Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 946
Filtrar
1.
Blood ; 140(15): 1710-1722, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767717

RESUMO

γ-Glutamyl carboxylase (GGCX) generates multiple carboxylated Glus (Glas) in vitamin K-dependent (VKD) proteins that are required for their functions. GGCX is processive, remaining bound to VKD proteins throughout multiple Glu carboxylations, and this study reveals the essentiality of processivity to VKD protein function. GGCX mutants (V255M and S300F) whose combined heterozygosity in a patient causes defective clotting and calcification were studied using a novel assay that mimics in vivo carboxylation. Complexes between variant carboxylases and VKD proteins important to hemostasis (factor IX [FIX]) or calcification (matrix Gla protein [MGP]) were reacted in the presence of a challenge VKD protein that could potentially interfere with carboxylation of the VKD protein in the complex. The VKD protein in the complex with wild-type carboxylase was carboxylated before challenge protein carboxylation occurred and became fully carboxylated. In contrast, the V255M mutant carboxylated both forms at the same time and did not completely carboxylate FIX in the complex. S300F carboxylation was poor with both FIX and MGP. Additional studies analyzed FIX- and MGP-derived peptides containing the Gla domain linked to sequences that mediate carboxylase binding. The total amount of carboxylated peptide generated by the V255M mutant was higher than that of wild-type GGCX; however, the individual peptides were partially carboxylated. Analysis of the V255M mutant in FIX HEK293 cells lacking endogenous GGCX revealed poor FIX clotting activity. This study shows that disrupted processivity causes disease and explains the defect in the patient. Kinetic analyses also suggest that disrupted processivity may occur in wild-type carboxylase under some conditions (eg, warfarin therapy or vitamin K deficiency).


Assuntos
Carbono-Carbono Ligases , Vitamina K , Coagulação Sanguínea , Carbono-Carbono Ligases/química , Carbono-Carbono Ligases/genética , Fator IX/metabolismo , Células HEK293 , Humanos , Peptídeos , Proteínas , Vitamina K/metabolismo , Varfarina
2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33397811

RESUMO

Kallikrein (PKa), generated by activation of its precursor prekallikrein (PK), plays a role in the contact activation phase of coagulation and functions in the kallikrein-kinin system to generate bradykinin. The general dogma has been that the contribution of PKa to the coagulation cascade is dependent on its action on FXII. Recently this dogma has been challenged by studies in human plasma showing thrombin generation due to PKa activity on FIX and also by murine studies showing formation of FIXa-antithrombin complexes in FXI deficient mice. In this study, we demonstrate high-affinity binding interactions between PK(a) and FIX(a) using surface plasmon resonance and show that these interactions are likely to occur under physiological conditions. Furthermore, we directly demonstrate dose- and time-dependent cleavage of FIX by PKa in a purified system by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and chromogenic assays. By using normal pooled plasma and a range of coagulation factor-deficient plasmas, we show that this action of PKa on FIX not only results in thrombin generation, but also promotes fibrin formation in the absence of FXII or FXI. Comparison of the kinetics of either FXIa- or PKa-induced activation of FIX suggest that PKa could be a significant physiological activator of FIX. Our data indicate that the coagulation cascade needs to be redefined to indicate that PKa can directly activate FIX. The circumstances that drive PKa substrate specificity remain to be determined.


Assuntos
Bradicinina/metabolismo , Fator IX/metabolismo , Fator XII/metabolismo , Fibrina/metabolismo , Calicreínas/metabolismo , Trombina/metabolismo , Coagulação Sanguínea/fisiologia , Bradicinina/química , Cálcio/química , Cálcio/metabolismo , Cátions Bivalentes , Fator IX/química , Fator XI/química , Fator XI/metabolismo , Fator XII/química , Fibrina/química , Humanos , Calicreínas/química , Cinética , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação Proteica , Trombina/química
3.
Crit Rev Biotechnol ; 43(3): 484-502, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430942

RESUMO

Appropriate treatment of Hemophilia B is vital for patients' quality of life. Historically, the treatment used was the administration of coagulation Factor IX derived from human plasma. Advancements in recombinant technologies allowed Factor IX to be produced recombinantly. Successful recombinant production has triggered a gradual shift from the plasma derived origins of Factor IX, as it provides extended half-life and expanded production capacity. However, the complex post-translational modifications of Factor IX have made recombinant production at scale difficult. Considerable research has therefore been invested into understanding and optimizing the recombinant production of Factor IX. Here, we review the evolution of recombinant Factor IX production, focusing on recent developments in bioprocessing and cell engineering to control its post-translational modifications in its expression from Chinese Hamster Ovary (CHO) cells.


Assuntos
Fator IX , Qualidade de Vida , Cricetinae , Animais , Humanos , Fator IX/metabolismo , Cricetulus , Proteínas Recombinantes/metabolismo , Células CHO , Engenharia Celular
4.
Pediatr Blood Cancer ; 70(6): e30264, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36815588

RESUMO

OBJECTIVE: To evaluate the lifetime cost-effectiveness of recombinant factor IX Fc fusion protein (rFIXFc) and recombinant factor IX (rFIX) for the treatment of hemophilia B (HB) in China. METHODS: We developed a decision-analytic Markov model including three health states: alive, requiring surgery, and dead. This model estimated the lifetime cost and quality-adjusted life-years (QALYs) of prophylaxis in childhood, followed by on-demand treatment in adulthood for moderate-severe to severe HB patients from China's healthcare system perspective. Efficacy data derived from pivotal clinical trials, clinical guideline recommendations, and expert consultation were applied to two scenarios (full dose and low dose). One-way sensitivity analysis and probabilistic sensitivity analysis (PSA) were performed to assess the robustness of the model. OUTCOMES: Lifetime cost, QALYs, and the incremental cost-effectiveness ratio were calculated, and the results were compared with willingness-to-pay (WTP) thresholds of one to three times the gross domestic product per capita of China in 2021 ($12,551-$37,653). RESULTS: RFIXFc was associated with lower cost and more QALYs than rFIX in both scenarios, which suggested that it is a dominant strategy (more effective and cheaper) for moderate-severe to severe HB in China. In the full-dose scenario, rFIXFc saved more money and yielded more QALYs than in the low-dose scenario (low doses are the typical clinical reality in China). PSA demonstrated that rFIXFc had an over 90% probability of being cost-effective with full-dose and low-dose treatment at WTP thresholds of $12,551-$37,653. CONCLUSIONS: Compared with rFIX, rFIXFc appears to be a cost-effective option for the lifetime management of moderate-severe to severe HB patients in China.


Assuntos
Hemofilia A , Hemofilia B , Humanos , Fator IX/metabolismo , Fator IX/uso terapêutico , Hemofilia B/tratamento farmacológico , Análise de Custo-Efetividade , Hemofilia A/tratamento farmacológico , China , Análise Custo-Benefício
5.
PLoS Genet ; 16(4): e1008690, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32267853

RESUMO

Loss-of-function mutations in the human coagulation factor 9 (F9) gene lead to hemophilia B. Here, we dissected the consequences and the pathomechanism of a non-coding mutation (c.2545A>G) in the F9 3' untranslated region. Using wild type and mutant factor IX (FIX) minigenes we revealed that the mutation leads to reduced F9 mRNA and FIX protein levels and to lower coagulation activity of cell culture supernatants. The phenotype could not be compensated by increased transcription. The pathomechanism comprises the de novo creation of a binding site for the spliceosomal component U1snRNP, which is able to suppress the nearby F9 poly(A) site. This second, splicing-independent function of U1snRNP was discovered previously and blockade of U1snRNP restored mutant F9 mRNA expression. In addition, we explored the vice versa approach and masked the mutation by antisense oligonucleotides resulting in significantly increased F9 mRNA expression and coagulation activity. This treatment may transform the moderate/severe hemophilia B into a mild or subclinical form in the patients. This antisense based strategy is applicable to other mutations in untranslated regions creating deleterious binding sites for cellular proteins.


Assuntos
Fator IX/genética , Hemofilia B/genética , Mutação com Perda de Função , RNA Mensageiro/genética , Supressão Genética , Regiões 3' não Traduzidas , Animais , Células CHO , Cricetinae , Cricetulus , Fator IX/metabolismo , Células HEK293 , Células HeLa , Humanos , Oligonucleotídeos Antissenso/genética , Fenótipo , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética
6.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445906

RESUMO

The most common clinical presentation of hemophilia A and hemophilia B is bleeding in large joints and striated muscles. It is unclear why bleeding has a predilection to affect joints and muscles. As muscles and joints are involved in intermittent movement, we explored whether this phenomenon could be associated with an impact on factor VIII and IX levels. Purified proteins and a mouse model were assessed using coagulation assays, Western blot analysis and immuno-staining. Movement caused an increase in thrombin activity and a decrease in factor VIII and factor IX activity. The decrease in factor VIII activity was more significant in the presence of thrombin and during movement. Under movement condition, sodium ions appeared to enhance the activity of thrombin that resulted in decreased factor VIII activity. Unlike factor VIII, the reduction in factor IX levels in the movement condition was thrombin-independent. High factor VIII levels were found to protect factor IX from degradation and vice versa. In mice that were in movement, factor VIII and IX levels decreased in the microcirculation of the muscle tissue compared with other tissues and to the muscle tissue at rest. Movement had no effect on von Willebrand factor levels. Movement induces reduction in factor VIII and IX levels. It enables an increase in the binding of sodium ions to thrombin leading to enhanced thrombin activity and augmented degradation of factor VIII. These data suggest a potential mechanism underlying the tendency of hemophilia patients to bleed in muscles and joints.


Assuntos
Hemofilia A , Hemostáticos , Animais , Camundongos , Fator VIII/metabolismo , Fator IX/metabolismo , Trombina , Hemofilia A/metabolismo , Hemorragia
7.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445943

RESUMO

In contrast to the standard enzyme-replacement therapy, administered from once per 7-14 days to 2-3 times a week in patients with severe hemophilia B, as a result of a single injection, gene therapy can restore F9 gene expression and maintain it for a prolonged time. In clinical research, the approach of delivering a functional copy of a gene using adeno-associated viral (AAV) vectors is widely used. The scientific community is actively researching possible modifications to improve delivery efficiency and expression. In preclinical studies, the possibility of genome editing using CRISPR/Cas9 technology for the treatment of hemophilia B is also being actively studied.


Assuntos
Hemofilia A , Hemofilia B , Humanos , Hemofilia B/terapia , Hemofilia B/tratamento farmacológico , Fator IX/genética , Fator IX/uso terapêutico , Fator IX/metabolismo , Vetores Genéticos/genética , Terapia Genética , Hemofilia A/genética , Dependovirus/genética , Dependovirus/metabolismo
8.
Blood ; 135(10): 755-765, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31971571

RESUMO

Storage lesion-induced, red cell-derived microvesicles (RBC-MVs) propagate coagulation by supporting the assembly of the prothrombinase complex. It has also been reported that RBC-MVs initiate coagulation via the intrinsic pathway. To elucidate the mechanism(s) of RBC-MV-induced coagulation activation, the ability of storage lesion-induced RBC-MVs to activate each zymogen of the intrinsic pathway was assessed in a buffer system. Simultaneously, the thrombin generation (TG) assay was used to assess their ability to initiate coagulation in plasma. RBC-MVs directly activated factor XII (FXII) or prekallikrein, but not FXI or FIX. RBC-MVs initiated TG in normal pooled plasma and in FXII- or FXI-deficient plasma, but not in FIX-deficient plasma, suggesting an alternate pathway that bypasses both FXII and FXI. Interestingly, RBC-MVs generated FIXa in a prekallikrein-dependent manner. Similarly, purified kallikrein activated FIX in buffer and initiated TG in normal pooled plasma, as well as FXII- or FXI-deficient plasma, but not FIX-deficient plasma. Dual inhibition of FXIIa by corn trypsin inhibitor and kallikrein by soybean trypsin inhibitor was necessary for abolishing RBC-MV-induced TG in normal pooled plasma, whereas kallikrein inhibition alone was sufficient to abolish TG in FXII- or FXI-deficient plasma. Heating RBC-MVs at 60°C for 15 minutes or pretreatment with trypsin abolished TG, suggesting the presence of MV-associated proteins that are essential for contact activation. In summary, RBC-MVs activate both FXII and prekallikrein, leading to FIX activation by 2 independent pathways: the classic FXIIa-FXI-FIX pathway and direct kallikrein activation of FIX. These data suggest novel mechanisms by which RBC transfusion mediates inflammatory and/or thrombotic outcomes.


Assuntos
Coagulação Sanguínea/fisiologia , Micropartículas Derivadas de Células/fisiologia , Eritrócitos/ultraestrutura , Fator IX/metabolismo , Testes de Coagulação Sanguínea , Agregação Celular/fisiologia , Comunicação Celular/fisiologia , Humanos , Transdução de Sinais/fisiologia
9.
Biotechnol Lett ; 44(8): 975-984, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35731352

RESUMO

Based on observations indicating that the γ-carboxylase enzyme has a lower affinity for the protein C (PC) propeptide and that the γ-carboxylase region in the PC propeptide has a higher net charge, expression of recombinant chimeric factor IX (FIX) equipped with the PC propeptide was studied. The prepropeptide of FIX was replaced with that of PC by SOEing PCR and after cloning, recombinant pMT-prepro PC/FIX was transfected into insect Drosophila S2 cells. The expression and activity of expressed FIX were analyzed employing antigen and activity analyses 72 h of post-induction with copper. Higher secretion (1.2 fold) and activity (1.6 fold) levels were observed for chimeric prepro- PC/FIX in relation to wild-type FIX. Furthermore, after barium citrate precipitation, the evaluation of fully γ-carboxylated FIX indicated that more than 51% of the total FIX produced with the PC prepropeptide was fully γ-carboxylated, representing a substantial improvement (twofold) over a system employing the native FIX propeptide in which 25% of the protein is fully γ-carboxylated. The data illustrated that the expression of FIX using the PC propeptide led to much higher fully γ-carboxylated material, which is preferred to FIX constructs tolerating the sequence for the native FIX propeptide expressed in heterologous S2 systems.


Assuntos
Carbono-Carbono Ligases , Fator IX , Carbono-Carbono Ligases/metabolismo , Fator IX/genética , Fator IX/metabolismo , Proteínas Recombinantes/metabolismo
10.
Biotechnol Lett ; 44(5-6): 713-728, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35412165

RESUMO

OBJECTIVES: To improve the expression efficiency of recombinant hFIX, by enhancing its γ-carboxylation, which is inhibited by Calumenin (CALU), we used intronic artificial microRNAs (amiRNAs) for the CALU downregulation. METHODS: Two human CALU (hCALU)-specific amiRNAs were designed, validated and inserted within a truncated form of the hFIX intron 1, in either 3'- or 5'-untranslated regions of the hFIX cDNA, in an expression vector. After transfections of a human cell line with the recombinant constructs, processing of the miRNAs confirmed by RT-PCR, using stem-loop primers. The hFIX and hCALU expression assessments were done based on RT-PCR results. The Gamma(γ)-carboxylation of the expressed hFIX was examined by a barium citrate precipitation method, followed by Enzyme-Linked Immunosorbent Assay. RESULTS: Efficient CALU down regulations, with more than 30-fold decrease, occurred in the cells carrying either of the two examined the 3'-located amiRNAs. The CALU downregulation in the same cells doubled the FIX γ-carboxylation, although the transcription of the FIX decreased significantly. On the other hand, while the expression of the amiRNAs from the 5'-located intron had no decreasing effect on the expression level of CALU, the level of hFIX transcription in these cells increased almost twofold compared to the construct without amiRNA. CONCLUSION: The CALU downregulation, consistent with efficient hFIX γ-carboxylation, occurred in the cells carrying either of the two amiRNAs containing constructs, although it was affected by the locations of the amiRNA carrying introns, suggesting a possible need to optimize the conditions for the amiRNAs expression.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Fator IX , MicroRNAs , Linhagem Celular , Fator IX/metabolismo , Vetores Genéticos , Humanos , Íntrons/genética , MicroRNAs/genética , Transfecção
11.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269902

RESUMO

Coagulation factor IX (FIX) is a vitamin K dependent protein and its deficiency causes hemophilia B, an X-linked recessive bleeding disorder. More than 1000 mutations in the F9 gene have been identified in hemophilia B patients. Here, we systematically summarize the structural and functional characteristics of FIX and the pathogenic mechanisms of the mutations that have been identified to date. The mechanisms of FIX deficiency are diverse in these mutations. Deletions, insertions, duplications, and indels generally lead to severe hemophilia B. Those in the exon regions generate either frame shift or inframe mutations, and those in the introns usually cause aberrant splicing. Regarding point mutations, the bleeding phenotypes vary from severe to mild in hemophilia B patients. Generally speaking, point mutations in the F9 promoter region result in hemophilia B Leyden, and those in the introns cause aberrant splicing. Point mutations in the coding sequence can be missense, nonsense, or silent mutations. Nonsense mutations generate truncated FIX that usually loses function, causing severe hemophilia B. Silent mutations may lead to aberrant splicing or affect FIX translation. The mechanisms of missense mutation, however, have not been fully understood. They lead to FIX deficiency, often by affecting FIX's translation, protein folding, protein stability, posttranslational modifications, activation to FIXa, or the ability to form functional Xase complex. Understanding the molecular mechanisms of FIX deficiency will provide significant insight for patient diagnosis and treatment.


Assuntos
Hemofilia A , Hemofilia B , Códon sem Sentido , Fator IX/genética , Fator IX/metabolismo , Hemofilia B/genética , Humanos , Mutação , Fenótipo
12.
Arterioscler Thromb Vasc Biol ; 40(1): 103-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31766871

RESUMO

OBJECTIVES: FXIa (factor XIa) induces clot formation, and human congenital FXI deficiency protects against venous thromboembolism and stroke. In contrast, the role of FXI in hemostasis is rather small, especially compared with FIX deficiency. Little is known about the cause of the difference in phenotypes associated with FIX deficiency and FXI deficiency. We speculated that activation of FIX via the intrinsic coagulation is not solely dependent on FXI(a; activated FXI) and aimed at identifying an FXI-independent FIX activation pathway. Approach and Results: We observed that ellagic acid and long-chain polyphosphates activated the coagulation system in FXI-deficient plasma, as could be demonstrated by measurement of thrombin generation, FIXa-AT (antithrombin), and FXa-AT complex levels, suggesting an FXI bypass route of FIX activation. Addition of a specific PKa (plasma kallikrein) inhibitor to FXI-deficient plasma decreased thrombin generation, prolonged activated partial thromboplastin time, and diminished FIXa-AT and FXa-AT complex formation, indicating that PKa plays a role in the FXI bypass route of FIX activation. In addition, FIXa-AT complex formation was significantly increased in F11-/- mice treated with ellagic acid or long-chain polyphosphates compared with controls and this increase was significantly reduced by inhibition of PKa. CONCLUSIONS: We demonstrated that activation of FXII leads to thrombin generation via FIX activation by PKa in the absence of FXI. These findings may, in part, explain the different phenotypes associated with FIX and FXI deficiencies.


Assuntos
Coagulação Sanguínea/fisiologia , Fator IX/metabolismo , Deficiência do Fator XI/sangue , Fator XI/metabolismo , Calicreína Plasmática/metabolismo , Trombina/metabolismo , Trombose/sangue , Animais , Modelos Animais de Doenças , Deficiência do Fator XI/complicações , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Trombose/etiologia
13.
Arterioscler Thromb Vasc Biol ; 40(12): 3004-3014, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115270

RESUMO

OBJECTIVE: Whether hepatic triglyceride content (HTGC) contributes to hypercoagulability beyond total body fat (TBF) and visceral adipose tissue (VAT) is unclear. We, therefore, aimed to investigate the association between HTGC and coagulation factors (F)I (fibrinogen), VIII, IX, and XI while adjusting for TBF and VAT. Approach and Results: In this cross-sectional analysis of the NEO study (Netherlands Epidemiology of Obesity; n=6671), a random subset of participants underwent magnetic resonance imaging and magnetic resonance spectroscopy to assess VAT and HTGC (n=2580). We excluded participants without complete imaging and coagulation assessment, and with history of liver disease, venous thrombosis, or on anticoagulation. Mean differences in coagulation factor levels across HTGC quartiles were estimated by linear regression adjusted for age, sex, ethnicity, education, alcohol intake, physical activity, smoking, estrogen, and menopause, in addition to TBF and VAT. Among the 1946 participants included, median HTGC was 2.66% (interquartile range: 1.34%-6.27%). Coagulation factor levels increased dose-dependently across HTGC quartiles. Mean differences between the fourth and first quartiles were 14.7 mg/dL (95% CI, 2.1-27.2) for fibrinogen, 6.7 IU/dL (95% CI, 0.5-12.9) for FVIII, 26.1 IU/dL (95% CI, 22.4-29.8) for FIX, and 8.6 IU/dL (95% CI, 4.6-12.6) for FXI. With further adjustment for TBF and VAT, the dose-response association of HTGC with FIX persisted, whereas associations with other factors disappeared. CONCLUSIONS: HTGC was associated with various coagulation factors, of which FIX remained associated with HTGC after adjustment for TBF and VAT. HTGC might contribute to venous thrombosis risk beyond total body and visceral fat through FIX levels.


Assuntos
Fator IX/metabolismo , Fígado/metabolismo , Obesidade/epidemiologia , Triglicerídeos/metabolismo , Trombose Venosa/epidemiologia , Adiposidade , Idoso , Estudos Transversais , Feminino , Humanos , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/fisiopatologia , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Medição de Risco , Fatores de Risco , Trombose Venosa/metabolismo , Trombose Venosa/fisiopatologia
14.
Nature ; 517(7534): 360-4, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25363772

RESUMO

Site-specific gene addition can allow stable transgene expression for gene therapy. When possible, this is preferred over the use of promiscuously integrating vectors, which are sometimes associated with clonal expansion and oncogenesis. Site-specific endonucleases that can induce high rates of targeted genome editing are finding increasing applications in biological discovery and gene therapy. However, two safety concerns persist: endonuclease-associated adverse effects, both on-target and off-target; and oncogene activation caused by promoter integration, even without nucleases. Here we perform recombinant adeno-associated virus (rAAV)-mediated promoterless gene targeting without nucleases and demonstrate amelioration of the bleeding diathesis in haemophilia B mice. In particular, we target a promoterless human coagulation factor IX (F9) gene to the liver-expressed mouse albumin (Alb) locus. F9 is targeted, along with a preceding 2A-peptide coding sequence, to be integrated just upstream to the Alb stop codon. While F9 is fused to Alb at the DNA and RNA levels, two separate proteins are synthesized by way of ribosomal skipping. Thus, F9 expression is linked to robust hepatic albumin expression without disrupting it. We injected an AAV8-F9 vector into neonatal and adult mice and achieved on-target integration into ∼0.5% of the albumin alleles in hepatocytes. We established that F9 was produced only from on-target integration, and ribosomal skipping was highly efficient. Stable F9 plasma levels at 7-20% of normal were obtained, and treated F9-deficient mice had normal coagulation times. In conclusion, transgene integration as a 2A-fusion to a highly expressed endogenous gene may obviate the requirement for nucleases and/or vector-borne promoters. This method may allow for safe and efficacious gene targeting in both infants and adults by greatly diminishing off-target effects while still providing therapeutic levels of expression from integration.


Assuntos
Fator IX/genética , Fator IX/metabolismo , Marcação de Genes/métodos , Hemofilia B/genética , Alelos , Animais , Códon de Terminação/genética , Dependovirus/genética , Dependovirus/fisiologia , Modelos Animais de Doenças , Endonucleases , Feminino , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ribossomos/metabolismo , Albumina Sérica/genética , Transgenes/genética
15.
Mol Ther ; 28(9): 2073-2082, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32559433

RESUMO

Adeno-associated virus (AAV) vectors are a leading platform for gene-based therapies for both monogenic and complex acquired disorders. The success of AAV gene transfer highlights the need to answer outstanding clinical questions of safety, durability, and the nature of the human immune response to AAV vectors. Here, we present longitudinal follow-up data of subjects who participated in the first trial of a systemically delivered AAV vector. Adult males (n = 7) with severe hemophilia B received an AAV2 vector at doses ranging from 8 × 1010 to 2 × 1012 vg/kg to target hepatocyte-specific expression of coagulation factor IX; a subset (n = 4) was followed for 12-15 years post-vector administration. No major safety concerns were observed. There was no evidence of sustained hepatic toxicity or development of hepatocellular carcinoma as assessed by liver transaminase values, serum α-fetoprotein, and liver ultrasound. Subjects demonstrated persistent, increased AAV neutralizing antibodies (NAbs) to the infused AAV serotype 2 (AAV2) as well as all other AAV serotypes tested (AAV5 and AAV8) for the duration of follow-up. These data represent the longest available longitudinal follow-up data of subjects who received intravascular AAV and support the preliminary safety of intravascular AAV administration at the doses tested in adults. Data demonstrate, for the first time, the persistence of high-titer, multi-serotype cross-reactive AAV NAbs for up to 15 years post- AAV vector administration. Our observations are broadly applicable to the development of AAV-mediated gene therapy.


Assuntos
Dependovirus/genética , Fator IX/metabolismo , Técnicas de Transferência de Genes/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Hemofilia B/terapia , Hepatócitos/metabolismo , Infusões Intra-Arteriais/métodos , Transdução de Sinais/efeitos dos fármacos , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Capsídeo/imunologia , Reações Cruzadas , Dependovirus/imunologia , Seguimentos , Terapia Genética/efeitos adversos , Vetores Genéticos/efeitos adversos , Humanos , Infusões Intra-Arteriais/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
16.
Biotechnol Lett ; 43(1): 143-152, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33130980

RESUMO

OBJECTIVE: To develop recombinant factor IX (FIX) variants with augmented clotting activity. RESULTS: We generated three new variants, FIX-YKALW, FIX-ALL and FIX-LLW, expressed in SK-Hep-1 cells and characterized in vitro and in vivo. FIX-YKALW showed the highest antigen expression level among the variants (2.17 µg-mL), followed by FIX-LLW (1.5 µg-mL) and FIX-ALL (0.9 µg-mL). The expression level of FIX variants was two-five fold lower than FIX-wild-type (FIX-WT) (4.37 µg-mL). However, the biological activities of FIX variants were 15-31 times greater than FIX-WT in the chromogenic assay. Moreover, the new variants FIX-YKALW, FIX-LLW and FIX-ALL also presented higher specific activity than FIX-WT (17, 20 and 29-fold higher, respectively). FIX variants demonstrated a better clotting time than FIX-WT. In hemophilia B mice, we observed that FIX-YKALW promoted hemostatic protection. CONCLUSION: We have developed three improved FIX proteins with potential for use in protein replacement therapy for hemophilia B.


Assuntos
Coagulantes , Fator IX , Proteínas Recombinantes , Animais , Coagulação Sanguínea/efeitos dos fármacos , Linhagem Celular , Coagulantes/química , Coagulantes/metabolismo , Coagulantes/farmacologia , Fator IX/química , Fator IX/genética , Fator IX/metabolismo , Fator IX/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
17.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299267

RESUMO

Hemophilia is a monogenic mutational disease affecting coagulation factor VIII or factor IX genes. The palliative treatment of choice is based on the use of safe and effective recombinant clotting factors. Advanced therapies will be curative, ensuring stable and durable concentrations of the defective circulating factor. Results have so far been encouraging in terms of levels and times of expression using mainly adeno-associated vectors. However, these therapies are associated with immunogenicity and hepatotoxicity. Optimizing the vector serotypes and the transgene (variants) will boost clotting efficacy, thus increasing the viability of these protocols. It is essential that both physicians and patients be informed about the potential benefits and risks of the new therapies, and a register of gene therapy patients be kept with information of the efficacy and long-term adverse events associated with the treatments administered. In the context of hemophilia, gene therapy may result in (particularly indirect) cost savings and in a more equitable allocation of treatments. In the case of hemophilia A, further research is needed into how to effectively package the large factor VIII gene into the vector; and in the case of hemophilia B, the priority should be to optimize both the vector serotype, reducing its immunogenicity and hepatotoxicity, and the transgene, boosting its clotting efficacy so as to minimize the amount of vector administered and decrease the incidence of adverse events without compromising the efficacy of the protein expressed.


Assuntos
Terapia Genética/métodos , Hemofilia A/terapia , Hemofilia B/terapia , Animais , Fator IX/genética , Fator IX/metabolismo , Fator VIII/genética , Fator VIII/metabolismo , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia A/patologia , Hemofilia B/genética , Hemofilia B/metabolismo , Hemofilia B/patologia , Humanos
18.
N Engl J Med ; 377(23): 2215-2227, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29211678

RESUMO

BACKGROUND: The prevention of bleeding with adequately sustained levels of clotting factor, after a single therapeutic intervention and without the need for further medical intervention, represents an important goal in the treatment of hemophilia. METHODS: We infused a single-stranded adeno-associated viral (AAV) vector consisting of a bioengineered capsid, liver-specific promoter and factor IX Padua (factor IX-R338L) transgene at a dose of 5×1011 vector genomes per kilogram of body weight in 10 men with hemophilia B who had factor IX coagulant activity of 2% or less of the normal value. Laboratory values, bleeding frequency, and consumption of factor IX concentrate were prospectively evaluated after vector infusion and were compared with baseline values. RESULTS: No serious adverse events occurred during or after vector infusion. Vector-derived factor IX coagulant activity was sustained in all the participants, with a mean (±SD) steady-state factor IX coagulant activity of 33.7±18.5% (range, 14 to 81). On cumulative follow-up of 492 weeks among all the participants (range of follow-up in individual participants, 28 to 78 weeks), the annualized bleeding rate was significantly reduced (mean rate, 11.1 events per year [range, 0 to 48] before vector administration vs. 0.4 events per year [range, 0 to 4] after administration; P=0.02), as was factor use (mean dose, 2908 IU per kilogram [range, 0 to 8090] before vector administration vs. 49.3 IU per kilogram [range, 0 to 376] after administration; P=0.004). A total of 8 of 10 participants did not use factor, and 9 of 10 did not have bleeds after vector administration. An asymptomatic increase in liver-enzyme levels developed in 2 participants and resolved with short-term prednisone treatment. One participant, who had substantial, advanced arthropathy at baseline, administered factor for bleeding but overall used 91% less factor than before vector infusion. CONCLUSIONS: We found sustained therapeutic expression of factor IX coagulant activity after gene transfer in 10 participants with hemophilia who received the same vector dose. Transgene-derived factor IX coagulant activity enabled the termination of baseline prophylaxis and the near elimination of bleeding and factor use. (Funded by Spark Therapeutics and Pfizer; ClinicalTrials.gov number, NCT02484092 .).


Assuntos
Fator IX/genética , Terapia Genética/métodos , Vetores Genéticos , Hemofilia B/terapia , Transgenes , Adolescente , Adulto , Dependovirus/imunologia , Fator IX/metabolismo , Fator IX/uso terapêutico , Vetores Genéticos/administração & dosagem , Hemofilia B/genética , Hemofilia B/metabolismo , Hemorragia/prevenção & controle , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
FASEB J ; 33(3): 3954-3967, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30517034

RESUMO

Adeno-associated viral vectors (AAVs) achieve stable therapeutic expression without long-term toxicity in adults with hemophilia. To avert irreversible complications in congenital disorders producing early pathogenesis, safety and efficacy of AAV-intrauterine gene transfer (IUGT) requires assessment. We therefore performed IUGT of AAV5 or -8 with liver-specific promoter-1 encoding either human coagulation factors IX (hFIX) or X (hFX) into Macaca fascicularis fetuses at ∼0.4 gestation. The initial cohort received 1 × 1012 vector genomes (vgs) of AAV5-hFIX ( n = 5; 0.45 × 1013 vg/kg birth weight), resulting in ∼3.0% hFIX at birth and 0.6-6.8% over 19-51 mo. The next cohort received 0.2-1 × 1013 vg boluses. AAV5-hFX animals ( n = 3; 3.57 × 1013 vg/kg) expressed <1% at birth and 9.4-27.9% up to 42 mo. AAV8-hFIX recipients ( n = 3; 2.56 × 1013 vg/kg) established 4.2-41.3% expression perinatally and 9.8-25.3% over 46 mo. Expression with AAV8-hFX ( n = 6, 3.12 × 1013 vg/kg) increased from <1% perinatally to 9.8-13.4% >35 mo. Low expressers (<1%, n = 3) were postnatally challenged with 2 × 1011 vg/kg AAV5 resulting in 2.4-13.2% expression and demonstrating acquired tolerance. Linear amplification-mediated-PCR analysis demonstrated random integration of 57-88% of AAV sequences retrieved from hepatocytes with no events occurring in or near oncogenesis-associated genes. Thus, early-IUGT in macaques produces sustained curative expression related significantly to integrated AAV in the absence of clinical toxicity, supporting its therapeutic potential for early-onset monogenic disorders.-Chan, J. K. Y., Gil-Farina I., Johana, N., Rosales, C., Tan, Y. W., Ceiler, J., Mcintosh, J., Ogden, B., Waddington, S. N., Schmidt, M., Biswas, A., Choolani, M., Nathwani, A. C., Mattar, C. N. Z. Therapeutic expression of human clotting factors IX and X following adeno-associated viral vector-mediated intrauterine gene transfer in early-gestation fetal macaques.


Assuntos
Dependovirus/genética , Fator IX/genética , Fator X/genética , Terapia Genética/métodos , Idade Gestacional , Animais , Dependovirus/metabolismo , Fator IX/metabolismo , Fator X/metabolismo , Feminino , Técnicas de Transferência de Genes , Terapia Genética/efeitos adversos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Fígado/metabolismo , Macaca fascicularis , Masculino , Útero/metabolismo
20.
Glycoconj J ; 37(4): 471-483, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32378017

RESUMO

Human Factor IX is a highly post-translationally modified protein that is an important clotting factor in the blood coagulation cascade. Functional deficiencies in Factor IX result in the bleeding disorder haemophilia B, which is treated with plasma-derived or recombinant Factor IX concentrates. Here, we investigated the post-translational modifications of human serum-derived Factor IX and report previously undescribed O-linked monosaccharide compositions at serine 141 and a novel site of glycosylation. At serine 141 we observed two monosaccharide compositions, with HexNAc1Hex1NeuAc2 dominant and a low level of HexNAc1Hex1NeuAc1. This O-linked site lies N-terminal to the first cleavage site for the activation peptide, an important region of the protein that is removed to activate Factor IX. The novel site is an N-linked site in the serine protease domain with low occupancy in a non-canonical consensus motif at asparagine 258, observed with a HexNAc4Hex5NeuAc2 monosaccharide composition attached. This is the first reported instance of a site of modification in the serine protease domain. The description of these glycosylation events provides a basis for future functional studies and contributes to structural characterisation of native Factor IX for the production of effective therapeutic biosimilars and biobetters.


Assuntos
Fator IX/metabolismo , Fator IX/análise , Fator IX/isolamento & purificação , Glicosilação , Humanos , Espectrometria de Massas , Monossacarídeos/análise , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA