Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 857
Filtrar
1.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499656

RESUMO

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Assuntos
Aterosclerose , Complemento C3 , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inflamação , Macrófagos/metabolismo
2.
Immunol Rev ; 313(1): 25-45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382387

RESUMO

The factor H (FH) protein family is emerging as a complex network of proteins controlling the fate of the complement alternative pathway (AP) and dictating susceptibility to a wide range of diseases including infectious, inflammatory, autoimmune, and degenerative diseases and cancer. Composed, in man, of seven highly related proteins, FH, factor H-like 1, and 5 factor H-related proteins, some of the FH family proteins are devoted to down-regulating the AP, while others exert an opposite function by promoting AP activation. Recent findings have provided insights into the molecular mechanisms defining their biological roles and their pathogenicity, illustrating the relevance that the balance between the regulators and the activators within this protein family has in defining the outcome of complement activation on cell surfaces. In this review we will discuss the emerging roles of the factor H protein family, their impact in the complement cascade, and their involvement in the pathogenesis of complement-mediated diseases associated with the AP dysregulation.


Assuntos
Fator H do Complemento , Proteínas do Sistema Complemento , Humanos , Ativação do Complemento , Fator H do Complemento/metabolismo , Via Alternativa do Complemento , Proteínas do Sistema Complemento/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(27): e2301549120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364114

RESUMO

Modern infectious disease outbreaks often involve changes in host tropism, the preferential adaptation of pathogens to specific hosts. The Lyme disease-causing bacterium Borrelia burgdorferi (Bb) is an ideal model to investigate the molecular mechanisms of host tropism, because different variants of these tick-transmitted bacteria are distinctly maintained in rodents or bird reservoir hosts. To survive in hosts and escape complement-mediated immune clearance, Bb produces the outer surface protein CspZ that binds the complement inhibitor factor H (FH) to facilitate bacterial dissemination in vertebrates. Despite high sequence conservation, CspZ variants differ in human FH-binding ability. Together with the FH polymorphisms between vertebrate hosts, these findings suggest that minor sequence variation in this bacterial outer surface protein may confer dramatic differences in host-specific, FH-binding-mediated infectivity. We tested this hypothesis by determining the crystal structure of the CspZ-human FH complex, and identifying minor variation localized in the FH-binding interface yielding bird and rodent FH-specific binding activity that impacts infectivity. Swapping the divergent region in the FH-binding interface between rodent- and bird-associated CspZ variants alters the ability to promote rodent- and bird-specific early-onset dissemination. We further linked these loops and respective host-specific, complement-dependent phenotypes with distinct CspZ phylogenetic lineages, elucidating evolutionary mechanisms driving host tropism emergence. Our multidisciplinary work provides a novel molecular basis for how a single, short protein motif could greatly modulate pathogen host tropism.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Animais , Humanos , Evasão da Resposta Imune/genética , Filogenia , Tropismo Viral , Doença de Lyme/microbiologia , Proteínas de Bactérias/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Proteínas do Sistema Complemento/genética , Proteínas de Membrana/metabolismo
4.
J Biol Chem ; 300(4): 105784, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401844

RESUMO

The introduction of a therapeutic anti-C5 antibody into clinical practice in 2007 inspired a surge into the development of complement-targeted therapies. This has led to the recent approval of a C3 inhibitory peptide, an antibody directed against C1s and a full pipeline of several complement inhibitors in preclinical and clinical development. However, no inhibitor is available that efficiently inhibits all three complement initiation pathways and targets host cell surface markers as well as complement opsonins. To overcome this, we engineered a novel fusion protein combining selected domains of the three natural complement regulatory proteins decay accelerating factor, factor H and complement receptor 1. Such a triple fusion complement inhibitor (TriFu) was recombinantly expressed and purified alongside multiple variants and its building blocks. We analyzed these proteins for ligand binding affinity and decay acceleration activity by surface plasmon resonance. Additionally, we tested complement inhibition in several in vitro/ex vivo assays using standard classical and alternative pathway restricted hemolysis assays next to hemolysis assays with paroxysmal nocturnal hemoglobinuria erythrocytes. A novel in vitro model of the alternative pathway disease C3 glomerulopathy was established to evaluate the potential of the inhibitors to stop C3 deposition on endothelial cells. Next to the novel engineered triple fusion variants which inactivate complement convertases in an enzyme-like fashion, stoichiometric complement inhibitors targeting C3, C5, factor B, and factor D were tested as comparators. The triple fusion approach yielded a potent complement inhibitor that efficiently inhibits all three complement initiation pathways while targeting to surface markers.


Assuntos
Fator H do Complemento , Receptores de Complemento 3b , Proteínas Recombinantes de Fusão , Humanos , Fator H do Complemento/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/química , Fator H do Complemento/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Ativação do Complemento/efeitos dos fármacos , Antígenos CD55/genética , Antígenos CD55/metabolismo , Hemólise/efeitos dos fármacos , Via Alternativa do Complemento/efeitos dos fármacos , Inativadores do Complemento/farmacologia , Eritrócitos/metabolismo
5.
J Immunol ; 211(3): 453-461, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306457

RESUMO

A minimized version of complement factor H (FH), designated mini-FH, was previously engineered combining the N-terminal regulatory domains (short consensus repeat [SCR]1-4) and C-terminal host-surface recognition domains (SCR19-20) of the parent molecule. Mini-FH conferred enhanced protection, as compared with FH, in an ex vivo model of paroxysmal nocturnal hemoglobinuria driven by alternative pathway dysregulation. In the current study, we tested whether and how mini-FH could block another complement-mediated disease, namely periodontitis. In a mouse model of ligature-induced periodontitis (LIP), mini-FH inhibited periodontal inflammation and bone loss in wild-type mice. Although LIP-subjected C3-deficient mice are protected relative to wild-type littermates and exhibit only modest bone loss, mini-FH strikingly inhibited bone loss even in C3-deficient mice. However, mini-FH failed to inhibit ligature-induced bone loss in mice doubly deficient in C3 and CD11b. These findings indicate that mini-FH can inhibit experimental periodontitis even in a manner that is independent of its complement regulatory activity and is mediated by complement receptor 3 (CD11b/CD18). Consistent with this notion, a complement receptor 3-interacting recombinant FH segment that lacks complement regulatory activity (specifically encompassing SCRs 19 and 20; FH19-20) was also able to suppress bone loss in LIP-subjected C3-deficient mice. In conclusion, mini-FH appears to be a promising candidate therapeutic for periodontitis by virtue of its ability to suppress bone loss via mechanisms that both include and go beyond its complement regulatory activity.


Assuntos
Fator H do Complemento , Periodontite , Camundongos , Animais , Fator H do Complemento/metabolismo , Via Alternativa do Complemento , Proteínas do Sistema Complemento , Receptores de Complemento
6.
J Immunol ; 211(5): 862-873, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37466368

RESUMO

Trypanosomes are known to activate the complement system on their surface, but they control the cascade in a manner such that the cascade does not progress into the terminal pathway. It was recently reported that the invariant surface glycoprotein ISG65 from Trypanosoma brucei interacts reversibly with complement C3 and its degradation products, but the molecular mechanism by which ISG65 interferes with complement activation remains unknown. In this study, we show that ISG65 does not interfere directly with the assembly or activity of the two C3 convertases. However, ISG65 acts as a potent inhibitor of C3 deposition through the alternative pathway in human and murine serum. Degradation assays demonstrate that ISG65 stimulates the C3b to iC3b converting activity of complement factor I in the presence of the cofactors factor H or complement receptor 1. A structure-based model suggests that ISG65 promotes a C3b conformation susceptible to degradation or directly bridges factor I and C3b without contact with the cofactor. In addition, ISG65 is observed to form a stable ternary complex with the ligand binding domain of complement receptor 3 and iC3b. Our data suggest that ISG65 supports trypanosome complement evasion by accelerating the conversion of C3b to iC3b through a unique mechanism.


Assuntos
Trypanosoma brucei brucei , Camundongos , Animais , Humanos , Trypanosoma brucei brucei/metabolismo , Complemento C3b/metabolismo , Receptores de Complemento 3b , Ativação do Complemento , Fator H do Complemento/metabolismo , Fibrinogênio , Via Alternativa do Complemento , Convertases de Complemento C3-C5/metabolismo
7.
J Biol Chem ; 299(3): 102930, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682494

RESUMO

Hyperactivation of the complement system, a major component of innate immunity, has been recognized as one of the core clinical features in severe covid-19 patients. However, how the virus escapes the targeted elimination by the network of activated complement pathways still remains an enigma. Here, we identified SARS-CoV-2-encoded ORF8 protein as one of the major binding partners of human complement C3/C3b components and their metabolites. Our results demonstrated that preincubation of ORF8 with C3/C3b in the fluid phase has two immediate functional consequences in the alternative pathway; this preincubation inhibits factor I-mediated proteolysis and blocks factor B zymogen activation into active Bb. ORF8 binding results in the occlusion of both factor H and factor B from C3b, rendering the complexes resistant to factor I-mediated proteolysis and inhibition of pro-C3-convertase (C3bB) formation, respectively. We also confirmed the complement inhibitory activity of ORF8 in our hemolysis-based assay, where ORF8 prevented human serum-induced lysis of rabbit erythrocytes with an IC50 value of about 2.3 µM. This inhibitory characteristic of ORF8 was also supported by in-silico protein-protein docking analysis, as it appeared to establish primary interactions with the ß-chain of C3b, orienting itself near the C3b CUB (C1r/C1s, Uegf, Bmp1) domain like a peptidomimetic compound, sterically hindering the binding of essential cofactors required for complement amplification. Thus, ORF8 has characteristics to act as an inhibitor of critical regulatory steps in the alternative pathway, converging to hasten the decay of C3-convertase and thereby, attenuating the complement amplification loop.


Assuntos
COVID-19 , Fator B do Complemento , Animais , Humanos , Coelhos , Ativação do Complemento , Convertases de Complemento C3-C5/metabolismo , Complemento C3b/metabolismo , Fator B do Complemento/metabolismo , Fator H do Complemento/metabolismo , Via Alternativa do Complemento/fisiologia , SARS-CoV-2/metabolismo , Ligação Proteica , Simulação por Computador
8.
J Immunol ; 208(5): 1232-1247, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35110419

RESUMO

The ß protein from group B Streptococcus (GBS) is a ∼132-kDa, cell-surface exposed molecule that binds to multiple host-derived ligands, including complement factor H (FH). Many details regarding this interaction and its significance to immune evasion by GBS remain unclear. In this study, we identified a three-helix bundle domain within the C-terminal half of the B75KN region of ß as the major FH-binding determinant and determined its crystal structure at 2.5 Å resolution. Analysis of this structure suggested a role in FH binding for a loop region connecting helices α1 and α2, which we confirmed by mutagenesis and direct binding studies. Using a combination of protein cross-linking and mass spectrometry, we observed that B75KN bound to complement control protein (CCP)3 and CCP4 domains of FH. Although this binding site lies within a complement regulatory region of FH, we determined that FH bound by ß retained its decay acceleration and cofactor activities. Heterologous expression of ß by Lactococcus lactis resulted in recruitment of FH to the bacterial surface and a significant reduction of C3b deposition following exposure to human serum. Surprisingly, we found that FH binding by ß was not required for bacterial resistance to phagocytosis by neutrophils or killing of bacteria by whole human blood. However, loss of the B75KN region significantly diminished bacterial survival in both assays. Although our results show that FH recruited to the bacterial surface through a high-affinity interaction maintains key complement-regulatory functions, they raise questions about the importance of FH binding to immune evasion by GBS as a whole.


Assuntos
Proteínas de Bactérias/metabolismo , Evasão da Resposta Imune/imunologia , Proteínas de Membrana/metabolismo , Streptococcus agalactiae/imunologia , Sítios de Ligação/fisiologia , Complemento C3b/metabolismo , Fator H do Complemento/metabolismo , Humanos , Neutrófilos/imunologia , Opsonização/imunologia , Ligação Proteica/imunologia , Domínios Proteicos/genética , Domínios Proteicos/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/patologia
9.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33859044

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly. Canonical disease models suggest that defective interactions between complement factor H (CFH) and cell surface heparan sulfate (HS) result in increased alternative complement pathway activity, cytolytic damage, and tissue inflammation in the retina. Although these factors are thought to contribute to increased disease risk, multiple studies indicate that noncanonical mechanisms that result from defective CFH and HS interaction may contribute to the progression of AMD as well. A total of 60 ciliated sensory neurons in the nematode Caenorhabditis elegans detect chemical, olfactory, mechanical, and thermal cues in the environment. Here, we find that a C. elegans CFH homolog localizes on CEP mechanosensory neuron cilia where it has noncanonical roles in maintaining inversin/NPHP-2 within its namesake proximal compartment and preventing inversin/NPHP-2 accumulation in distal cilia compartments in aging adults. CFH localization and maintenance of inversin/NPHP-2 compartment integrity depend on the HS 3-O sulfotransferase HST-3.1 and the transmembrane proteoglycan syndecan/SDN-1. Defective inversin/NPHP-2 localization in mouse and human photoreceptors with CFH mutations indicates that these functions and interactions may be conserved in vertebrate sensory neurons, suggesting that previously unappreciated defects in cilia structure may contribute to the progressive photoreceptor dysfunction associated with CFH loss-of-function mutations in some AMD patients.


Assuntos
Fator H do Complemento/metabolismo , Heparitina Sulfato/metabolismo , Retina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Fator H do Complemento/fisiologia , Heparitina Sulfato/fisiologia , Degeneração Macular/metabolismo , Degeneração Macular/fisiopatologia , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
10.
J Am Soc Nephrol ; 34(2): 291-308, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735376

RESUMO

BACKGROUND: The dysfunction of complement factor H (CFH), the main soluble complement negative regulator, potentiates various complement-induced renal injuries. However, insights into the underlying mechanism of CFH dysfunction remain limited. In this study, we investigated whether extracellular protease-mediated degradation accounts for CFH dysfunction in complement-mediated renal injuries. METHODS: An unbiased interactome of lupus mice kidneys identified CFH-binding protease. In vitro cleavage assay clarified CFH degradation. Pristane-induced SLE or renal ischemia-reperfusion (I/R) injury models were used in wild-type and ADAMTS7-/- mice. RESULTS: We identified the metalloprotease ADAMTS7 as a CFH-binding protein in lupus kidneys. Moreover, the upregulation of ADAMTS7 correlated with CFH reduction in both lupus mice and patients. Mechanistically, ADAMTS7 is directly bound to CFH complement control protein (CCP) 1-4 domain and degraded CCP 1-7 domain through multiple cleavages. In mice with lupus nephritis or renal I/R injury, ADAMTS7 deficiency alleviated complement activation and related renal pathologies, but without affecting complement-mediated bactericidal activity. Adeno-associated virus-mediated CFH silencing compromised these protective effects of ADAMTS7 knockout against complement-mediated renal injuries in vivo. CONCLUSION: ADAMTS7-mediated CFH degradation potentiates complement activation and related renal injuries. ADAMTS7 would be a promising anticomplement therapeutic target that does not increase bacterial infection risk.


Assuntos
Fator H do Complemento , Nefrite Lúpica , Camundongos , Animais , Proteína ADAMTS7 , Fator H do Complemento/metabolismo , Rim/metabolismo , Ativação do Complemento
11.
J Transl Med ; 21(1): 846, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996918

RESUMO

OBJECTIVE: To explore the role and underlying mechanism of Complement Factor H (CFH) in the peripheral and joint inflammation of RA patients. METHODS: The levels of CFH in the serum and synovial fluid were determined by ELISA. The pyroptosis of monocytes was determined by western blotting and flow cytometry. The inflammation cytokine release was tested by ELISA. The cell migration and invasion ability of fibroblast-like synoviocytes (FLS) were tested by Wound healing Assay and transwell assay, respectively. The potential target of CFH was identified by RNA sequencing. RESULTS: CFH levels were significantly elevated in the serum and synovial fluid from RA and associated with high sensitivity C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), and disease activity score 28 (DAS28). TNF-α could inhibit CFH expression, and CFH combined with TNF-α significantly decreased cell death, cleaved-caspase 3, gasdermin E N-terminal (GSDME-N), and inflammatory cytokines release (IL-1ß and IL-6) of RA-derived monocytes. Stimulated with TNF-α increased CFH levels in RA FLS and CFH inhibits the migration, invasion, and TNF-α-induced production of inflammatory mediators, including proinflammatory cytokines (IL-6, IL-8) as well as matrix metalloproteinases (MMPs, MMP1 and MMP3) of RA FLSs. The RNA-seq results showed that CFH treatment induced upregulation of eukaryotic translation initiation factor 3 (EIF3C) in both RA monocytes and FLS. The migration of RA FLSs was promoted and the expressions of IL-6, IL-8, and MMP-3 were enhanced upon EIF3C knockdown under the stimulation of CFH combined with TNF-α. CONCLUSION: In conclusion, we have unfolded the anti-inflammatory roles of CFH in the peripheral and joints of RA, which might provide a potential therapeutic target for RA patients.


Assuntos
Artrite Reumatoide , Fator de Necrose Tumoral alfa , Humanos , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células , Células Cultivadas , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Fator H do Complemento/uso terapêutico , Citocinas/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
PLoS Pathog ; 17(7): e1009801, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324600

RESUMO

Pathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations.


Assuntos
Proteínas de Bactérias/genética , Borrelia burgdorferi/crescimento & desenvolvimento , Doença de Lyme/imunologia , Doença de Lyme/transmissão , Tropismo Viral/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Evolução Biológica , Borrelia burgdorferi/genética , Borrelia burgdorferi/imunologia , Fator H do Complemento/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Evasão da Resposta Imune/fisiologia , Camundongos , Codorniz , Especificidade da Espécie , Carrapatos
13.
PLoS Pathog ; 17(6): e1009655, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34125873

RESUMO

Microbial pathogens bind host complement regulatory proteins to evade the immune system. The bacterial pathogen Neisseria meningitidis, or meningococcus, binds several complement regulators, including human Factor H (FH). FH binding protein (FHbp) is a component of two licensed meningococcal vaccines and in mice FHbp elicits antibodies that inhibit binding of FH to FHbp, which defeat the bacterial evasion mechanism. However, humans vaccinated with FHbp develop antibodies that enhance binding of FH to the bacteria, which could limit the effectiveness of the vaccines. In the present study, we show that two vaccine-elicited antibody fragments (Fabs) isolated from different human subjects increase binding of complement FH to meningococcal FHbp by ELISA. The two Fabs have different effects on the kinetics of FH binding to immobilized FHbp as measured by surface plasmon resonance. The 1.7- and 2.0-Å resolution X-ray crystal structures of the Fabs in complexes with FHbp illustrate that the two Fabs bind to similar epitopes on the amino-terminal domain of FHbp, adjacent to the FH binding site. Superposition models of ternary complexes of each Fab with FHbp and FH show that there is likely minimal contact between the Fabs and FH. Collectively, the structures reveal that the Fabs enhance binding of FH to FHbp by altering the conformations and mobilities of two loops adjacent to the FH binding site of FHbp. In addition, the 1.5 Å-resolution structure of one of the isolated Fabs defines the structural rearrangements associated with binding to FHbp. The FH-enhancing human Fabs, which are mirrored in the human polyclonal antibody responses, have important implications for tuning the effectiveness of FHbp-based vaccines.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Fator H do Complemento/imunologia , Vacinas Meningocócicas/imunologia , Anticorpos Antibacterianos/metabolismo , Fator H do Complemento/metabolismo , Humanos , Infecções Meningocócicas/prevenção & controle , Neisseria meningitidis , Receptores de Complemento/imunologia , Receptores de Complemento/metabolismo , Fatores de Virulência/imunologia
14.
PLoS Pathog ; 17(4): e1009513, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33914847

RESUMO

Bacterial meningitis is a major cause of death and disability in children worldwide. Two human restricted respiratory pathogens, Streptococcus pneumoniae and Haemophilus influenzae, are the major causative agents of bacterial meningitis, attributing to 200,000 deaths annually. These pathogens are often part of the nasopharyngeal microflora of healthy carriers. However, what factors elicit them to disseminate and cause invasive diseases, remain unknown. Elevated temperature and fever are hallmarks of inflammation triggered by infections and can act as warning signals to pathogens. Here, we investigate whether these respiratory pathogens can sense environmental temperature to evade host complement-mediated killing. We show that productions of two vital virulence factors and vaccine components, the polysaccharide capsules and factor H binding proteins, are temperature dependent, thus influencing serum/opsonophagocytic killing of the bacteria. We identify and characterise four novel RNA thermosensors in S. pneumoniae and H. influenzae, responsible for capsular biosynthesis and production of factor H binding proteins. Our data suggest that these bacteria might have independently co-evolved thermosensing abilities with different RNA sequences but distinct secondary structures to evade the immune system.


Assuntos
Infecções por Haemophilus/microbiologia , Haemophilus influenzae/imunologia , Meningites Bacterianas/microbiologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/imunologia , Fatores de Virulência/metabolismo , Cápsulas Bacterianas/metabolismo , Sequência de Bases/genética , Fator H do Complemento/metabolismo , Meio Ambiente , Haemophilus influenzae/genética , Haemophilus influenzae/fisiologia , Nasofaringe/microbiologia , Infecções Pneumocócicas/genética , Polissacarídeos Bacterianos/metabolismo , Streptococcus pneumoniae/fisiologia , Temperatura , Sensação Térmica
15.
Blood ; 138(22): 2185-2201, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34189567

RESUMO

Atypical hemolytic uremic syndrome (aHUS) is a life-threatening thrombotic microangiopathy that can progress, when untreated, to end-stage renal disease. Most frequently, aHUS is caused by complement dysregulation due to pathogenic variants in genes that encode complement components and regulators. Among these genes, the factor H (FH) gene, CFH, presents with the highest frequency (15% to 20%) of variants and is associated with the poorest prognosis. Correct classification of CFH variants as pathogenic or benign is essential to clinical care but remains challenging owing to the dearth of functional studies. As a result, significant numbers of variants are reported as variants of uncertain significance. To address this knowledge gap, we expressed and functionally characterized 105 aHUS-associated FH variants. All FH variants were categorized as pathogenic or benign and, for each, we fully documented the nature of the pathogenicity. Twenty-six previously characterized FH variants were used as controls to validate and confirm the robustness of the functional assays used. Of the remaining 79 uncharacterized variants, only 29 (36.7%) alter FH expression or function in vitro and, therefore, are proposed to be pathogenic. We show that rarity in control databases is not informative for variant classification, and we identify important limitations in applying prediction algorithms to FH variants. Based on structural and functional data, we suggest ways to circumvent these difficulties and, thereby, improve variant classification. Our work highlights the need for functional assays to interpret FH variants accurately if clinical care of patients with aHUS is to be individualized and optimized.


Assuntos
Síndrome Hemolítico-Urêmica Atípica/genética , Fator H do Complemento/genética , Síndrome Hemolítico-Urêmica Atípica/metabolismo , Síndrome Hemolítico-Urêmica Atípica/patologia , Fator H do Complemento/química , Fator H do Complemento/metabolismo , Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Humanos , Modelos Moleculares , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Microb Cell Fact ; 22(1): 259, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104077

RESUMO

BACKGROUND: Komagataella phaffii (Pichia pastoris) is a methylotrophic commercially important non-conventional species of yeast that grows in a fermentor to exceptionally high densities on simple media and secretes recombinant proteins efficiently. Genetic engineering strategies are being explored in this organism to facilitate cost-effective biomanufacturing. Small, stable artificial chromosomes in K. phaffii could offer unique advantages by accommodating multiple integrations of extraneous genes and their promoters without accumulating perturbations of native chromosomes or exhausting the availability of selection markers. RESULTS: Here, we describe a linear "nano"chromosome (of 15-25 kb) that, according to whole-genome sequencing, persists in K. phaffii over many generations with a copy number per cell of one, provided non-homologous end joining is compromised (by KU70-knockout). The nanochromosome includes a copy of the centromere from K. phaffii chromosome 3, a K. phaffii-derived autonomously replicating sequence on either side of the centromere, and a pair of K. phaffii-like telomeres. It contains, within its q arm, a landing zone in which genes of interest alternate with long (approx. 1-kb) non-coding DNA chosen to facilitate homologous recombination and serve as spacers. The landing zone can be extended along the nanochromosome, in an inch-worming mode of sequential gene integrations, accompanied by recycling of just two antibiotic-resistance markers. The nanochromosome was used to express PDI, a gene encoding protein disulfide isomerase. Co-expression with PDI allowed the production, from a genomically integrated gene, of secreted murine complement factor H, a plasma protein containing 40 disulfide bonds. As further proof-of-principle, we co-expressed, from a nanochromosome, both PDI and a gene for GFP-tagged human complement factor H under the control of PAOX1 and demonstrated that the secreted protein was active as a regulator of the complement system. CONCLUSIONS: We have added K. phaffii to the list of organisms that can produce human proteins from genes carried on a stable, linear, artificial chromosome. We envisage using nanochromosomes as repositories for numerous extraneous genes, allowing intensive engineering of K. phaffii without compromising its genome or weakening the resulting strain.


Assuntos
Pichia , Saccharomycetales , Humanos , Animais , Camundongos , Pichia/genética , Pichia/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Saccharomycetales/genética , Recombinação Homóloga , Cromossomos
17.
BJOG ; 130(12): 1473-1482, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37156755

RESUMO

OBJECTIVE: The objective of the study was to investigate the role of genetic variants in complement proteins in pre-eclampsia. DESIGN: In a case-control study involving 609 cases and 2092 controls, five rare variants in complement factor H (CFH) were identified in women with severe and complicated pre-eclampsia. No variants were identified in controls. SETTING: Pre-eclampsia is a leading cause of maternal and fetal morbidity and mortality. Immune maladaptation, in particular, complement activation that disrupts maternal-fetal tolerance leading to placental dysfunction and endothelial injury, has been proposed as a pathogenetic mechanism, but this remains unproven. POPULATION: We genotyped 609 pre-eclampsia cases and 2092 controls from FINNPEC and the national FINRISK cohorts. METHODS: Complement-based functional and structural assays were conducted in vitro to define the significance of these five missense variants and each compared with wild type. MAIN OUTCOME MEASURES: Secretion, expression and ability to regulate complement activation were assessed for factor H proteins harbouring the mutations. RESULTS: We identified five heterozygous rare variants in complement factor H (L3V, R127H, R166Q, C1077S and N1176K) in seven women with severe pre-eclampsia. These variants were not identified in controls. Variants C1077S and N1176K were novel. Antigenic, functional and structural analyses established that four (R127H, R166Q, C1077S and N1176K) were deleterious. Variants R127H and C1077S were synthesised, but not secreted. Variants R166Q and N1176K were secreted normally but showed reduced binding to C3b and consequently defective complement regulatory activity. No defect was identified for L3V. CONCLUSIONS: These results suggest that complement dysregulation due to mutations in complement factor H is among the pathophysiological mechanisms underlying severe pre-eclampsia.


Assuntos
Fator H do Complemento , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Estudos de Casos e Controles , Placenta/metabolismo , Pré-Eclâmpsia/genética , Genótipo
18.
J Immunol ; 206(8): 1784-1792, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811105

RESUMO

Complement factor H (CFH) is the major inhibitor of the alternative pathway of the complement system and is structurally related to beta2-glycoprotein I, which itself is known to bind to ligands, including coagulation factor XI (FXI). We observed reduced complement activation when FXI activation was inhibited in a baboon model of lethal systemic inflammation, suggesting cross-talk between FXI and the complement cascade. It is unknown whether FXI or its activated form, activated FXI (FXIa), directly interacts with the complement system. We explored whether FXI could interact with and inhibit the activity of CFH. We found that FXIa neutralized CFH by cleavage of the R341/R342 bonds. FXIa reduced the capacity of CFH to enhance the cleavage of C3b by factor I and the decay of C3bBb. The binding of CFH to human endothelial cells was also reduced after incubating CFH with FXIa. The addition of either short- or long-chain polyphosphate enhanced the capacity of FXIa to cleave CFH. FXIa also cleaved CFH that was present on endothelial cells and in the secretome from blood platelets. The generation of FXIa in plasma induced the cleavage of CFH. Moreover, FXIa reduced the cleavage of C3b by factor I in serum. Conversely, we observed that CFH inhibited FXI activation by either thrombin or FXIIa. Our study provides, to our knowledge, a novel molecular link between the contact pathway of coagulation and the complement system. These results suggest that FXIa generation enhances the activity of the complement system and thus may potentiate the immune response.


Assuntos
Plaquetas/metabolismo , Fator H do Complemento/metabolismo , Células Endoteliais/metabolismo , Fator XIa/metabolismo , Inflamação/metabolismo , Animais , Coagulação Sanguínea , Complemento C3b/metabolismo , Via Alternativa do Complemento , Fibrinogênio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Papio , Ligação Proteica , Receptor Cross-Talk
19.
Semin Immunol ; 45: 101341, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31757608

RESUMO

The complement system, while being an essential and very efficient effector component of innate immunity, may cause damage to the host and result in various inflammatory, autoimmune and infectious diseases or cancer, when it is improperly activated or regulated. Factor H is a serum glycoprotein and the main regulator of the activity of the alternative complement pathway. Factor H, together with its splice variant factor H-like protein 1 (FHL-1), inhibits complement activation at the level of the central complement component C3 and beyond. In humans, there are also five factor H-related (FHR) proteins, whose function is poorly characterized. While data indicate complement inhibiting activity for some of the FHRs, there is increasing evidence that FHRs have an opposite role compared with factor H and FHL-1, namely, they enhance complement activation directly and also by competing with the regulators FH and FHL-1. This review summarizes the current stand and recent data on the roles of factor H family proteins in health and disease, with focus on the function of FHR proteins.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/metabolismo , Ativação do Complemento/imunologia , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Fator H do Complemento/química , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Suscetibilidade a Doenças , Humanos , Imunomodulação , Ligantes , Família Multigênica , Ligação Proteica , Relação Estrutura-Atividade
20.
Adv Exp Med Biol ; 1415: 9-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440007

RESUMO

Age-related macular degeneration (AMD) is a complex degenerative disease of the retina. Dysfunction of the retinal pigment epithelium (RPE) occurs in early stages of AMD, and progressive RPE atrophy leads to photoreceptor death and visual impairments that ultimately manifest as geographic atrophy (GA), one of the late-stage forms of AMD. AMD is caused by a combination of risk factors including aging, lifestyle choices, and genetic predisposition. A gene variant in the complement factor H gene (CFH) that leads to the Y402H polymorphism in the factor H protein (FH) confers the second highest risk for the development and progression of AMD. FH is a major negative regulator of the alternative pathway of the complement system, and the FH Y402H variant leads to increased complement activation, which is detectable in AMD patients. For this reason, various therapeutic approaches targeting the complement system have been developed, however, so far with very limited or no efficacy. Interestingly, recent studies suggest roles for FH beyond complement regulation. Here, we will discuss the noncanonical functions of FH in RPE cells and highlight the potential implications of those functions for future therapeutic approaches.


Assuntos
Fator H do Complemento , Degeneração Macular , Humanos , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Epitélio Pigmentado da Retina , Degeneração Macular/genética , Degeneração Macular/metabolismo , Ativação do Complemento/genética , Predisposição Genética para Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA