Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Glob Chang Biol ; 30(5): e17307, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709196

RESUMO

Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.


Assuntos
Mudança Climática , Fagus , Estações do Ano , Temperatura , Fagus/crescimento & desenvolvimento , Fagus/fisiologia , Europa (Continente) , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Reprodução , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Polinização
2.
Heredity (Edinb) ; 133(2): 99-112, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38890557

RESUMO

Forest tree populations harbour high genetic diversity thanks to large effective population sizes and strong gene flow, allowing them to diversify through adaptation to local environmental pressures within dispersal distance. Many tree populations also experienced historical demographic fluctuations, including spatial population contraction or expansions at various temporal scales, which may constrain their ability to adapt to environmental variations. Our aim is to investigate how recent contraction and expansion events interfere with local adaptation, by studying patterns of adaptive divergence between closely related stands undergoing environmentally contrasted conditions, and having or not recently expanded. To investigate genome-wide signatures of local adaptation while accounting for demography, we analysed divergence in a European beech population by testing pairwise differentiation among four tree stands at ~35k Single Nucleotide Polymorphisms from ~9k genomic regions. We applied three divergence outlier search methods resting on different assumptions and targeting either single SNPs or contiguous genomic regions, while accounting for the effect of population size variations on genetic divergence. We found 27 signals of selective signatures in 19 target regions. Putatively adaptive divergence involved all stand pairs. We retrieved signals both when comparing old-growth stands and recently colonised areas and when comparing stands within the old-growth area. Therefore, adaptive divergence processes have taken place both over short time spans, under strong environmental contrasts, and over short ecological gradients, in populations that have been stable in the long term. This suggests that standing genetic variation supports local, microgeographic divergence processes, which can maintain genetic diversity at the landscape level.


Assuntos
Fagus , Variação Genética , Genética Populacional , Polimorfismo de Nucleotídeo Único , Fagus/genética , Fagus/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Fluxo Gênico , Densidade Demográfica , Meio Ambiente , Árvores/genética , Europa (Continente)
3.
Environ Monit Assess ; 196(6): 571, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777936

RESUMO

This study was conducted to determine the changes in carbon stocks of oriental beech (Fagus orientalis) according to stand development stage in the Marmara Region of Türkiye. For this purpose, sample plots were taken from a total of 32 areas encompassing four stand development stages (young, middle age, mature and overmature stand). The diameter at breast height and height of all trees in the sample plots were measured, and only three dominant trees's ages per plot were determined. Aboveground carbon stock was calculated using equations developed for beech forests, while the coefficients in the Agriculture, Forestry and Other Land Use guide were used to determine belowground carbon stocks. A soil pit was dug in each plot and soil samples were taken at different depths (0-10, 10-30, 30-60, 60-100 cm). In addition, litters were sampled from four different 25 × 25 cm sections in each plot, and then the physical and chemical properties of the soil and litters were analysed. The variations in carbon stocks in above- and below-ground tree mass, litter and soil, and in ecosystem carbon stocks according to development stage were examined by analysis of variance and Duncan test, and the relationships between the carbon stocks were investigated by correlation analysis. Aboveground (AG) and belowground (BG) tree, soil and ecosystem carbon stocks showed significant differences between the four stand development stages (P < 0.05), but not the litter carbon stocks (P > 0.05). AG and BG tree and ecosystem carbon stocks increased with progressive stand development stages, while the soil carbon stock was the highest at the young stage. These findings will contribute to the preparation of forest management plans and the national greenhouse gas inventory.


Assuntos
Carbono , Monitoramento Ambiental , Fagus , Florestas , Solo , Fagus/crescimento & desenvolvimento , Carbono/análise , Solo/química , Turquia , Árvores , Agricultura Florestal , Ecossistema
4.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401671

RESUMO

Beech seeds are produced irregularly, and there is a need for long-term storage of these seeds for forest management practices. Accumulated reactive oxygen species broadly oxidize molecules, including amino acids, such as methionine, thereby contributing to decreased seed viability. Methionine oxidation can be reversed by the activity of methionine sulfoxide reductases (Msrs), which are enzymes involved in the regulation of many developmental processes and stress responses. Two types of Msrs, MsrB1 and MsrB2, were investigated in beech seeds to determine their abundance and localization. MsrB1 and MsrB2 were detected in the cortical cells and the outer area of the vascular cylinder of the embryonic axes as well as in the epidermis and parenchyma cells of cotyledons. The abundances of MsrB1 and MsrB2 decreased during long-term storage. Ultrastructural analyses have demonstrated the accumulation of these proteins in protein storage vacuoles and in the cytoplasm, especially in close proximity to the cell membrane. In silico predictions of possible Msr interactions supported our findings. In this study, we investigate the contribution of MsrB1 and MsrB2 locations in the regulation of seed viability and suggest that MsrB2 is linked with the longevity of beech seeds via association with proper utilization of storage material.


Assuntos
Cotilédone/metabolismo , Fagus/metabolismo , Metionina Sulfóxido Redutases/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sobrevivência Celular/fisiologia , Biologia Computacional , Cotilédone/citologia , Fagus/citologia , Fagus/embriologia , Fagus/crescimento & desenvolvimento , Imunofluorescência , Imuno-Histoquímica , Ligação Proteica , Sementes/citologia , Sementes/enzimologia
5.
New Phytol ; 226(1): 111-125, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31901219

RESUMO

Controls on tree growth are key issues in plant physiology. The hypothesis of our study was that the interannual variability of wood and fruit production are primarily controlled directly by weather conditions (sink limitation), while carbon assimilation (source limitation) plays a secondary role. We analyzed the interannual variability of weather conditions, gross primary productivity (GPP) and net primary productivity (NPP) of wood and fruits of an old-growth, unmanaged Fagus sylvatica forest over 14 yr, including six mast years. In a multiple linear regression model, c. 71% of the annual variation in wood-NPP could be explained by mean air temperature in May, precipitation from April to May (positive influence) and fruit-NPP (negative influence). GPP of June to July solely explained c. 42% of the variation in wood-NPP. Fruit-NPP was positively related to summer precipitation 2 yr before (R2  = 0.85), and negatively to precipitation in May (R2  = 0.83) in the fruit years. GPP had no influence on fruit-NPP. Our results suggest a complex system of sink and source limitations to tree growth driven by weather conditions and going beyond a simple carbon-mediated 'trade-off' between regenerative and vegetative growth.


Assuntos
Fagus , Florestas , Carbono , Fagus/crescimento & desenvolvimento , Estações do Ano , Árvores , Tempo (Meteorologia)
6.
J Chem Ecol ; 46(10): 935-946, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32914252

RESUMO

The beech leaf-mining weevil, Orchestes fagi, is a common pest of European beech, Fagus sylvatica, and has recently become established in Nova Scotia, Canada where it similarly infests American beech, F. grandifolia. We collected volatile organic compounds (VOCs) emitted by F. grandifolia leaves at five developmental stages over one growing season and simultaneously analyzed them for volatile emissions and O. fagi antennal response using gas chromatography-electroantennographic detection (GC-EAD). Volatile profiles changed significantly throughout the growing season, shifting from primarily ß-caryophyllene, methyl jasmonate, and simple monoterpene emissions to dominance of the bicyclic monoterpene sabinene during maturity. Two VOCs dominant during bud burst, (R)-(+)-limonene and geranyl-p-cymene, may be of biological relevance due to the highly specific oviposition period of O. fagi at this stage though antennal responses were inconclusive. Senescence showed a decrease in blend complexity with an increase in (Z)-3-hexenyl acetate and (Z)-3-hexen-1-ol as well as a resurgence of α-terpinene and geranyl-p-cymene. We present a novel electroantennal preparation for O. fagi. Antennae of both male and female O. fagi responded to the majority of detectable peaks for host volatiles presented via GC-EAD. Females displayed greater overall sensitivities and less specificity to host volatiles and it is hypothesized that this translates to more generalist olfaction than males. It is clear that olfactory cues are important physiologically though their implications on behaviour are still unknown. The results presented in this study provide a baseline and tools on which to connect the complex and highly time-specific phenology of both F. grandifolia and the destructive pest O. fagi through which olfactory-based lures can be investigated for monitoring systems.


Assuntos
Fagus/química , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/farmacologia , Gorgulhos/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Fagus/crescimento & desenvolvimento , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Larva/fisiologia , Masculino , América do Norte , Percepção Olfatória/efeitos dos fármacos
7.
Ecol Lett ; 22(9): 1439-1448, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31250529

RESUMO

Species rear range edges are predicted to retract as climate warms, yet evidence of population persistence is accumulating. Accounting for this disparity is essential to enable prediction and planning for species' range retractions. At the Mediterranean edge of European beech-dominated temperate forest, we tested the hypothesis that individual performance should decline at the limit of the species' ecological tolerance in response to increased drought. We sampled 40 populations in a crossed factor design of geographical and ecological marginality and assessed tree growth resilience and decline in response to recent drought. Drought impacts occurred across the rear edge, but tree growth stability was unexpectedly high in geographically isolated marginal habitat and lower than anticipated in the species' continuous range and better-quality habitat. Our findings demonstrate that, at the rear edge, range shifts will be highly uneven and characterised by reduction in population density with local population retention rather than abrupt range retractions.


Assuntos
Secas , Ecossistema , Fagus/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Mudança Climática , Florestas , Dinâmica Populacional , Espanha
8.
New Phytol ; 221(2): 789-795, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240028

RESUMO

Climate warming is leading to earlier budburst and therefore an increased risk of spring frost injury to young leaves. But to what extent are second-cohort leaves, which trees put out after leaf-killing frosts, able to compensate incurred losses? To investigate whether second-cohort leaves behave differently from first-cohort leaves, we exposed saplings of beech (Fagus sylvatica), oak (Quercus robur), and honeysuckle (Lonicera xylosteum) to experimental treatments mimicking either a warm spring or a warm spring with a leaf-killing frost. Refoliation took 48, 43, and 36 d for beech, oak and honeysuckle, respectively. In beech and oak, autumn Chl content and photosynthesis rates were higher in second- than in first-cohort leaves, senescence in second-cohort leaves occurred c. 2-wk-later, and autumn bud growth in beech was elevated 66% in frost-damaged plants compared with the warm spring treatment. No differences in autumn phenology and growth were observed for honeysuckle. Overall, in beech and oak, delayed Chl breakdown in second-cohort leaves mitigated 31% and 25%, respectively, of the deficit in growing-season length incurred by spring frost damage. These results reveal an unexpected ability of second-cohort leaves of beech and oak to compensate for spring frost damage, and demonstrate that long-lived trees vary their autumnal phenology depending on preceding productivity.


Assuntos
Congelamento , Estações do Ano , Árvores/fisiologia , Fagus/crescimento & desenvolvimento , Fagus/fisiologia , Flores/crescimento & desenvolvimento , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Árvores/crescimento & desenvolvimento
9.
Glob Chang Biol ; 25(1): 201-217, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30346104

RESUMO

Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global-change drivers such as climate change or atmospheric deposition, as well as to local land-use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global-change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global-change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global-change drivers, with species-specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus' growth, highlighting species-specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus' growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global-change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.


Assuntos
Mudança Climática , Fagus/crescimento & desenvolvimento , Fraxinus/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Secas , Europa (Continente) , Florestas , Ciclo do Nitrogênio , Temperatura
10.
Glob Chang Biol ; 25(5): 1696-1703, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30779408

RESUMO

Leaf phenology is one of the most reliable bioindicators of ongoing global warming in temperate and boreal zones because it is highly sensitive to temperature variation. A large number of studies have reported advanced spring leaf-out due to global warming, yet the temperature sensitivity of leaf-out has significantly decreased in temperate deciduous tree species over the past three decades. One of the possible mechanisms is that photoperiod is limiting further advance to protect the leaves against potential damaging frosts. However, the "photoperiod limitation" hypothesis remains poorly investigated and experimentally tested. Here, we conducted a photoperiod- and temperature-manipulation experiment in climate chambers on two common deciduous species in Europe: Fagus sylvatica (European beech, a typically late flushing species) and Aesculus hippocastanum (horse chestnut, a typically early flushing species). In agreement with previous studies, we found that the warming significantly advanced the leaf-out dates by 4.3 and 3.7 days/°C for beech and horse chestnut saplings, respectively. However, shorter photoperiod significantly reduced the temperature sensitivity of beech only (3.0 days/°C) by substantially increasing the heat requirement to avoid leafing-out too early. Interestingly, the photoperiod limitation only occurs below a certain daylength (photoperiod threshold) when the warming increased above 4°C for beech trees. In contrast, for chestnut, no photoperiod threshold was found even when the ambient air temperature was warmed by 5°C. Given the species-specific photoperiod effect on leaf phenology, the sequence of the leaf-out timing among forest tree species may change under future climate warming conditions. Nonphotoperiodic species may benefit from warmer springs by starting the growing season earlier than photoperiodic sensitive species, modifying forest ecosystem structure and functions, but this photoperiod limitation needs to be further investigated experimentally in numerous species.


Assuntos
Aesculus/fisiologia , Fagus/fisiologia , Fotoperíodo , Folhas de Planta/crescimento & desenvolvimento , Temperatura , Aesculus/crescimento & desenvolvimento , Europa (Continente) , Fagus/crescimento & desenvolvimento , Florestas , Aquecimento Global , Estações do Ano , Especificidade da Espécie
11.
Am J Bot ; 106(2): 187-198, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742709

RESUMO

PREMISE OF THE STUDY: Thinning is a frequent disturbance in managed forests, especially to increase radial growth. Due to buckling and bending risk associated with height and mass growth, tree verticality is strongly constrained in slender trees growing in dense forests and poor light conditions. Tree verticality is controlled by uprighting movements implemented from local curvatures induced by wood maturation stresses and/or eccentric radial growth. This study presents the first attempt to compare the real uprighting movements in mature trees using a theoretical model of posture control. METHODS: Stem lean and curvature were measured by Terrestrial LiDAR Scanner (TLS) technology before and 6 years after thinning and compared to unthinned control poles. Measures for several tree and wood traits were pooled together to implement a widely used biomechanical model of tree posture control. Changes in observed stem lean were then compared with the model predictions, and discrepancies were reviewed. KEY RESULTS: Even under a highly constrained environment, most control poles were able to counterbalance gravitational curvature and avoid sagging. Thinning stimulated uprighting movements. The theoretical uprighting curvature rate increased just after thinning, then slowed after 2 years, likely due to the stem diameter increase. The biomechanical model overestimated the magnitude of uprighting. CONCLUSIONS: Most suppressed beech poles maintain a constant lean angle, and uprighting movements occur after thinning, indicating that stem lean is plastic in response to light conditions. Acclimation of posture control to other changes in growth condition should be investigated, and lean angles should be measured in forest inventories as an indicator of future wood quality.


Assuntos
Fagus/crescimento & desenvolvimento , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Fenômenos Biomecânicos , Agricultura Florestal , Madeira
12.
Plant Cell Environ ; 41(12): 2899-2914, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30107635

RESUMO

Stable isotope ratios in tree rings have become an important proxy for palaeoclimatology, particularly in temperate regions. Yet temperate forests are often characterized by heterogeneous stand structures, and the effects of stand dynamics on carbon (δ13 C) and oxygen isotope ratios (δ18 O) in tree rings are not well explored. In this study, we investigated long-term trends and offsets in δ18 O and δ13 C of Picea abies and Fagus sylvatica in relation to tree age, size, and distance to the upper canopy at seven temperate sites across Europe. We observed strong positive trends in δ13 C that are best explained by the reconstructed dynamics of individual trees below the upper canopy, highlighting the influence of light attenuation on δ13 C in shade-tolerant species. We also detected positive trends in δ18 O with increasing tree size. However, the observed slopes are less steep and consistent between trees of different ages and thus can be more easily addressed. We recommend restricting the use of δ13 C to years when trees are in a dominant canopy position to infer long-term climate signals in δ13 C when relying on material from shade-tolerant species, such as beech and spruce. For such species, δ18 O should be in principle the superior proxy for climate reconstructions.


Assuntos
Câmbio/metabolismo , Isótopos de Carbono/metabolismo , Isótopos de Oxigênio/metabolismo , Árvores/metabolismo , Câmbio/química , Câmbio/crescimento & desenvolvimento , Isótopos de Carbono/análise , Clima , Fagus/química , Fagus/crescimento & desenvolvimento , Fagus/metabolismo , Isótopos de Oxigênio/análise , Picea/química , Picea/crescimento & desenvolvimento , Picea/metabolismo , Árvores/química , Árvores/crescimento & desenvolvimento
13.
Glob Chang Biol ; 24(7): 2898-2912, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29569794

RESUMO

In this study, we investigated the role of climatic variability and atmospheric nitrogen deposition in driving long-term tree growth in canopy beech trees along a geographic gradient in the montane belt of the Italian peninsula, from the Alps to the southern Apennines. We sampled dominant trees at different developmental stages (from young to mature tree cohorts, with tree ages spanning from 35 to 160 years) and used stem analysis to infer historic reconstruction of tree volume and dominant height. Annual growth volume (GV ) and height (GH ) variability were related to annual variability in model simulated atmospheric nitrogen deposition and site-specific climatic variables, (i.e. mean annual temperature, total annual precipitation, mean growing period temperature, total growing period precipitation, and standard precipitation evapotranspiration index) and atmospheric CO2 concentration, including tree cambial age among growth predictors. Generalized additive models (GAM), linear mixed-effects models (LMM), and Bayesian regression models (BRM) were independently employed to assess explanatory variables. The main results from our study were as follows: (i) tree age was the main explanatory variable for long-term growth variability; (ii) GAM, LMM, and BRM results consistently indicated climatic variables and CO2 effects on GV and GH were weak, therefore evidence of recent climatic variability influence on beech annual growth rates was limited in the montane belt of the Italian peninsula; (iii) instead, significant positive nitrogen deposition (Ndep ) effects were repeatedly observed in GV and GH ; the positive effects of Ndep on canopy height growth rates, which tended to level off at Ndep values greater than approximately 1.0 g m-2  y-1 , were interpreted as positive impacts on forest stand above-ground net productivity at the selected study sites.


Assuntos
Fagus/crescimento & desenvolvimento , Nitrogênio/metabolismo , Teorema de Bayes , Demografia , Florestas , Itália , Modelos Biológicos , Nitrogênio/análise , Temperatura , Fatores de Tempo
14.
Microb Ecol ; 76(4): 1030-1040, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29582105

RESUMO

Litter decomposition is the main source of mineral nitrogen (N) in terrestrial ecosystem and a key step in carbon (C) cycle. Microbial community is the main decomposer, and its specialization on specific litter is considered at the basis of higher decomposition rate in its natural environment than in other forests. However, there are contrasting evidences on how the microbial community responds to a new litter input and if the mass loss is higher in natural environment. We selected leaf litter from three different plant species across three sites of different altitudinal ranges: oak (Quercus petraea (Matt.) Liebl., 530 m a.s.l), beech (Fagus sylvatica L., 1000 m a.s.l.), rhododendron (Rhododendron ferrugineum L., 1530 m a.s.l.). A complete transplantation experiment was set up within the native site and the other two altitudinal sites. Microbial community structure was analyzed via amplified ribosomal intergenic spacer analysis (ARISA) fingerprinting. Functionality was investigated by potential enzyme activities. Chemical composition of litter was recorded. Mass loss showed no faster decomposition rate on native site. Similarly, no influence of site was found on microbial structure, while there was a strong temporal variation. Potential enzymatic activities were not affected by the same temporal pattern with a general increase of activities during autumn. Our results suggested that no specialization in microbial community is present due to the lack of influence of the site in structure and in the mass loss dynamics. Finally, different temporal patterns in microbial community and potential enzymatic activities suggest the presence of functional redundancy within decomposers.


Assuntos
Bactérias/metabolismo , Carbono/análise , Florestas , Microbiota , Nitrogênio/análise , Folhas de Planta/química , Microbiologia do Solo , Fagus/crescimento & desenvolvimento , Itália , Quercus/crescimento & desenvolvimento , Rhododendron/crescimento & desenvolvimento
15.
BMC Ecol ; 18(1): 42, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285730

RESUMO

BACKGROUND: Understanding and predicting the response of tree populations to climate change requires understanding the pattern and scale of their adaptation. Climate is often considered the major driver of local adaptation but, although biotic factors such as soil pathogens or mutualists could be as important, their role has typically been neglected. Biotic drivers might also interact with climate to affect performance and mycorrhizae, in particular, are likely to play a key role in determining drought resistance, which is important in the context of adaptation to future environmental change. To address these questions, we performed a fully reciprocal soil-plant transplant experiment using Fagus sylvatica seedlings and soils from three regions in Germany. To separate the biotic and abiotic effects of inoculation, half of the plants were inoculated with natural soil from the different origins, while the rest were grown on sterilized substrate. We also imposed a drought stress treatment to test for interactions between soil biota and climate. After 1 year of growth, we measured aboveground biomass of all seedlings, and quantified mycorrhizal colonization for a subset of the seedlings, which included all soil-plant combinations, to disentangle the effect of mycorrhiza from other agents. RESULTS: We found that plant origin had the strongest effect on plant performance, but this interacted with soil origin. In general, trees showed a slight tendency to produce less aboveground biomass on local soils, suggesting soil antagonists could be causing trees to be maladapted to their local soils. Consistently, we found lower mycorrhizal colonization rate under local soil conditions. Across all soils, seedlings from low elevations produced more annual biomass than middle (+ 290%) and high (+ 97%) elevations. Interestingly, mycorrhizal colonization increased with drought in the two provenances that showed higher drought tolerance, which supports previous results showing that mycorrhizae can increase drought resistance. CONCLUSIONS: Our findings suggest that soil communities play a role in affecting early performance of temperate trees, although this role may be smaller than that of seed origin. Also, other effects, such as the positive response to generalists or negative interactions with soil biota may be as important as the highly specialized mycorrhizal associations.


Assuntos
Fagus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Aclimatação , Mudança Climática , Fagus/genética , Alemanha , Plântula/genética , Solo
16.
BMC Ecol ; 18(1): 47, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458749

RESUMO

BACKGROUND: Old-growth and primeval forests are passing through a natural development cycle with recurring stages of forest development. Several methods for assigning patches of different structure and size to forest development stages or phases do exist. All currently existing classification methods have in common that a priori assumptions about the characteristics of certain stand structural attributes such as deadwood amount are made. We tested the hypothesis that multivariate datasets of primeval beech forest stand structure possess an inherent, aggregated configuration of data points with individual clusters representing forest development stages. From two completely mapped primeval beech forests in Albania, seven ecologically important stand structural attributes characterizing stand density, regeneration, stem diameter variation and amount of deadwood are derived at 8216 and 9666 virtual sampling points (moving window, focal filtering). K-means clustering is used to detect clusters in the datasets (number of clusters (k) between 2 and 5). The quality of the single clustering solutions is analyzed with average silhouette width as a measure for clustering quality. In a sensitivity analysis, clustering is done with datasets of four different spatial scales of observation (200, 500, 1000 and 1500 m2, circular virtual plot area around sampling points) and with two different kernels (equal weighting of all objects within a plot vs. weighting by distance to the virtual plot center). RESULTS: The clustering solutions succeeded in detecting and mapping areas with homogeneous stand structure. The areas had extensions of more than 200 m2, but differences between clusters were very small with average silhouette widths of less than 0.28. The obtained datasets had a homogeneous configuration with only very weak trends for clustering. CONCLUSIONS: Our results imply that forest development takes place on a continuous scale and that discrimination between development stages in primeval beech forests is splitting continuous datasets at selected thresholds. For the analysis of the forest development cycle, direct quantification of relevant structural features or processes might be more appropriate than classification. If, however, the study design demands classification, our results can justify the application of conventional forest development stage classification schemes rather than clustering.


Assuntos
Monitoramento Ambiental/métodos , Florestas , Árvores/crescimento & desenvolvimento , Albânia , Análise por Conglomerados , Fagus/crescimento & desenvolvimento
17.
Int J Biometeorol ; 62(9): 1763-1776, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29978264

RESUMO

Climate change is expected to influence plant productivity particularly through changes in the timing of budburst. Nonetheless, knowledge about the intraspecific variation of the timing of budburst and its relationship with climate is insufficient for most tree species. Based on the common garden experiments of Fagus crenata, we investigated the interrelationships between the day of budburst, cumulative degree-days (temperature sum), chilling duration, and photoperiod at the timing of budburst for the trees of different combinations of 11 sites of seed origin and seven experimental sites in Japan. We found that the relationship between the latitude of experimental sites and the timing of budburst differed for the trees of different latitudes of origins. The timing of budburst was earlier for the trees of more northern populations throughout the latitudes of experimental sites. Variation in the timing of budburst among the trees of different seed origins was smaller for more northern experimental sites. Such patterns were caused by directional changes in the relationships between temperature sum, chilling duration, and photoperiod among the trees of different origins: the asymptotes of the curvilinear relationship between chilling duration and temperature sum, chilling duration and photoperiod, and temperature sum and photoperiod, decreased for more northern populations. With the northward expansion of species distribution, the responses of budburst to climate probably changed genetically in such ways in this species. Our results suggest that intraspecific variations in the relationships between the timing of budburst and associated meteorological factors inevitably influence the overall pattern of the timing of budburst at the geographic scale, and the timing of budburst might deviate from predictions when intraspecific variations are not considered.


Assuntos
Fagus/genética , Fotoperíodo , Temperatura , Fagus/crescimento & desenvolvimento , Japão , Estações do Ano , Árvores
18.
Glob Chang Biol ; 23(1): 362-379, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27298138

RESUMO

Biogeographical and ecological theory suggests that species distributions should be driven to higher altitudes and latitudes as global temperatures rise. Such changes occur as growth improves at the poleward edge of a species distribution and declines at the range edge in the opposite or equatorial direction, mirrored by changes in the establishment of new individuals. A substantial body of evidence demonstrates that such processes are underway for a wide variety of species. Case studies from populations at the equatorial range edge of a variety of woody species have led us to understand that widespread growth decline and distributional shifts are underway. However, in apparent contrast, other studies report high productivity and reproduction in some range edge populations. We sought to assess temporal trends in the growth of the widespread European beech tree (Fagus sylvatica) across its latitudinal range. We explored the stability of populations to major drought events and the implications for predicted widespread growth decline at its equatorial range edge. In contrast to expectations, we found greatest sensitivity and low resistance to drought in the core of the species range, whilst dry range edge populations showed particularly high resistance to drought and little evidence of drought-linked growth decline. We hypothesize that this high range edge resistance to drought is driven primarily by local environmental factors that allow relict populations to persist despite regionally unfavourable climate. The persistence of such populations demonstrates that range-edge decline is not ubiquitous and is likely to be driven by declining population density at the landscape scale rather than sudden and widespread range retraction.


Assuntos
Mudança Climática , Secas , Fagus/crescimento & desenvolvimento , Clima , Fagus/fisiologia , Densidade Demográfica , Árvores
19.
Glob Chang Biol ; 23(12): 5054-5068, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28544424

RESUMO

Tree populations at the low-altitudinal or -latitudinal limits of species' distributional ranges are predicted to retreat toward higher altitudes and latitudes to track the ongoing changes in climate. Studies have focused on the climatic sensitivity of the retreating species, whereas little is known about the potential replacements. Competition between tree species in forest ecotones will likely be strongly influenced by the ecophysiological responses to heat and drought. We used tree-ring widths and δ13 C and δ18 O chronologies to compare the growth rates and long-term ecophysiological responses to climate in the temperate-Mediterranean ecotone formed by the deciduous Fagus sylvatica and the evergreen Quercus ilex at the low altitudinal and southern latitudinal limit of F. sylvatica (NE Iberian Peninsula). F. sylvatica growth rates were similar to those of other southern populations and were surprisingly not higher than those of Q. ilex, which were an order of magnitude higher than those in nearby drier sites. Higher Q. ilex growth rates were associated with high temperatures, which have increased carbon discrimination rates in the last 25 years. In contrast, stomatal regulation in F. sylvatica was proportional to the increase in atmospheric CO2 . Tree-ring δ18 O for both species were mostly correlated with δ18 O in the source water. In contrast to many previous studies, relative humidity was not negatively correlated with tree-ring δ18 O but had a positive effect on Q. ilex tree-ring δ18 O. Furthermore, tree-ring δ18 O decreased in Q. ilex over time. The sensitivity of Q. ilex to climate likely reflects the uptake of deep water that allowed it to benefit from the effect of CO2 fertilization, in contrast to the water-limited F. sylvatica. Consequently, Q. ilex is a strong competitor at sites currently dominated by F. sylvatica and could be favored by increasingly warmer conditions.


Assuntos
Mudança Climática , Fagus/crescimento & desenvolvimento , Florestas , Quercus/crescimento & desenvolvimento , Secas , Região do Mediterrâneo , Árvores/crescimento & desenvolvimento , Água
20.
Glob Chang Biol ; 23(12): 5358-5371, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28675600

RESUMO

Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnerability, and develop strategies to preserve forest health and productivity. We studied potential genetic maladaptation to future climates in three major European tree species, Norway spruce (Picea abies), silver fir (Abies alba), and European beech (Fagus sylvatica). A common garden experiment was conducted to evaluate the quantitative genetic variation in growth and phenology of seedlings from 77 to 92 native populations of each species from across Switzerland. We used multivariate genecological models to associate population variation with past seed source climates, and to estimate relative risk of maladaptation to current and future climates based on key phenotypic traits and three regional climate projections within the A1B scenario. Current risks from climate change were similar to average risks from current seed transfer practices. For all three climate models, future risks increased in spruce and beech until the end of the century, but remained low in fir. Largest average risks associated with climate projections for the period 2061-2090 were found for spruce seedling height (0.64), and for beech bud break and leaf senescence (0.52 and 0.46). Future risks for spruce were high across Switzerland. However, areas of high risk were also found in drought-prone regions for beech and in the southern Alps for fir. Genetic maladaptation to future climates is likely to become a problem for spruce and beech by the end of this century, but probably not for fir. Consequently, forest management strategies should be adjusted in the study area for spruce and beech to maintain productive and healthy forests in the future.


Assuntos
Adaptação Fisiológica/genética , Mudança Climática , Árvores/fisiologia , Abies/crescimento & desenvolvimento , Abies/fisiologia , Monitoramento Ambiental , Fagus/crescimento & desenvolvimento , Fagus/fisiologia , Florestas , Picea/crescimento & desenvolvimento , Picea/fisiologia , Risco , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Suíça , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA