Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82.309
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(14): 3741-3760.e30, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843831

RESUMO

Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.


Assuntos
Elementos de DNA Transponíveis , Humanos , Elementos de DNA Transponíveis/genética , Engenharia Genética/métodos , Genoma Humano , Animais , Evolução Molecular
2.
Cell ; 187(14): 3563-3584.e26, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38889727

RESUMO

How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland-a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization-most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation.


Assuntos
Besouros , Animais , Besouros/genética , Besouros/metabolismo , Evolução Molecular , Benzoquinonas/metabolismo , Filogenia , Genômica , Simbiose/genética , Transcriptoma , Genoma de Inseto
3.
Cell ; 187(14): 3531-3540.e13, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38942016

RESUMO

A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.


Assuntos
Extinção Biológica , Genoma , Mamutes , Mutação , Animais , Mamutes/genética , Genoma/genética , Sibéria , Filogenia , Evolução Molecular , Fatores de Tempo
4.
Cell ; 187(16): 4213-4230.e19, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39013471

RESUMO

Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution. Here we combine cryoEM and cryoET to determine high-resolution in situ structures of the PFV icosahedral capsid (CA) and envelope glycoprotein (Env), including its type III transmembrane anchor and membrane-proximal external region (MPER), and show how they are organized in an integrated structure of assembled PFV particles. The atomic models reveal an ancient retroviral capsid architecture and an unexpected relationship between Env and other class 1 fusion proteins of the Mononegavirales. Our results represent the de novo structure determination of an assembled retrovirus particle.


Assuntos
Microscopia Crioeletrônica , Spumavirus , Montagem de Vírus , Internalização do Vírus , Spumavirus/genética , Capsídeo/metabolismo , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Humanos , Evolução Molecular , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Modelos Moleculares
5.
Cell ; 186(14): 2959-2976.e22, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37339633

RESUMO

Snakes are a remarkable squamate lineage with unique morphological adaptations, especially those related to the evolution of vertebrate skeletons, organs, and sensory systems. To clarify the genetic underpinnings of snake phenotypes, we assembled and analyzed 14 de novo genomes from 12 snake families. We also investigated the genetic basis of the morphological characteristics of snakes using functional experiments. We identified genes, regulatory elements, and structural variations that have potentially contributed to the evolution of limb loss, an elongated body plan, asymmetrical lungs, sensory systems, and digestive adaptations in snakes. We identified some of the genes and regulatory elements that might have shaped the evolution of vision, the skeletal system and diet in blind snakes, and thermoreception in infrared-sensitive snakes. Our study provides insights into the evolution and development of snakes and vertebrates.


Assuntos
Genoma , Serpentes , Animais , Serpentes/genética , Adaptação Fisiológica , Aclimatação , Evolução Molecular , Filogenia , Evolução Biológica
6.
Cell ; 186(16): 3400-3413.e20, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541197

RESUMO

Approximately 15% of US adults have circulating levels of uric acid above its solubility limit, which is causally linked to the disease gout. In most mammals, uric acid elimination is facilitated by the enzyme uricase. However, human uricase is a pseudogene, having been inactivated early in hominid evolution. Though it has long been known that uric acid is eliminated in the gut, the role of the gut microbiota in hyperuricemia has not been studied. Here, we identify a widely distributed bacterial gene cluster that encodes a pathway for uric acid degradation. Stable isotope tracing demonstrates that gut bacteria metabolize uric acid to xanthine or short chain fatty acids. Ablation of the microbiota in uricase-deficient mice causes severe hyperuricemia, and anaerobe-targeted antibiotics increase the risk of gout in humans. These data reveal a role for the gut microbiota in uric acid excretion and highlight the potential for microbiome-targeted therapeutics in hyperuricemia.


Assuntos
Gota , Hominidae , Hiperuricemia , Adulto , Animais , Humanos , Camundongos , Gota/genética , Gota/metabolismo , Hominidae/genética , Hiperuricemia/genética , Mamíferos/metabolismo , Urato Oxidase/genética , Ácido Úrico/metabolismo , Evolução Molecular
7.
Cell ; 186(10): 2193-2207.e19, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37098343

RESUMO

Somatic hypermutation (SHM), initiated by activation-induced cytidine deaminase (AID), generates mutations in the antibody-coding sequence to allow affinity maturation. Why these mutations intrinsically focus on the three nonconsecutive complementarity-determining regions (CDRs) remains enigmatic. Here, we found that predisposition mutagenesis depends on the single-strand (ss) DNA substrate flexibility determined by the mesoscale sequence surrounding AID deaminase motifs. Mesoscale DNA sequences containing flexible pyrimidine-pyrimidine bases bind effectively to the positively charged surface patches of AID, resulting in preferential deamination activities. The CDR hypermutability is mimicable in in vitro deaminase assays and is evolutionarily conserved among species using SHM as a major diversification strategy. We demonstrated that mesoscale sequence alterations tune the in vivo mutability and promote mutations in an otherwise cold region in mice. Our results show a non-coding role of antibody-coding sequence in directing hypermutation, paving the way for the synthetic design of humanized animal models for optimal antibody discovery and explaining the AID mutagenesis pattern in lymphoma.


Assuntos
Citidina Desaminase , Hipermutação Somática de Imunoglobulina , Animais , Camundongos , Anticorpos/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/genética , DNA de Cadeia Simples , Mutação , Evolução Molecular , Regiões Determinantes de Complementaridade/genética , Motivos de Nucleotídeos
8.
Annu Rev Cell Dev Biol ; 40(1): 195-218, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38857538

RESUMO

The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Humanos , Animais , Evolução Molecular , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Genoma/genética , DNA Polimerase teta
9.
Cell ; 185(17): 3153-3168.e18, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35926507

RESUMO

The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R. breviuscula, and R. tenuis) and their closest monocentric relative, Juncus effusus. We demonstrate that transition to holocentricity affected 3D genome architecture by redefining genomic compartments, while distributing centromere function to thousands of repeat-based centromere units genome-wide. We uncover a complex genome organization in R. pubera that hides its unexpected octoploidy and describe a marked reduction in chromosome number for R. tenuis, which has only two chromosomes. We show that chromosome fusions, facilitated by repeat-based holocentromeres, promoted karyotype evolution and diploidization. Our study thus sheds light on several important aspects of genome architecture and evolution influenced by centromere organization.


Assuntos
Centrômero , Cyperaceae , Animais , Centrômero/genética , Cyperaceae/genética , Evolução Molecular , Cariótipo , Plantas/genética
10.
Cell ; 185(10): 1646-1660.e18, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447073

RESUMO

Incomplete lineage sorting (ILS) makes ancestral genetic polymorphisms persist during rapid speciation events, inducing incongruences between gene trees and species trees. ILS has complicated phylogenetic inference in many lineages, including hominids. However, we lack empirical evidence that ILS leads to incongruent phenotypic variation. Here, we performed phylogenomic analyses to show that the South American monito del monte is the sister lineage of all Australian marsupials, although over 31% of its genome is closer to the Diprotodontia than to other Australian groups due to ILS during ancient radiation. Pervasive conflicting phylogenetic signals across the whole genome are consistent with some of the morphological variation among extant marsupials. We detected hundreds of genes that experienced stochastic fixation during ILS, encoding the same amino acids in non-sister species. Using functional experiments, we confirm how ILS may have directly contributed to hemiplasy in morphological traits that were established during rapid marsupial speciation ca. 60 mya.


Assuntos
Marsupiais , Animais , Austrália , Evolução Molecular , Especiação Genética , Genoma , Marsupiais/genética , Fenótipo , Filogenia
11.
Cell ; 185(16): 2975-2987.e10, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35853453

RESUMO

Horizontal gene transfer (HGT) is an important evolutionary force shaping prokaryotic and eukaryotic genomes. HGT-acquired genes have been sporadically reported in insects, a lineage containing >50% of animals. We systematically examined HGT in 218 high-quality genomes of diverse insects and found that they acquired 1,410 genes exhibiting diverse functions, including many not previously reported, via 741 distinct transfers from non-metazoan donors. Lepidopterans had the highest average number of HGT-acquired genes. HGT-acquired genes containing introns exhibited substantially higher expression levels than genes lacking introns, suggesting that intron gains were likely involved in HGT adaptation. Lastly, we used the CRISPR-Cas9 system to edit the prevalent unreported gene LOC105383139, which was transferred into the last common ancestor of moths and butterflies. In diamondback moths, males lacking LOC105383139 courted females significantly less. We conclude that HGT has been a major contributor to insect adaptation.


Assuntos
Borboletas , Transferência Genética Horizontal , Animais , Borboletas/genética , Corte , Evolução Molecular , Masculino , Filogenia
12.
Cell ; 185(20): 3689-3704.e21, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179666

RESUMO

Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.


Assuntos
Cromatina , Placenta , Animais , Fator de Ligação a CCCTC/metabolismo , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Evolução Molecular , Feminino , Genoma , Mamíferos/metabolismo , Placenta/metabolismo , Gravidez , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Cell ; 185(1): 204-217.e14, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34965378

RESUMO

Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development.


Assuntos
Epigenoma , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Pinus/genética , Aclimatação/genética , Cromossomos de Plantas/genética , Cycadopsida/genética , Elementos de DNA Transponíveis/genética , Florestas , Redes Reguladoras de Genes , Tamanho do Genoma , Genômica/métodos , Íntrons , Magnoliopsida/genética
14.
Cell ; 185(12): 2184-2199.e16, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35649412

RESUMO

The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a myeloid cell state defined by specific ligand-receptor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent potential targets to alter disease progression.


Assuntos
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Evolução Molecular , Genes p16 , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Recidiva Local de Neoplasia
15.
Annu Rev Biochem ; 90: 349-373, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33781075

RESUMO

Codon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS-tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Evolução Molecular , Código Genético , Seleção Genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Catálise , Genótipo , Fenótipo , Filogenia , Biossíntese de Proteínas , Dobramento de Proteína , Estrutura Secundária de Proteína , RNA de Transferência/genética , Termodinâmica
16.
Annu Rev Biochem ; 90: 605-630, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33503381

RESUMO

The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Animais , Apolipoproteínas/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Colágeno/metabolismo , Evolução Molecular , Humanos , Mucinas/metabolismo , Família Multigênica , Transporte Proteico , Proteínas/química
17.
Cell ; 184(19): 4857-4873, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34534463

RESUMO

The hidden world of amyloid biology has suddenly snapped into atomic-level focus, revealing over 80 amyloid protein fibrils, both pathogenic and functional. Unlike globular proteins, amyloid proteins flatten and stack into unbranched fibrils. Stranger still, a single protein sequence can adopt wildly different two-dimensional conformations, yielding distinct fibril polymorphs. Thus, an amyloid protein may define distinct diseases depending on its conformation. At the heart of this conformational variability lies structural frustrations. In functional amyloids, evolution tunes frustration levels to achieve either stability or sensitivity according to the fibril's biological function, accounting for the vast versatility of the amyloid fibril scaffold.


Assuntos
Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Proteínas Amiloidogênicas/genética , Animais , Doença/genética , Evolução Molecular , Humanos , Polimorfismo Genético , Dobramento de Proteína , Estabilidade Proteica
18.
Cell ; 184(19): 4874-4885.e16, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34433011

RESUMO

Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (∼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines.


Assuntos
Evolução Molecular , Genoma , Perissodáctilos/genética , Animais , Demografia , Fluxo Gênico , Variação Genética , Geografia , Heterozigoto , Homozigoto , Especificidade de Hospedeiro , Cadeias de Markov , Mutação/genética , Filogenia , Especificidade da Espécie , Fatores de Tempo
19.
Cell ; 184(3): 723-740.e21, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33508230

RESUMO

Elucidating the regulatory mechanisms of human brain evolution is essential to understanding human cognition and mental disorders. We generated multi-omics profiles and constructed a high-resolution map of 3D genome architecture of rhesus macaque during corticogenesis. By comparing the 3D genomes of human, macaque, and mouse brains, we identified many human-specific chromatin structure changes, including 499 topologically associating domains (TADs) and 1,266 chromatin loops. The human-specific loops are significantly enriched in enhancer-enhancer interactions, and the regulated genes show human-specific expression changes in the subplate, a transient zone of the developing brain critical for neural circuit formation and plasticity. Notably, many human-specific sequence changes are located in the human-specific TAD boundaries and loop anchors, which may generate new transcription factor binding sites and chromatin structures in human. Collectively, the presented data highlight the value of comparative 3D genome analyses in dissecting the regulatory mechanisms of brain development and evolution.


Assuntos
Encéfalo/embriologia , Evolução Molecular , Feto/embriologia , Genoma , Organogênese/genética , Animais , Sequência de Bases , Cromatina/metabolismo , Elementos de DNA Transponíveis/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Macaca mulatta , Camundongos , Especificidade da Espécie , Sintenia/genética , Fatores de Transcrição/metabolismo
20.
Cell ; 184(14): 3660-3673.e18, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166615

RESUMO

Membrane remodeling and repair are essential for all cells. Proteins that perform these functions include Vipp1/IM30 in photosynthetic plastids, PspA in bacteria, and ESCRT-III in eukaryotes. Here, using a combination of evolutionary and structural analyses, we show that these protein families are homologous and share a common ancient evolutionary origin that likely predates the last universal common ancestor. This homology is evident in cryo-electron microscopy structures of Vipp1 rings from the cyanobacterium Nostoc punctiforme presented over a range of symmetries. Each ring is assembled from rungs that stack and progressively tilt to form dome-shaped curvature. Assembly is facilitated by hinges in the Vipp1 monomer, similar to those in ESCRT-III proteins, which allow the formation of flexible polymers. Rings have an inner lumen that is able to bind and deform membranes. Collectively, these data suggest conserved mechanistic principles that underlie Vipp1, PspA, and ESCRT-III-dependent membrane remodeling across all domains of life.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Família Multigênica , Nostoc/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/ultraestrutura , Galinhas , Microscopia Crioeletrônica , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Evolução Molecular , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/ultraestrutura , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA