immune activation (MIA) in mice, microglia from the offspring have a long-lived decrease in immune reactivity (blunting) across the developmental trajectory. The blunted immune response was accompanied by changes in chromatin accessibility and reduced transcription factor occupancy of the open chromatin. Single-cell RNA-sequencing analysis revealed that MIA does not induce a distinct subpopulation but, rather, decreases the contribution to inflammatory microglia states. Prenatal replacement of microglia from MIA offspring with physiological infiltration of naive microglia ameliorated the immune blunting and restored a decrease in presynaptic vesicle release probability onto dopamine receptor type-two medium spiny neurons, indicating that aberrantly formed microglia due to an adverse prenatal environment affect the long-term microglia reactivity and proper striatal circuit development.


Assuntos
Inflamação , Microglia , Mães , Vias Neurais , Efeitos Tardios da Exposição Pré-Natal , Animais , Cromatina/genética , Cromatina/metabolismo , Feminino , Inflamação/imunologia , Inflamação/patologia , Camundongos , Microglia/imunologia , Microglia/patologia , Neostriado/citologia , Vias Neurais/patologia , Neurônios/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/imunologia , RNA-Seq , Receptores Dopaminérgicos/metabolismo , Análise de Célula Única , Fatores de Transcrição/metabolismo
5.
Immunol Rev ; 323(1): 288-302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445769

RESUMO

Maternal environmental exposures, particularly during gestation and lactation, significantly influence the immunological development and long-term immunity of offspring. Mammalian immune systems develop through crucial inputs from the environment, beginning in utero and continuing after birth. These critical developmental windows are essential for proper immune system development and, once closed, may not be reopened. This review focuses on the mechanisms by which maternal exposures, particularly to pathogens, diet, and microbiota, impact offspring immunity. Mechanisms driving maternal-offspring immune crosstalk include transfer of maternal antibodies, changes in the maternal microbiome and microbiota-derived metabolites, and transfer of immune cells and cytokines via the placenta and breastfeeding. We further discuss the role of transient maternal infections, which are common during pregnancy, in providing tissue-specific immune education to offspring. We propose a "maternal-driven immune education" hypothesis, which suggests that offspring can use maternal encounters that occur during a critical developmental window to develop optimal immune fitness against infection and inflammation.


Assuntos
Exposição Materna , Humanos , Feminino , Gravidez , Animais , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/imunologia , Imunidade Materno-Adquirida , Microbiota/imunologia , Sistema Imunitário/imunologia , Sistema Imunitário/crescimento & desenvolvimento , Troca Materno-Fetal/imunologia , Placenta/imunologia
6.
Immunol Rev ; 326(1): 130-150, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39275992

RESUMO

The prevalence of allergies has been globally escalating. While allergies could appear at any age, they often develop in early life. However, the significant knowledge gap in the field is the mechanisms by which allergies affect certain people but not others. Investigating early factors and events in neonatal life that have a lasting impact on determining the susceptibilities of children to develop allergies is a significant area of the investigation as it promotes the understanding of neonatal immune system that mediates tolerance versus allergies. This review focuses on the research over the recent 10 years regarding the potential maternal factors that influence offspring allergies with a view to food allergy, a potentially life-threatening cause of anaphylaxis. The role of breast milk, maternal diet, maternal antibodies, and microbiota that have been suggested as key maternal factors regulating offspring allergies are discussed here. We also suggest future research area to expand our knowledge of maternal-offspring interactions on the pathogenesis of food allergy.


Assuntos
Hipersensibilidade Alimentar , Humanos , Hipersensibilidade Alimentar/imunologia , Feminino , Gravidez , Animais , Leite Humano/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Tolerância Imunológica , Microbiota/imunologia , Anafilaxia/imunologia , Anafilaxia/etiologia , Exposição Materna/efeitos adversos , Recém-Nascido , Alérgenos/imunologia
7.
J Immunol ; 213(8): 1157-1169, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39185897

RESUMO

Infections during pregnancy are known to trigger alterations in offspring immunity, often leading to increased disease susceptibility. Maternal helminth infections correlate with lower Ab titers to certain childhood immunizations and putative decreased vaccine efficacy. The mechanisms that underlie how maternal infection blunts offspring humoral responses are unclear. Using our murine model of maternal schistosomiasis, we found that maternal helminth infection decreases the germinal center response of all offspring to tetanus immunization. However, only male offspring have defects in memory B cell and long-lived plasma cell generation. We found this sex-specific aberration begins during B cell development within the bone marrow via alteration of the IL-7 niche and persists throughout antigenic activation in the germinal center in the periphery. Critically, these defects in males are cell intrinsic, persisting following adoptive transfer to control male pups. Together, these data show that maternal infections can alter both the bone marrow microenvironment and the development of B lymphocytes in a sex-specific manner. This study correlates maternal infection induced defects in early life B cell development with ineffective Ab responses after vaccination.


Assuntos
Linfócitos B , Animais , Feminino , Camundongos , Masculino , Gravidez , Linfócitos B/imunologia , Camundongos Endogâmicos C57BL , Centro Germinativo/imunologia , Complicações Parasitárias na Gravidez/imunologia , Células B de Memória/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Helmintíase/imunologia , Fatores Sexuais , Toxoide Tetânico/imunologia
8.
Trends Immunol ; 43(3): 230-244, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131181

RESUMO

Exposure to heightened inflammation in pregnancy caused by infections or other inflammatory insults has been associated with the onset of neurodevelopmental and psychiatric disorders in children. Rodent models have provided unique insights into how this maternal immune activation (MIA) disrupts brain development. Here, we discuss the key immune factors involved, highlight recent advances in determining the molecular and cellular pathways of MIA, and review how the maternal immune system affects fetal development. We also examine the roles of microbiomes in shaping maternal immune function and the development of autism-like phenotypes. A comprehensive understanding of the gut bacteria-immune-neuro interaction in MIA is essential for developing diagnostic and therapeutic measures for high-risk pregnant women and identifying targets for treating inflammation-induced neurodevelopmental disorders.


Assuntos
Microbiota , Efeitos Tardios da Exposição Pré-Natal , Animais , Modelos Animais de Doenças , Feminino , Humanos , Sistema Imunitário , Inflamação/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/imunologia
9.
Immunity ; 44(5): 1204-14, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27156385

RESUMO

In contrast to horizontal transmission of hepatitis B virus (HBV) between adults, which often leads to self-limited acute infection, vertical transmission of HBV from mother to child often leads to chronic infection. However, the mechanisms linking vertical transmission with chronic infection are not known. We developed a mouse model to study the effect of maternal HBV infection on HBV persistence in offspring and found that HBV carried by the mother impaired CD8(+) T cell responses to HBV in her offspring, resulting in HBV persistence. This impairment of CD8(+) T cell responses was mediated by hepatic macrophages, which were predisposed by maternal HBV e antigen (HBeAg) to support HBV persistence by upregulation of inhibitory ligand PD-L1 and altered polarization upon restimulation with HBeAg. Depletion of hepatic macrophages led to CD8(+) T cell activation and HBV clearance in the offspring, raising the possibility of targeting macrophages to treat chronic HBV patients.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Vírus da Hepatite B/fisiologia , Hepatite B/imunologia , Transmissão Vertical de Doenças Infecciosas , Macrófagos/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Animais Geneticamente Modificados , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/virologia , Feminino , Regulação da Expressão Gênica , Hepatite B/transmissão , Antígenos E da Hepatite B/imunologia , Humanos , Ativação Linfocitária , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Carga Viral
10.
Proc Natl Acad Sci U S A ; 119(15): e2113310119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377817

RESUMO

Gestational maternal immune activation (MIA) in mice induces persistent brain microglial activation and a range of neuropathologies in the adult offspring. Although long-term phenotypes are well documented, how MIA in utero leads to persistent brain inflammation is not well understood. Here, we found that offspring of mothers treated with polyriboinosinic­polyribocytidylic acid [poly(I:C)] to induce MIA at gestational day 13 exhibit blood­brain barrier (BBB) dysfunction throughout life. Live MRI in utero revealed fetal BBB hyperpermeability 2 d after MIA. Decreased pericyte­endothelium coupling in cerebral blood vessels and increased microglial activation were found in fetal and 1- and 6-mo-old offspring brains. The long-lasting disruptions result from abnormal prenatal BBB formation, driven by increased proliferation of cyclooxygenase-2 (COX2; Ptgs2)-expressing microglia in fetal brain parenchyma and perivascular spaces. Targeted deletion of the Ptgs2 gene in fetal myeloid cells or treatment with the inhibitor celecoxib 24 h after immune activation prevented microglial proliferation and disruption of BBB formation and function, showing that prenatal COX2 activation is a causal pathway of MIA effects. Thus, gestational MIA disrupts fetal BBB formation, inducing persistent BBB dysfunction, which promotes microglial overactivation and behavioral alterations across the offspring life span. Taken together, the data suggest that gestational MIA disruption of BBB formation could be an etiological contributor to neuropsychiatric disorders.


Assuntos
Barreira Hematoencefálica , Ciclo-Oxigenase 2 , Encefalite , Troca Materno-Fetal , Microglia , Efeitos Tardios da Exposição Pré-Natal , Animais , Barreira Hematoencefálica/anormalidades , Barreira Hematoencefálica/fisiopatologia , Celecoxib/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Encefalite/imunologia , Feminino , Deleção de Genes , Troca Materno-Fetal/imunologia , Camundongos , Microglia/enzimologia , Poli I-C/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia
11.
Eur J Neurosci ; 60(7): 5505-5521, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39210746

RESUMO

Exposure to infectious or non-infectious immune activation during early development is a serious risk factor for long-term behavioural dysfunctions. Mouse models of maternal immune activation (MIA) have increasingly been used to address neuronal and behavioural dysfunctions in response to prenatal infections. One commonly employed MIA model involves administering poly(I:C) (polyriboinosinic-polyribocytdilic acid), a synthetic analogue of double-stranded RNA, during gestation, which robustly induces an acute viral-like inflammatory response. Using electroencephalography (EEG) and infrared (IR) activity recordings, we explored alterations in sleep/wake, circadian and locomotor activity patterns on the adult male offspring of poly(I:C)-treated mothers. Our findings demonstrate that these offspring displayed reduced home cage activity during the (subjective) night under both light/dark or constant darkness conditions. In line with this finding, these mice exhibited an increase in non-rapid eye movement (NREM) sleep duration as well as an increase in sleep spindles density. Following sleep deprivation, poly(I:C)-exposed offspring extended NREM sleep duration and prolonged NREM sleep bouts during the dark phase as compared with non-exposed mice. Additionally, these mice exhibited a significant alteration in NREM sleep EEG spectral power under heightened sleep pressure. Together, our study highlights the lasting effects of infection and/or immune activation during pregnancy on circadian activity and sleep/wake patterns in the offspring.


Assuntos
Poli I-C , Efeitos Tardios da Exposição Pré-Natal , Sono , Animais , Feminino , Masculino , Poli I-C/farmacologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Gravidez , Camundongos , Sono/fisiologia , Sono/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Eletroencefalografia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Privação do Sono/imunologia , Privação do Sono/fisiopatologia
12.
J Neuroinflammation ; 21(1): 118, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715090

RESUMO

Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.


Assuntos
Encéfalo , Citocinas , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento , Placenta , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Feminino , Animais , Gravidez , Masculino , Citocinas/metabolismo , Citocinas/genética , Camundongos , Encéfalo/metabolismo , Encéfalo/imunologia , Encéfalo/embriologia , Placenta/metabolismo , Placenta/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/metabolismo , Poli I-C/toxicidade , Transcriptoma , Modelos Animais de Doenças , Feto/metabolismo
13.
Microb Pathog ; 192: 106723, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823465

RESUMO

The Hedgehog (Hh) signaling pathway is involved in T cell differentiation and development and plays a major regulatory part in different stages of T cell development. A previous study by us suggested that prenatal exposure to staphylococcal enterotoxin B (SEB) changed the percentages of T cell subpopulation in the offspring thymus. However, it is unclear whether prenatal SEB exposure impacts the Hh signaling pathway in thymic T cells. In the present study, pregnant rats at gestational day 16 were intravenously injected once with 15 µg SEB, and the thymi of both neonatal and adult offspring rats were aseptically acquired to scrutinize the effects of SEB on the Hh signaling pathway. It firstly found that prenatal SEB exposure clearly caused the increased expression of Shh and Dhh ligands of the Hh signaling pathway in thymus tissue of both neonatal and adult offspring rats, but significantly decreased the expression levels of membrane receptors of Ptch1 and Smo, transcription factor Gli1, as well as target genes of CyclinD1, C-myc, and N-myc in Hh signaling pathway of thymic T cells. These data suggest that prenatal SEB exposure inhibits the Hh signaling pathway in thymic T lymphocytes of the neonatal offspring, and this effect can be maintained in adult offspring via the imprinting effect.


Assuntos
Enterotoxinas , Proteínas Hedgehog , Transdução de Sinais , Linfócitos T , Timo , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Feminino , Gravidez , Ratos , Timo/metabolismo , Timo/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Efeitos Tardios da Exposição Pré-Natal/imunologia , Diferenciação Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Masculino
14.
Toxicol Appl Pharmacol ; 490: 117044, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074624

RESUMO

BACKGROUND: Many studies have reported that prenatal exposure to Per- and Polyfluoroalkyl Substances (PFASs) can disrupt immune function. However, little is known about the effects of PFASs on immune molecules. The study analyzed the association between prenatal exposure to mixed and single PFASs and plasma immune molecules in three-year-old children. METHODS: Ten PFASs were measured in umbilical cord serum, while peripheral blood samples were collected at age three to measure immune molecules. Associations between exposure to individual and combined PFASs and immune molecules were analyzed using Generalized Linear Models and Weighted Quantile Sum (WQS) regression. RESULTS: (1) Interleukin-4 (IL-4) increased by 23.85% (95% CI:2.99,48.94) with each doubling of Perfluorooctanoic Acid (PFOA), and Interleukin-6 (IL-6) increased by 39.07% (95%CI:4.06,85.86) with Perfluorotridecanoic Acid (PFTrDA). Elevated PFOA and Perfluorononanoic Acid (PFNA) were correlated with increases of 34.06% (95% CI: 6.41, 70.28) and 24.41% (95% CI: 0.99, 53.27) in Eotaxin-3, respectively. Additionally, the doubling of Perfluorohexane Sulfonic Acid (PFHxS) was associated with a 9.51% decrease in Periostin (95% CI: -17.84, -0.33). (2) The WQS analysis revealed that mixed PFASs were associated with increased IL-6 (ß = 0.37, 95%CI:0.04,0.69), mainly driven by PFTrDA, PFNA, and 8:2 Chlorinated Perfluoroethyl Sulfonamide (8:2 Cl-PFESA). Moreover, mixed PFASs were linked to an increase in Eotaxin-3 (ß = 0.32, 95% CI: 0.09,0.55), primarily influenced by PFOA, PFTrDA, and Perfluorododecanoic Acid (PFDoDA). CONCLUSIONS: Prenatal PFASs exposure significantly alters the levels of immune molecules in three-year-old children, highlighting the importance of understanding environmental impacts on early immune development.


Assuntos
Fluorocarbonos , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Fluorocarbonos/sangue , Fluorocarbonos/toxicidade , Pré-Escolar , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , China/epidemiologia , Masculino , Poluentes Ambientais/sangue , Sangue Fetal/imunologia , Sangue Fetal/química , Caprilatos/sangue , Caprilatos/toxicidade , Interleucina-6/sangue , Interleucina-4/sangue , Ácidos Decanoicos/sangue , Ácidos Decanoicos/toxicidade , Ácidos Alcanossulfônicos/sangue , Ácidos Alcanossulfônicos/toxicidade , Adulto , Exposição Materna/efeitos adversos
15.
Brain Behav Immun ; 121: 351-364, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089536

RESUMO

BACKGROUND: Maternal immune activation (MIA) triggers neurobiological changes in offspring, potentially reshaping the molecular synaptic landscape, with the hippocampus being particularly vulnerable. However, critical details regarding developmental timing of these changes and whether they differ between males and females remain unclear. METHODS: We induced MIA in C57BL/6J mice on gestational day nine using the viral mimetic poly(I:C) and performed mass spectrometry-based proteomic analyses on hippocampal synaptoneurosomes of embryonic (E18) and adult (20 ± 1 weeks) MIA offspring. RESULTS: In the embryonic synaptoneurosomes, MIA led to lipid, polysaccharide, and glycoprotein metabolism pathway disruptions. In the adult synaptic proteome, we observed a dynamic shift toward transmembrane trafficking, intracellular signalling cascades, including cell death and growth, and cytoskeletal organisation. In adults, many associated pathways overlapped between males and females. However, we found distinct sex-specific enrichment of dopaminergic and glutamatergic pathways. We identified 50 proteins altered by MIA in both embryonic and adult samples (28 with the same directionality), mainly involved in presynaptic structure and synaptic vesicle function. We probed human phenome-wide association study data in the cognitive and psychiatric domains, and 49 of the 50 genes encoding these proteins were significantly associated with the investigated phenotypes. CONCLUSIONS: Our data emphasise the dynamic effects of viral-like MIA on developing and mature hippocampi and provide novel targets for study following prenatal immune challenges. The 22 proteins that changed directionality from the embryonic to adult hippocampus, suggestive of compensatory over-adaptions, are particularly attractive for future investigations.


Assuntos
Hipocampo , Camundongos Endogâmicos C57BL , Efeitos Tardios da Exposição Pré-Natal , Proteoma , Sinapses , Animais , Hipocampo/metabolismo , Feminino , Proteoma/metabolismo , Gravidez , Masculino , Camundongos , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Sinapses/metabolismo , Poli I-C/farmacologia , Proteômica/métodos , Humanos
16.
Brain Behav Immun ; 119: 908-918, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761818

RESUMO

BACKGROUND: Accumulating evidence indicates that higher prenatal maternal inflammation is associated with increased depression risk in adolescent and adult-aged offspring. Prenatal maternal inflammation (PNMI) may increase the likelihood for offspring to have lower cognitive performance, which, in turn, may heighten risk for depression onset. Therefore, this study explored the potential mediating role of childhood cognitive performance in the relationship between PNMI and adolescent depressive symptoms in offspring. METHODS: Participants included 696 mother-offspring dyads from the Child Health and Development Studies (CHDS) cohort. Biomarkers of maternal inflammation [interleukin (IL)-6, IL-8, IL-1 receptor antagonist (IL-1RA) and soluble TNF receptor-II (sTNF-RII)] were assayed from first (T1) and second trimester (T2) sera. Childhood (ages 9-11) cognitive performance was assessed via standardized Peabody Picture Vocabulary Test (PPVT), a measure of receptive vocabulary correlated with general intelligence. Adolescent (ages 15-17) depressive symptoms were assessed via self-report. RESULTS: There were no significant associations between T1 biomarkers and childhood PPVT or adolescent depressive symptoms. Higher T2 IL1-RA was directly associated with lower childhood PPVT (b = -0.21, SE = 0.08, t = -2.55, p = 0.01), but not with adolescent depressive symptoms. T2 IL-6 was not directly associated with childhood PPVT, but higher T2 IL-6 was directly associated at borderline significance with greater depressive symptoms in adolescence (b = 0.05, SE = 0.03, t = 1.96, p = 0.05). Lower childhood PPVT predicted significantly higher adolescent depressive symptoms (b = -0.07, SE = 0.02, t = -2.99, p < 0.01). There was a significant indirect effect of T2 IL-1RA on adolescent depressive symptoms via childhood PPVT (b = 0.03, 95 % CI = 0.002-0.03) indicating a partially mediated effect. No significant associations were found with T2 sTNF-RII nor IL-8. CONCLUSIONS: Lower childhood cognitive performance, such as that indicated by a lower PPVT score, represents a potential mechanism through which prenatal maternal inflammation contributes to adolescent depression risk in offspring.


Assuntos
Biomarcadores , Cognição , Depressão , Inflamação , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Adolescente , Criança , Cognição/fisiologia , Masculino , Efeitos Tardios da Exposição Pré-Natal/imunologia , Biomarcadores/sangue , Interleucina-6/sangue , Adulto , Proteína Antagonista do Receptor de Interleucina 1/sangue
17.
Brain Behav Immun ; 120: 391-402, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897330

RESUMO

Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools in preclinical research of immune-mediated neurodevelopmental disorders and mental illnesses. Using a viral-like MIA model that is based on prenatal poly(I:C) exposure in mice, we have recently identified the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network and inflammatory profiles even under conditions of genetic homogeneity and identical MIA. Here, we tested the hypothesis that the intrauterine positions of fetuses, which are known to shape individual variability in litter-bearing mammals through variations in fetal hormone exposure, may contribute to the variable outcomes of MIA in mice. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Determining intrauterine positions using delivery by Cesarean section (C-section), we found that MIA-exposed offspring developing between female fetuses only (0M-MIA offspring) displayed significant deficits in sociability and sensorimotor gating at adult age, whereas MIA-exposed offspring developing between one or two males in utero (1/2M-MIA offspring) did not show the same deficits. These intrauterine position effects similarly emerged in male and female offspring. Furthermore, while MIA elevated fetal brain levels of pro- and anti-inflammatory cytokines independently of the precise intrauterine position and sex of adjacent fetuses during the acute phase, fetal brain levels of TNF-α remained elevated in 0M-MIA but not 1/2M-MIA offspring until the post-acute phase in late gestation. As expected, 1/2M offspring generally showed higher testosterone levels in the fetal brain during late gestation as compared to 0M offspring, confirming the transfer of testosterone from male fetuses to adjacent male or female fetuses. Taken together, our findings identify a novel source of within-litter variability contributing to heterogeneous outcomes of short- and long-term effects in a mouse model of MIA. In broader context, our findings highlight that individual differences in fetal exposure to hormonal and inflammatory signals may be a perinatal factor that shapes risk and resilience to MIA.


Assuntos
Encéfalo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Poli I-C , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Camundongos , Masculino , Poli I-C/farmacologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Encéfalo/metabolismo , Encéfalo/imunologia , Citocinas/metabolismo , Transtornos do Neurodesenvolvimento/imunologia , Comportamento Animal/fisiologia , Feto/imunologia , Feto/metabolismo , Útero/metabolismo , Útero/imunologia
18.
Brain Behav Immun ; 122: 279-286, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39163912

RESUMO

Few human studies have assessed the association of prenatal maternal immune activation (MIA) with measures of brain development and psychiatric risk in newborn offspring. Our goal was to identify the effects of MIA during the 2nd and 3rd trimesters of pregnancy on newborn measures of brain metabolite concentrations, tissue microstructure, and motor development. This was a prospective longitudinal cohort study conducted with nulliparous pregnant women who were aged 14 to 19 years and recruited in their 2nd trimester, as well as their children who were followed through 14 months of age. MIA was indexed by maternal interleukin-6 (IL-6) and C-reactive protein (CRP) in both trimesters of pregnancy. Primary outcomes included: (1) newborn brain metabolite concentrations as ratios to creatine (N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr) measured using Magnetic Resonance Spectroscopy; (2) newborn fractional anisotropy and mean diffusivity, measured using Diffusion Tensor Imaging; and (3) indices of motor development, assessed prenatally and postnatally at ages 4- and 14-months. Maternal IL-6 and CRP levels associated significantly with both metabolites in the putamen, thalamus, insula, and the internal capsule. Maternal IL-6 associated significantly with fractional anisotropy in the putamen, caudate, thalamus, insula, and precuneus, and with mean diffusivity in the inferior parietal and middle temporal gyrus. CRP associated significantly with fractional anisotropy in the thalamus, insula, and putamen. Significant associations were found in common regions across imaging modalities, though the direction of associations differed by immune marker. In addition, both maternal IL-6 and CRP (in both trimesters) prenatally associated significantly with offspring motor development at 4- and 14-months of age. The left thalamus mediated effects of IL-6 on postnatal motor development. These findings demonstrate that levels of MIA in mid- to late pregnancy in a generally healthy sample associate with tissue characteristics in newborn brain regions that primarily support motor integration and coordination, as well as behavioral regulation. Those brain effects may contribute to differences in motor development.


Assuntos
Encéfalo , Proteína C-Reativa , Interleucina-6 , Humanos , Feminino , Gravidez , Encéfalo/metabolismo , Recém-Nascido , Interleucina-6/metabolismo , Adolescente , Estudos Longitudinais , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Adulto Jovem , Estudos Prospectivos , Adulto , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/imunologia , Creatina/metabolismo , Masculino , Lactente , Colina/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/análogos & derivados , Imagem de Tensor de Difusão , Espectroscopia de Ressonância Magnética , Desenvolvimento Infantil/fisiologia
19.
Brain Behav Immun ; 122: 527-546, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39182588

RESUMO

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder caused by the interaction of multiple pathogenic factors. Epidemiological studies and animal experiments indicate that maternal immune activation (MIA) is closely related to the development of ASD in offspring. A large number of pro-inflammatory cytokines are transferred from the placenta to the fetal brain during MIA, which impedes fetal neurodevelopment and is accompanied by activation of immune cells and microglia. Programmed cell death protein 1 (PD-1) can be highly expressed on the surface of various activated immune cells, when combined with programmed cell death-ligand 1 (PD-L1), it can activate the PD-1/PD-L1 pathway and exert powerful immunosuppressive effects, suggesting that this immune checkpoint may have the potential to treat MIA-induced ASD. This study combined bioinformatics analysis and experimental validation to explore the efficacy of Fc-fused PD-L1 (PD-L1-Fc) in treating MIA-induced ASD. Bioinformatics analysis results showed that in human placental inflammation, IL-6 was upregulated, T cells proliferated significantly, and the PD-1/PD-L1 pathway was significantly enriched. The experimental results showed that intraperitoneal injection of poly(I:C) induced MIA in pregnant mice resulted in significant expression of IL-6 in their serum, placenta, and fetal brain. At the same time, the expression of PD-1 and PD-L1 in the placenta and fetal brain increased, CD4+ T cells in the spleen were significantly activated, and PD-1 expression increased. Their offspring mice exhibited typical ASD-like behaviors. In vitro experiments on primary microglia of offspring mice have confirmed that the expression of IL-6, PD-1, and PD-L1 is significantly increased, and PD-L1-Fc effectively reduced their expression levels. In the prefrontal cortex of MIA offspring mice, there was an increase in the expression of IL-6, PD-1, and PD-L1; activation of microglial cells, and colocalization with PD-1. Then we administered brain stereotaxic injections of PD-L1-Fc to MIA offspring mice and intraperitoneal injections to MIA pregnant mice. The results indicated that PD-L1-Fc effectively suppressed neuroinflammation in the frontal cortex of offspring mice and partially ameliorated ASD-like behaviors; MIA in pregnant mice was significantly alleviated, and the offspring mice they produced did not exhibit neuroinflammation or ASD-like behaviors. In summary, we have demonstrated the therapeutic ability of PD-L1-Fc for MIA-induced ASD, aiming to provide new strategies and insights for the treatment of ASD.


Assuntos
Transtorno do Espectro Autista , Antígeno B7-H1 , Placenta , Receptor de Morte Celular Programada 1 , Animais , Feminino , Antígeno B7-H1/metabolismo , Gravidez , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Masculino , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/prevenção & controle , Humanos , Placenta/metabolismo , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Comportamento Animal , Camundongos Endogâmicos C57BL , Transtorno Autístico/metabolismo , Transtorno Autístico/imunologia , Inflamação/metabolismo , Interleucina-6/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
20.
Brain Behav Immun ; 121: 280-290, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39032543

RESUMO

Converging data show that exposure to maternal immune activation (MIA) in utero alters brain development in animals and increases the risk of neurodevelopmental disorders in humans. A recently developed non-human primate MIA model affords opportunities for studies with uniquely strong translational relevance to human neurodevelopment. The current longitudinal study used 1H-MRS to investigate the developmental trajectory of prefrontal cortex metabolites in male rhesus monkey offspring of dams (n = 14) exposed to a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid (Poly IC), in the late first trimester. Brain metabolites in these animals were compared to offspring of dams that received saline (n = 10) or no injection (n = 4). N-acetylaspartate (NAA), glutamate, creatine, choline, myo-inositol, taurine, and glutathione were estimated from PRESS and MEGA-PRESS acquisitions obtained at 6, 12, 24, 36, and 45 months of age. Prior investigations of this cohort reported reduced frontal cortical gray and white matter and subtle cognitive impairments in MIA offspring. We hypothesized that the MIA-induced neurodevelopmental changes would extend to abnormal brain metabolite levels, which would be associated with the observed cognitive impairments. Prefrontal NAA was significantly higher in the MIA offspring across all ages (p < 0.001) and was associated with better performance on the two cognitive measures most sensitive to impairment in the MIA animals (both p < 0.05). Myo-inositol was significantly lower across all ages in MIA offspring but was not associated with cognitive performance. Taurine was elevated in MIA offspring at 36 and 45 months. Glutathione did not differ between groups. MIA exposure in male non-human primates is associated with altered prefrontal cortex metabolites during childhood and adolescence. A positive association between elevated NAA and cognitive performance suggests the hypothesis that elevated NAA throughout these developmental stages reflects a protective or resilience-related process in MIA-exposed offspring. The potential relevance of these findings to human neurodevelopmental disorders is discussed.


Assuntos
Encéfalo , Macaca mulatta , Poli I-C , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Animais , Masculino , Feminino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/imunologia , Gravidez , Encéfalo/metabolismo , Poli I-C/farmacologia , Córtex Pré-Frontal/metabolismo , Inositol/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/análogos & derivados , Creatina/metabolismo , Taurina/metabolismo , Colina/metabolismo , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Estudos Longitudinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA