RESUMO
Malaria is a major cause of childhood death throughout much of the tropical world. As a result, it has exerted a powerful force for the evolutionary selection of genes that confer a survival advantage. Identifying which genes are involved, and how they affect malaria risk, is a potentially useful way of exploring the host-parasite relationship. To date, some of the best-described malaria-protective polymorphisms relate to genes that affect the structure or function of red blood cells (RBC). Recent years have seen significant advances in our understanding of the importance of some of these genes, including glycophorin C (GYPC); complement receptor 1 (CR1); band 3 (SLC4A1); pyruvate kinase (Pklr); and the genes for alpha-(HBA) and beta-globin (HBB). The challenge for the future must be to convert these advances into fresh approaches to the prevention and treatment of malaria.
Assuntos
Malária/sangue , Animais , Eliptocitose Hereditária/sangue , Eliptocitose Hereditária/parasitologia , Eritrócitos/parasitologia , Eritrócitos/fisiologia , Eritrócitos Anormais/parasitologia , Eritrócitos Anormais/patologia , Hemoglobinopatias/sangue , Hemoglobinopatias/parasitologia , Interações Hospedeiro-Parasita , Humanos , Malária/genética , Malária/parasitologia , Malária/prevenção & controle , Plasmodium/patogenicidade , Polimorfismo Genético , Receptores de Complemento 3b/sangue , Receptores de Complemento 3b/genética , Talassemia/sangue , Talassemia/parasitologiaAssuntos
Malária/complicações , Malária/imunologia , Eliptocitose Hereditária/complicações , Eliptocitose Hereditária/parasitologia , Doenças Genéticas Inatas/parasitologia , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/parasitologia , Doença da Hemoglobina C/complicações , Hemoglobina E/efeitos adversos , Hemoglobina Falciforme/efeitos adversos , Interações Hospedeiro-Parasita , Humanos , Imunidade Ativa , Imunidade Inata , Baço/imunologia , Talassemia/complicações , Vacinação , Talassemia beta/complicaçõesRESUMO
Plasmodium falciparum, the causative agent of the most lethal form of human malaria, uses multiple ligand-receptor interactions to invade host red blood cells (RBCs). We studied the invasion of P falciparum into abnormal RBCs from humans carrying the Southeast Asian ovalocytosis (SAO) trait. One particular parasite line, 3D7-A, invaded these cells efficiently, whereas all other lines studied invaded SAO RBCs to only about 20% of the extent of normal (non-SAO) cells. This result is consistent with the clinical observation that SAO individuals can experience high-density P falciparum infections and provides an explanation for previous discrepant results on invasion of SAO RBCs. Characterization of the invasion phenotype of 3D7-A revealed that efficient invasion of SAO RBCs was paralleled by relatively efficient invasion of normal RBCs treated with either neuraminidase, trypsin, or chymotrypsin and a novel capacity to invade normal RBCs treated sequentially with both neuraminidase and trypsin. Our results suggest that only parasites able to use some particular invasion pathways can invade SAO RBCs efficiently in culture. A similar situation might occur in the field.
Assuntos
Eliptocitose Hereditária/parasitologia , Eritrócitos Anormais/parasitologia , Plasmodium falciparum/patogenicidade , Animais , Sudeste Asiático , Estudos de Casos e Controles , Células Cultivadas , Quimotripsina/metabolismo , Suscetibilidade a Doenças , Eliptocitose Hereditária/sangue , Eliptocitose Hereditária/complicações , Membrana Eritrocítica , Humanos , Malária/etiologia , Plasmodium falciparum/classificação , Receptores de Superfície Celular/fisiologiaRESUMO
In this investigation, we have measured the invasion and growth of the malaria parasite Plasmodium falciparum into elliptocytic red blood cells (RBCs) obtained from subjects with homozygous hereditary elliptocytosis. These elliptocytic RBCs have been previously characterized to possess molecular defects in protein 4.1 and glycophorin C. Our results show that the invasion of Plasmodium falciparum into these protein 4.1 (-) RBCs is significantly reduced. Glycophorin C (-) Leach RBCs were similarly resistant to parasite invasion in vitro. The intracellular development of parasites that invaded protein 4.1 (-) RBCs was also dramatically reduced. In contrast, no such reduction of intracellular parasite growth was observed in the glycophorin C (-) Leach RBCs. In conjunction with our recent finding that a third protein termed p55 is also deficient in protein 4.1 (-) and glycophorin C (-) RBCs, the present data underscore the importance of the membrane-associated ternary complex between protein 4.1, glycophorin C, and p55 during the invasion and growth of malaria parasites into human RBCs.