Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Nature ; 585(7826): 569-573, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32846426

RESUMO

Perception of biotic and abiotic stresses often leads to stomatal closure in plants1,2. Rapid influx of calcium ions (Ca2+) across the plasma membrane has an important role in this response, but the identity of the Ca2+ channels involved has remained elusive3,4. Here we report that the Arabidopsis thaliana Ca2+-permeable channel OSCA1.3 controls stomatal closure during immune signalling. OSCA1.3 is rapidly phosphorylated upon perception of pathogen-associated molecular patterns (PAMPs). Biochemical and quantitative phosphoproteomics analyses reveal that the immune receptor-associated cytosolic kinase BIK1 interacts with and phosphorylates the N-terminal cytosolic loop of OSCA1.3 within minutes of treatment with the peptidic PAMP flg22, which is derived from bacterial flagellin. Genetic and electrophysiological data reveal that OSCA1.3 is permeable to Ca2+, and that BIK1-mediated phosphorylation on its N terminus increases this channel activity. Notably, OSCA1.3 and its phosphorylation by BIK1 are critical for stomatal closure during immune signalling, and OSCA1.3 does not regulate stomatal closure upon perception of abscisic acid-a plant hormone associated with abiotic stresses. This study thus identifies a plant Ca2+ channel and its activation mechanisms underlying stomatal closure during immune signalling, and suggests specificity in Ca2+ influx mechanisms in response to different stresses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Imunidade Vegetal , Estômatos de Plantas/imunologia , Estômatos de Plantas/metabolismo , Ácido Abscísico/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
2.
Plant Cell ; 32(7): 2216-2236, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32327536

RESUMO

Upon recognition of microbes, pattern recognition receptors (PRRs) activate pattern-triggered immunity. FLAGELLIN SENSING2 (FLS2) and BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) form a typical PRR complex that senses bacteria. Here, we report that the kinase activity of the malectin-like receptor-like kinase STRESS INDUCED FACTOR 2 (SIF2) is critical for Arabidopsis (Arabidopsis thaliana) resistance to bacteria by regulating stomatal immunity. SIF2 physically associates with the FLS2-BAK1 PRR complex and interacts with and phosphorylates the guard cell SLOW ANION CHANNEL1 (SLAC1), which is necessary for abscisic acid (ABA)-mediated stomatal closure. SIF2 is also required for the activation of ABA-induced S-type anion currents in Arabidopsis protoplasts, and SIF2 is sufficient to activate SLAC1 anion channels in Xenopus oocytes. SIF2-mediated activation of SLAC1 depends on specific phosphorylation of Ser 65. This work reveals that SIF2 functions between the FLS2-BAK1 initial immunity receptor complex and the final actuator SLAC1 in stomatal immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Histona Desacetilases/metabolismo , Proteínas de Membrana/metabolismo , Estômatos de Plantas/imunologia , Proteínas Repressoras/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Animais , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Resistência à Doença/fisiologia , Feminino , Histona Desacetilases/genética , Histona Desacetilases/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Mutação , Oócitos/fisiologia , Fosforilação , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Serina/metabolismo , Xenopus
3.
Proc Natl Acad Sci U S A ; 117(34): 20932-20942, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32778594

RESUMO

Many pathogenic fungi exploit stomata as invasion routes, causing destructive diseases of major cereal crops. Intensive interaction is expected to occur between guard cells and fungi. In the present study, we took advantage of well-conserved molecules derived from the fungal cell wall, chitin oligosaccharide (CTOS), and chitosan oligosaccharide (CSOS) to study how guard cells respond to fungal invasion. In Arabidopsis, CTOS induced stomatal closure through a signaling mediated by its receptor CERK1, Ca2+, and a major S-type anion channel, SLAC1. CSOS, which is converted from CTOS by chitin deacetylases from invading fungi, did not induce stomatal closure, suggesting that this conversion is a fungal strategy to evade stomatal closure. At higher concentrations, CSOS but not CTOS induced guard cell death in a manner dependent on Ca2+ but not CERK1. These results suggest that stomatal immunity against fungal invasion comprises not only CTOS-induced stomatal closure but also CSOS-induced guard cell death.


Assuntos
Quitina/metabolismo , Estômatos de Plantas/imunologia , Estômatos de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Quitina/fisiologia , Quitosana/metabolismo , Fungos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/efeitos dos fármacos
4.
Plant Physiol ; 187(4): 2837-2851, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618091

RESUMO

Melatonin (MT) plays important roles in plant disease response, but the mechanisms are largely unknown. Here, we show that MT functions in stomatal immunity in Panax notoginseng and Arabidopsis thaliana. Biochemical analyses showed that MT-induced stomatal closure plays a prominent role in preventing invasion of bacteria Pseudomonas syringe pv. tomato (Pst) DC3000 via activation of mitogen-activated protein kinase (MAPK) and NADPH oxidase-mediated reactive oxygen species production in P. notoginseng. The first putative phytomelatonin receptor 1 (PMTR1) is a plasma membrane protein required for perceiving MT signaling in stomatal closure and activation of MAPK. Biochemical and genetic tests found PMTR1 is essential for flg22- and MT-induced MAPK activation in a heterotrimeric GTP-binding protein Gα subunit GPA1-independent manner. GPA1 functions in the same genetic pathways of FLS2/BAK1 (Flagellin Sensing 2/Brassinosteroid Insensitive 1-associated kinase 1)- as well as PMTR1-mediated flg22 and MT signaling in stomatal closure. The stomata in pmtr1 are insensitive to MT and flg22, but the application of MT induces stomatal closure and reduces the bacterial growth in fls2 and bak1 plants, indicating that PMTR1 might be a downstream signaling component in FLS2- and BAK1-mediated stomatal immunity. In summary, our results (i) demonstrate that phytomelatonin functions in the priming of stomatal immunity and (ii) provide insights into the phytomelatonin signaling transduction pathway.


Assuntos
Arabidopsis/imunologia , Melatonina/administração & dosagem , Panax notoginseng/imunologia , Imunidade Vegetal , Proteínas de Plantas/imunologia , Estômatos de Plantas/imunologia , Pseudomonas syringae/fisiologia , Proteínas de Arabidopsis/imunologia
5.
Plant Cell Environ ; 45(6): 1843-1861, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35199374

RESUMO

Stomatal movement participates in plant immunity by directly affecting the invasion of bacteria, but the genes that regulate stomatal immunity have not been well identified. Here, we characterised the function of the bZIP59 transcription factor from Arabidopsis thaliana, which is constitutively expressed in guard cells. The bzip59 mutant is partially impaired in stomatal closure induced by Pseudomonas syringae pv. tomato strain (Pst) DC3000 and is more susceptible to Pst DC3000 infection. By contrast, the line overexpressing bZIP59 enhances resistance to Pst DC3000 infection. Furthermore, the bzip59 mutant is also partially impaired in stomatal closure induced by flagellin flg22 derived from Pst DC3000, and epistasis analysis revealed that bZIP59 acts upstream of reactive oxygen species (ROS) and nitric oxide (NO) and downstream of salicylic acid signalling in flg22-induced stomatal closure. In addition, the bzip59 mutant showed resistance and sensitivity to Sclerotinia sclerotiorum and Tobacco mosaic virus that do not invade through stomata, respectively. Collectively, our results demonstrate that bZIP59 plays an important role in the stomatal immunity and reveal that the same transcription factor can positively and negatively regulate disease resistance against different pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Solanum lycopersicum/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Pseudomonas syringae/fisiologia , Fatores de Transcrição/genética
6.
Mol Cell ; 54(1): 43-55, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24630626

RESUMO

The rapid production of reactive oxygen species (ROS) burst is a conserved signaling output in immunity across kingdoms. In plants, perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors (PRRs) activates the NADPH oxidase RBOHD by hitherto unknown mechanisms. Here, we show that RBOHD exists in complex with the receptor kinases EFR and FLS2, which are the PRRs for bacterial EF-Tu and flagellin, respectively. The plasma-membrane-associated kinase BIK1, which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. BIK1 phosphorylates different residues than calcium-dependent protein kinases, and both PAMP-induced BIK1 activation and BIK1-mediated phosphorylation of RBOHD are calcium independent. Importantly, phosphorylation of these residues is critical for the PAMP-induced ROS burst and antibacterial immunity. Our study reveals a rapid regulatory mechanism of a plant RBOH, which occurs in parallel with and is essential for its paradigmatic calcium-based regulation.


Assuntos
Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Imunidade Inata , NADPH Oxidases/imunologia , Nicotiana/enzimologia , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Linhagem Celular , Ativação Enzimática , Flagelina/imunologia , Flagelina/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ligantes , Dados de Sequência Molecular , Complexos Multienzimáticos , NADPH Oxidases/genética , Fator Tu de Elongação de Peptídeos/imunologia , Fator Tu de Elongação de Peptídeos/metabolismo , Fosforilação , Estômatos de Plantas/imunologia , Estômatos de Plantas/metabolismo , Proteínas Quinases/imunologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia
7.
Planta ; 253(1): 11, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389186

RESUMO

KEY MESSAGE: We reviewed recent advances related to RIN4, including its involvement in the immune process through posttranslational modifications, PM H+-ATPase activity regulation, interaction with EXO70 and identification of RIN4-associated NLR proteins. RPM1-interacting protein 4 (RIN4) is a conserved plant immunity regulator that has been extensively studied and can be modified by pathogenic effector proteins. RIN4 plays an important role in both PTI and ETI. In this article, we review the functions of the two conserved NOI domains of RIN4, the C-terminal cysteine residues required for membrane localization and the sites targeted and modified by effector proteins during plant immunity. In addition, we discuss the effect of RIN4 on the stomatal virulence of pathogens via the regulation of PM H+-ATPase activity, which is involved in the immune process through interactions with the exocyst subunit EXO70, and progress in the identification of RIN4-related R proteins in multiple species. This review provides new insights enhancing the current understanding of the immune function of RIN4.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Peptídeos e Proteínas de Sinalização Intracelular , Imunidade Vegetal , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Imunidade Vegetal/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/microbiologia
8.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008769

RESUMO

Stomata regulate gas and water exchange between the plant and external atmosphere, which are vital for photosynthesis and transpiration. Stomata are also the natural entrance for pathogens invading into the apoplast. Therefore, stomata play an important role in plants against pathogens. The pattern recognition receptors (PRRs) locate in guard cells to perceive pathogen/microbe-associated molecular patterns (PAMPs) and trigger a series of plant innate immune responses, including rapid closure of stomata to limit bacterial invasion, which is termed stomatal immunity. Many PRRs involved in stomatal immunity are plasma membrane-located receptor-like protein kinases (RLKs). This review focuses on the current research progress of RLK-mediated signaling pathways involved in stomatal immunity, and discusses questions that need to be addressed in future research.


Assuntos
Imunidade Vegetal , Estômatos de Plantas/enzimologia , Estômatos de Plantas/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Quitina/metabolismo , Modelos Biológicos , Transdução de Sinais
9.
Plant Mol Biol ; 103(1-2): 173-184, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32100164

RESUMO

KEY MESSAGE: Arabidopsis LONG-CHAIN BASE KINASE 1 (LCBK1) interacts with MEDEA, a component of PCR2 complex that negatively regulates immunity. LCBK1 phosphorylates phytosphingosine and thereby promotes stomatal immunity against bacterial pathogens. Arabidopsis polycomb-group repressor complex2 (PRC2) protein MEDEA (MEA) suppresses both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). MEA represses the expression of RPS2 and thereby attenuates AvrRpt2 effector-mediated ETI. However, the mechanism of MEA-mediated PTI diminution was not known. By screening the Arabidopsis cDNA library using yeast-2-hybrid interaction, we identified LONG-CHAIN BASE KINASE1 (LCBK1) as an MEA-interacting protein. We found that lcbk1 mutants are susceptible to virulent bacterial pathogens, such as Pseudomonas syringae pv maculicola (Psm) and P. syringae pv tomato (Pst) but not the avirulent strain of Pst that carries AvrRpt2 effector. Pathogen inoculation induces LCBK1 expression, especially in guard cells. We found that LCBK1 has a positive regulatory role in stomatal closure after pathogen inoculation. WT plants close stomata within an hour of Pst inoculation or flg22 (a 22 amino acid peptide from bacterial flagellin protein that activates PTI) treatment, but not lcbk1 mutants. LCBK1 phosphorylates phytosphingosine (PHS). Exogenous application of phosphorylated PHS (PHS-P) induces stomatal closure and rescues loss-of-PTI phenotype of lcbk1 mutant plants. MEA overexpressing (MEA-Oex) plants are defective, whereas loss-of-function mea-6 mutants are hyperactive in PTI-induced stomatal closure. Exogenous application of PHS-P rescues loss-of-PTI in MEA-Oex plants. Results altogether demonstrate that LCBK1 is an interactor of MEA that positively regulates PTI-induced stomatal closure in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Fosfotransferases/metabolismo , Estômatos de Plantas/imunologia , Arabidopsis/enzimologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Fosfotransferases/genética , Doenças das Plantas/imunologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo
10.
Planta ; 252(4): 66, 2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32979085

RESUMO

MAIN CONCLUSION: Dynamic protein and phosphoprotein profiles uncovered the overall regulation of stomata movement against pathogen invasion and phosphorylation states of proteins involved in ABA, SA, calcium and ROS signaling, which may modulate the stomatal immune response. Stomatal openings represent a major route of pathogen entry into the plant, and plants have evolved mechanisms to regulate stomatal aperture as innate immune response against bacterial invasion. However, the mechanisms underlying stomatal immunity are not fully understood. Taking advantage of high-throughput liquid chromatography mass spectrometry (LC-MS), we performed label-free proteomic and phosphoproteomic analyses of enriched guard cells in response to a bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In total, 495 proteins and 1229 phosphoproteins were identified as differentially regulated. These proteins are involved in a variety of signaling pathways, including abscisic acid and salicylic acid hormone signaling, calcium and reactive oxygen species signaling. We also showed that dynamic changes of phosphoprotein WRKY transcription factors may play a crucial role in regulating stomata movement in plant immunity. The identified proteins/phosphoproteins and the pathways form interactive molecular networks to regulate stomatal immunity. This study has provided new insights into the multifaceted mechanisms of stomatal immunity. The differential proteins and phosphoproteins are potential targets for engineering or breeding of crops for enhanced pathogen defense.


Assuntos
Arabidopsis , Estômatos de Plantas , Proteômica , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/microbiologia , Pseudomonas syringae/fisiologia
11.
Plant Physiol ; 181(3): 1314-1327, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31548265

RESUMO

Calmodulin (CaM) regulates plant disease responses through its downstream calmodulin-binding proteins (CaMBPs) often by affecting the biosynthesis or signaling of phytohormones, such as jasmonic acid (JA) and salicylic acid. However, how these CaMBPs mediate plant hormones and other stress resistance-related signaling remains largely unknown. In this study, we conducted analyses in Arabidopsis (Arabidopsis thaliana) on the functions of AtIQM1 (IQ-Motif Containing Protein1), a Ca2+-independent CaMBP, in JA biosynthesis and defense against the necrotrophic pathogen Botrytis cinerea using molecular, biochemical, and genetic analyses. IQM1 directly interacted with and promoted CATALASE2 (CAT2) expression and CAT2 enzyme activity and indirectly increased the activity of the JA biosynthetic enzymes ACX2 and ACX3 through CAT2, thereby positively regulating JA content and B. cinerea resistance. In addition, in vitro assays showed that in the presence of CaM5, IQM1 further enhanced the activity of CAT2, suggesting that CaM5 may affect the activity of CAT2 by combining with IQM1 in the absence of Ca2+ Our data indicate that IQM1 is a key regulatory factor in signaling of plant disease responses mediated by JA. The study also provides new insights that CaMBP may play a critical role in the cross talk of multiple signaling pathways in the context of plant defense processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Botrytis/fisiologia , Proteínas de Ligação a Calmodulina/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Motivos de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Sinalização do Cálcio , Proteínas de Ligação a Calmodulina/genética , Ciclopentanos/metabolismo , Resistência à Doença , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/microbiologia , Ácido Salicílico/metabolismo
12.
Plant Cell ; 29(3): 543-559, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28254779

RESUMO

Stomata play an important role in preinvasive defense responses by limiting pathogen entry into leaves. Although the stress hormones salicylic acid (SA) and abscisic acid (ABA) are known to regulate stomatal immunity, the role of growth promoting hormones is far from understood. Here, we show that in Arabidopsis thaliana, cytokinins (CKs) function in stomatal defense responses. The cytokinin receptor HISTIDINE KINASE3 (AHK3) and RESPONSE REGULATOR2 (ARR2) promote stomatal closure triggered by pathogen-associated molecular pattern (PAMP) and resistance to Pseudomonas syringae pv tomato bacteria. Importantly, the cytokinin trans-zeatin induces stomatal closure and accumulation of reactive oxygen species (ROS) in guard cells through AHK3 and ARR2 in an SA-dependent and ABA-independent manner. Using pharmacological and reverse genetics approaches, we found that CK-mediated stomatal responses involve the apoplastic peroxidases PRX4, PRX33, PRX34, and PRX71, but not the NADPH oxidases RBOHD and RBOHF. Moreover, ARR2 directly activates the expression of PRX33 and PRX34, which are required for SA- and PAMP-triggered ROS production. Thus, the CK signaling pathway regulates ROS homeostasis in guard cells, which leads to enhanced stomatal immunity and plant resistance to bacteria.


Assuntos
Arabidopsis/imunologia , Arabidopsis/metabolismo , Citocininas/metabolismo , Estômatos de Plantas/imunologia , Estômatos de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Estômatos de Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Int J Mol Sci ; 22(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375472

RESUMO

Systemic Acquired Resistance (SAR) improves immunity of plant systemic tissue after local exposure to a pathogen. Guard cells that form stomatal pores on leaf surfaces recognize bacterial pathogens via pattern recognition receptors, such as Flagellin Sensitive 2 (FLS2). However, how SAR affects stomatal immunity is not known. In this study, we aim to reveal molecular mechanisms underlying the guard cell response to SAR using multi-omics of proteins, metabolites and lipids. Arabidopsis plants previously exposed to pathogenic bacteria Pseudomonas syringae pv. tomato DC3000 (Pst) exhibit an altered stomatal response compared to control plants when they are later exposed to the bacteria. Reduced stomatal apertures of SAR primed plants lead to decreased number of bacteria in leaves. Multi-omics has revealed molecular components of SAR response specific to guard cells functions, including potential roles of reactive oxygen species (ROS) and fatty acid signaling. Our results show an increase in palmitic acid and its derivative in the primed guard cells. Palmitic acid may play a role as an activator of FLS2, which initiates stomatal immune response. Improved understanding of how SAR signals affect stomatal immunity can aid biotechnology and marker-based breeding of crops for enhanced disease resistance.


Assuntos
Arabidopsis/imunologia , Resistência à Doença/imunologia , Lipidômica , Metabolômica , Doenças das Plantas/imunologia , Estômatos de Plantas/metabolismo , Proteoma/metabolismo , Pseudomonas syringae/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Cromatografia Líquida , Ácidos Graxos/metabolismo , Espectrometria de Massas , Ácidos Palmíticos/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Estômatos de Plantas/imunologia , Estômatos de Plantas/microbiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/metabolismo
14.
New Phytol ; 222(1): 335-348, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30372534

RESUMO

Plants have evolved an array of responses that provide them with protection from attack by microorganisms and other predators. Many of these mechanisms depend upon interactions between the plant hormones jasmonate (JA) and ethylene (ET). However, the molecular basis of these interactions is insufficiently understood. Gene expression and physiological assays with mutants were performed to investigate the role of Arabidopsis BIG gene in stress responses. BIG transcription is downregulated by methyl JA (MeJA), necrotrophic infection or mechanical injury. BIG deficiency promotes JA-dependent gene induction, increases JA production but restricts the accumulation of both ET and salicylic acid. JA-induced anthocyanin accumulation and chlorophyll degradation are enhanced and stomatal immunity is impaired by BIG disruption. Bacteria- and lipopolysaccaride (LPS)-induced stomatal closure is reduced in BIG gene mutants, which are hyper-susceptible to microbial pathogens with different lifestyles, but these mutants are less attractive to phytophagous insects. Our results indicate that BIG negatively and positively regulate the MYC2 and ERF1 arms of the JA signalling pathway. BIG warrants recognition as a new and distinct regulator that regulates JA responses, the synergistic interactions of JA and ET, and other hormonal interactions that reconcile the growth and defense dilemma in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Imunidade Vegetal , Estômatos de Plantas/imunologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a Calmodulina/genética , Regulação para Baixo/genética , Etilenos , Regulação da Expressão Gênica de Plantas , Mutação/genética , Ácido Salicílico/metabolismo
15.
New Phytol ; 221(2): 988-1000, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30117535

RESUMO

The N-end rule pathway is a highly conserved constituent of the ubiquitin proteasome system, yet little is known about its biological roles. Here we explored the role of the N-end rule pathway in the plant immune response. We investigated the genetic influences of components of the pathway and known protein substrates on physiological, biochemical and metabolic responses to pathogen infection. We show that the glutamine (Gln) deamidation and cysteine (Cys) oxidation branches are both components of the plant immune system, through the E3 ligase PROTEOLYSIS (PRT)6. In Arabidopsis thaliana Gln-specific amino-terminal (Nt)-amidase (NTAQ1) controls the expression of specific defence-response genes, activates the synthesis pathway for the phytoalexin camalexin and influences basal resistance to the hemibiotroph pathogen Pseudomonas syringae pv tomato (Pst). The Nt-Cys ETHYLENE RESPONSE FACTOR VII transcription factor substrates enhance pathogen-induced stomatal closure. Transgenic barley with reduced HvPRT6 expression showed enhanced resistance to Ps. japonica and Blumeria graminis f. sp. hordei, indicating a conserved role of the pathway. We propose that that separate branches of the N-end rule pathway act as distinct components of the plant immune response in flowering plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Doenças das Plantas/imunologia , Imunidade Vegetal , Pseudomonas syringae/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Ascomicetos/fisiologia , Etilenos/metabolismo , Hordeum/genética , Hordeum/imunologia , Hordeum/microbiologia , Oxirredução , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/microbiologia , Proteólise , Ubiquitina-Proteína Ligases/genética
16.
New Phytol ; 218(1): 253-268, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29250804

RESUMO

Stomatal immunity restricts bacterial entry to leaves through the recognition of microbe-associated molecular patterns (MAMPs) by pattern-recognition receptors (PRRs) and downstream abscisic acid and salicylic acid signaling. Through a reverse genetics approach, we characterized the function of the L-type lectin receptor kinase-V.2 (LecRK-V.2) and -VII.1 (LecRK-VII.1). Analyses of interactions with the PRR FLAGELLIN SENSING2 (FLS2) were performed by co-immunoprecipitation and bimolecular fluorescence complementation and whole-cell patch-clamp analyses were used to evaluate guard cell Ca2+ -permeable cation channels. The Arabidopsis thaliana LecRK-V.2 and LecRK-VII.1 and notably their kinase activities were required for full activation of stomatal immunity. Knockout lecrk-V.2 and lecrk-VII.1 mutants were hyper-susceptible to Pseudomonas syringae infection and showed defective stomatal closure in response to bacteria or to the MAMPs flagellin and EF-Tu. By contrast, Arabidopsis over-expressing LecRK-V.2 or LecRK-VII.1 demonstrated a potentiated stomatal immunity. LecRK-V.2 and LecRK-VII.1 are shown to be part of the FLS2 PRR complex. In addition, LecRK-V.2 and LecRK-VII.1 were critical for methyl jasmonate (MeJA)-mediated stomatal closure, notably for MeJA-induced activation of guard cell Ca2+ -permeable cation channels. This study highlights the role of LecRK-V.2 and LecRK-VII.1 in stomatal immunity at the FLS2 PRR complex and in MeJA-mediated stomatal closure.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/fisiologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Imunidade Vegetal/efeitos dos fármacos , Estômatos de Plantas/imunologia , Estômatos de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Acetatos/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Resistência à Doença/efeitos dos fármacos , Flagelina/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Mutação/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Espécies Reativas de Oxigênio/metabolismo
17.
Plant Physiol ; 175(1): 424-437, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28701352

RESUMO

Calcium signaling is essential for environmental responses including immune responses. Here, we provide evidence that the evolutionarily conserved protein BONZAI1 (BON1) functions together with autoinhibited calcium ATPase10 (ACA10) and ACA8 to regulate calcium signals in Arabidopsis. BON1 is a plasma membrane localized protein that negatively regulates the expression of immune receptor genes and positively regulates stomatal closure. We found that BON1 interacts with the autoinhibitory domains of ACA10 and ACA8, and the aca10 loss-of-function (LOF) mutants have an autoimmune phenotype similar to that of the bon1 LOF mutants. Genetic evidences indicate that BON1 positively regulates the activities of ACA10 and ACA8. Consistent with this idea, the steady level of calcium concentration is increased in both aca10 and bon1 mutants. Most strikingly, cytosolic calcium oscillation imposed by external calcium treatment was altered in aca10, aca8, and bon1 mutants in guard cells. In addition, calcium- and pathogen-induced stomatal closure was compromised in the aca10 and bon1 mutants. Taken together, this study indicates that ACA10/8 and BON1 physically interact on plasma membrane and function in the generation of cytosol calcium signatures that are critical for stomatal movement and impact plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Arabidopsis/imunologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio , ATPases Transportadoras de Cálcio/genética , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Genes Reporter , Homeostase , Mutação com Perda de Função , Proteínas de Membrana/genética , Imunidade Vegetal , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/fisiologia
18.
Plant Cell ; 26(7): 3167-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005917

RESUMO

To restrict pathogen entry, plants close stomata as an integral part of innate immunity. To counteract this defense, Pseudomonas syringae pv tomato produces coronatine (COR), which mimics jasmonic acid (JA), to reopen stomata for bacterial entry. It is believed that abscisic acid (ABA) plays a central role in regulating bacteria-triggered stomatal closure and that stomatal reopening requires the JA/COR pathway, but the downstream signaling events remain unclear. We studied the stomatal immunity of tomato (Solanum lycopersicum) and report here the distinct roles of two homologous NAC (for NAM, ATAF1,2, and CUC2) transcription factors, JA2 (for jasmonic acid2) and JA2L (for JA2-like), in regulating pathogen-triggered stomatal movement. ABA activates JA2 expression, and genetic manipulation of JA2 revealed its positive role in ABA-mediated stomatal closure. We show that JA2 exerts this effect by regulating the expression of an ABA biosynthetic gene. By contrast, JA and COR activate JA2L expression, and genetic manipulation of JA2L revealed its positive role in JA/COR-mediated stomatal reopening. We show that JA2L executes this effect by regulating the expression of genes involved in the metabolism of salicylic acid. Thus, these closely related NAC proteins differentially regulate pathogen-induced stomatal closure and reopening through distinct mechanisms.


Assuntos
Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Transdução de Sinais , Solanum lycopersicum/fisiologia , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Aminoácidos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter , Interações Hospedeiro-Patógeno , Indenos/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética
19.
Plant J ; 81(5): 767-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25619405

RESUMO

Ceramidases hydrolyze ceramide into sphingosine and fatty acids. In mammals, ceramidases function as key regulators of sphingolipid homeostasis, but little is known about their roles in plants. Here we characterize the Arabidopsis ceramidase AtACER, a homolog of human alkaline ceramidases. The acer-1 T-DNA insertion mutant has pleiotropic phenotypes, including reduction of leaf size, dwarfing and an irregular wax layer, compared with wild-type plants. Quantitative sphingolipid profiling showed that acer-1 mutants and the artificial microRNA-mediated silenced line amiR-ACER-1 have high ceramide levels and decreased long chain bases. AtACER localizes predominantly to the endoplasmic reticulum, and partially to the Golgi complex. Furthermore, we found that acer-1 mutants and AtACER RNAi lines showed increased sensitivity to salt stress, and lines overexpressing AtACER showed increased tolerance to salt stress. Reduction of AtACER also increased plant susceptibility to Pseudomonas syringae. Our data highlight the key biological functions of ceramidases in biotic and abiotic stresses in plants.


Assuntos
Arabidopsis/enzimologia , Ceramidases/metabolismo , Resistência à Doença , Doenças das Plantas/imunologia , Pseudomonas syringae/fisiologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ceramidases/genética , Ceramidas/metabolismo , Retículo Endoplasmático/enzimologia , Complexo de Golgi/enzimologia , Mutação , Fenótipo , Doenças das Plantas/microbiologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/fisiologia , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Tolerância ao Sal , Plântula/enzimologia , Plântula/genética , Plântula/imunologia , Plântula/fisiologia , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Estresse Fisiológico
20.
Plant Cell Physiol ; 57(12): 2472-2484, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27649734

RESUMO

SsCut, which functions as an elicitor, can induce plant immunity. In this study, we utilized Nicotiana benthamiana and virus-induced gene silencing to decrease the expression of > 2,500 genes individually. Using this forward genetics approach, several genes were identified that, when silenced, compromised SsCut-triggered cell death based on a cell death assay. A C2H2-type zinc finger gene was isolated from N. benthamiana Sequence analysis indicated that the gene encodes a 27 kDa protein with 253 amino acids containing two typical C2H2-type zinc finger domains; this gene was named NbCZF1 We found that SsCut-induced cell death could be inhibited by virus-induced gene silencing of NbCZF1 in N. benthamiana In addition, SsCut induces stomatal closure, accompanied by reactive oxygen species (ROS) production by NADPH oxidases and nitric oxide (NO) production. NbCZF1-silenced plants showed impaired SsCut-induced stomatal closure, decreased SsCut-induced production of ROS and NO in guard cells and reduced SsCut-induced resistance against Phytophthora nicotianae Taken together, these results demonstrate that the NbCZF1-ROS-NO pathway mediates multiple SsCut-triggered responses, including stomatal closure, hypersensitive responses and defense-related gene expression. This is the first report describing the function of a C2H2-type zinc finger protein in N. benthamiana.


Assuntos
Nicotiana/genética , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Dedos de Zinco CYS2-HIS2 , Morte Celular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Óxido Nítrico/metabolismo , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Estômatos de Plantas/citologia , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Nicotiana/citologia , Nicotiana/imunologia , Nicotiana/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA