RESUMO
Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.
Assuntos
Interações Hospedeiro-Patógeno , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Internalização do Vírus , Animais , Especificidade de Anticorpos/imunologia , Sequência de Bases , Encéfalo/patologia , Encéfalo/virologia , Sistemas CRISPR-Cas/genética , Membrana Celular/metabolismo , Células Cultivadas , Glicoproteínas/metabolismo , Glicosaminoglicanos/metabolismo , Glicosilação , Humanos , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/metabolismo , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Glicoproteínas de Membrana/metabolismo , Camundongos , Ligação Proteica , Desnaturação Proteica , Febre do Vale de Rift/patologia , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/imunologiaRESUMO
Rift Valley fever virus (RVFV) is an encephalitic bunyavirus that can infect neurons in the brain. There are no approved therapeutics that can protect from RVFV encephalitis. Innate immunity, the first line of defense against infection, canonically antagonizes viruses through interferon signaling. We found that interferons did not efficiently protect primary cortical neurons from RVFV, unlike other cell types. To identify alternative neuronal antiviral pathways, we screened innate immune ligands and discovered that the TLR2 ligand Pam3CSK4 inhibited RVFV infection, and other bunyaviruses. Mechanistically, we found that Pam3CSK4 blocks viral fusion, independent of TLR2. In a mouse model of RVFV encephalitis, Pam3CSK4 treatment protected animals from infection and mortality. Overall, Pam3CSK4 is a bunyavirus fusion inhibitor active in primary neurons and the brain, representing a new approach toward the development of treatments for encephalitic bunyavirus infections.
Assuntos
Lipopeptídeos , Neurônios , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Camundongos , Lipopeptídeos/farmacologia , Febre do Vale de Rift/virologia , Febre do Vale de Rift/prevenção & controle , Neurônios/metabolismo , Neurônios/virologia , Camundongos Endogâmicos C57BL , Humanos , Imunidade Inata/efeitos dos fármacos , Encefalite Viral/virologia , Encefalite Viral/imunologia , Encefalite Viral/prevenção & controle , Encefalite Viral/tratamento farmacológico , Antivirais/farmacologiaRESUMO
Rift Valley fever virus (RVFV) could cause an emergency illness characterized by fever, muscle pain, and even death in humans or ruminants. However, there are no approved antiviral drugs that prevent or treat RVFV infection. While therapeutic antibodies have shown promising potential for prevention or treatment in several studies, many studies are ongoing, especially in the field of infectious diseases. Among these studies, the mRNA-LNP platform shows great potential for application, following the COVID-19 pandemic. Previously, we have obtained a neutralizing antibody against RVFV, which was named A38 protein and verified to have a high binding and neutralization ability. In this study, we aimed to identify an effectively optimized sequence and expressed the prioritized mRNA-encoded antibody in vitro. Notably, we effectively expressed mRNA-encoded protein and used the mRNA-LNP platform to generate A38-mRNA-LNP. Pharmacokinetic experiments were conducted in vivo and set up in two groups of mRNA-A38 group and A38 protein group, which were derived from mRNA-LNP and plasmid DNA-expressed proteins, respectively. A38-mRNA-LNPs were administrated by intramuscular injection, A38 proteins were administrated by intravenous administration, and their unique ability to maintain long-lasting protein concentrations by mRNA-encoded protein was demonstrated with the mRNA-encoded protein providing a longer circulating half-life compared to injection of the free A38 protein. These preclinical data on the mRNA-encoded antibody highlighted its potential to prevent infectious diseases in the future.
Assuntos
Doenças Transmissíveis , Lipossomos , Nanopartículas , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Vírus da Febre do Vale do Rift/genética , Febre do Vale de Rift/prevenção & controle , Pandemias , Anticorpos AntiviraisRESUMO
Rift Valley Fever Virus (RVFV) is an arbovirus that circulates among animals and can be transmitted to humans. Mosquitoes are the primary vectors that allow RVFV to spread vertically and horizontally. Egypt was exposed to frequent outbreaks with devastating economic consequences. RVFV has a high incidence of worldwide dissemination and no specific vaccine or therapy. Linear Human Cathelicidin (LL-37), is a natural antimicrobial peptide with antiviral activity against numerous viruses. In addition to immunomodulatory effects, LL-37 directly influences viral encapsulation. This study aimed to evaluate the antiviral activity of LL-37 against RVFV in vitro. The post-entry and pre-incubation of LL-37 within Vero cells were assessed in the absence and presence of RVFV. LL-37 activity was assessed using a TCID50 endpoint test, qRT-PCR, and a western blot. When genomic RVFV was quantified, it resulted in a 48% direct inactivation of the viral envelope and a 36% reduction when the virus was pre-incubated with LL-37 before infection. LL-37 decreased viral infection by 75% and protected Vero cells against RVFV infection by 47% at a 1.25 µg/ml dosage. These findings imply that LL-37 exerts antiviral efficacy against RVFV by restricting virus entrance through direct disruption of the virus envelope and indirectly by triggering an immunological response. The effect of LL-37 is time-dependent. As a result, LL-37 may provide rapid and affordable therapies for RVFV infection in Egypt, both during outbreaks and as a preventive strategy.
Assuntos
Peptídeos Catiônicos Antimicrobianos , Antivirais , Catelicidinas , Vírus da Febre do Vale do Rift , Chlorocebus aethiops , Células Vero , Animais , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Egito , Humanos , Febre do Vale de Rift/tratamento farmacológico , Febre do Vale de Rift/prevenção & controleRESUMO
BACKGROUND: The live-attenuated Rift Valley Fever Smithburn (SB) vaccine is one of the oldest products widely used in ruminants for control of RVF infections. Vaccinations with RVF Smithburn result in residual pathogenic effect and is limited for use in non-pregnant animals. Commercially available RVFV inactivated vaccines are considered safer options to control the disease. These products are prepared from virulent RVFV isolates and present occupational safety concerns. This research study evaluates the ability of an inactivated SB vaccine strain to elicit neutralising antibody response in sheep. METHODS: The RVF Smithburn vaccine was inactivated with binary ethylenimine at 37 °C. Inactivated RVFV cultures were adjuvanted with Montande™ Gel-01 and aluminium hydroxide (Al (OH)3) gel for immunogenicity and safety determination in sheep. The commercial RVF inactivated vaccine and a placebo were included as positive and negative control groups, respectively. RESULTS: Inactivated RVFV vaccine formulations were safe with all animals showing no clinical signs of RVFV infection and temperature reactions following prime-boost injections. The aluminium hydroxide formulated vaccine induced an immune response as early as 14 days post primary vaccination with neutralising antibody titre of 1:20 and a peak antibody titre of 1:83 was reached on day 56. A similar trend was observed in the animal group vaccinated with the commercial inactivated RVF vaccine obtaining the highest antibody titre of 1:128 on day 56. The neutralizing antibody levels remained within a threshold for the duration of the study. Merino sheep vaccinated with Montanide™ Gel-01-Smithburn were characterised with overall lower immune response when compared to aluminium hydroxide vaccine emulsions. CONCLUSIONS: These finding suggests that the inactivated RVF Smithburn vaccine strain adjuvanted with aluminium-hydroxide can be used an alternative to the products prepared from virulent RVFV isolates for protection of ruminants against the disease. The vaccine can further be evaluated for safety in pregnant ewes.
Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Vacinas Virais , Animais , Feminino , Hidróxido de Alumínio , Anticorpos Neutralizantes , Anticorpos Antivirais , Febre do Vale de Rift/prevenção & controle , Ruminantes , Ovinos , Doenças dos Ovinos/prevenção & controle , Vacinas Atenuadas , Vacinas de Produtos Inativados/efeitos adversosRESUMO
Rift Valley fever virus (RVFV) is a member of the Phlebovirus genus, one of the 20 genera in the Phenuiviridae family. RVFV causes disease in animals and humans and is transmitted by sandflies or ticks. However, research into RVFV is limited by the requirement for biosafety level 3 (BSL-3) containment. Pseudotyped virus overcomes this limitation as it can be handled in a BSL-2 environment. Pseudotyped RVFV possesses an identical envelope protein structure to that of the authentic virus, simulating the same process of receptor binding and membrane fusion to host cells. Pseudotyped phleboviruses are therefore useful tools to study the infection mechanism of these viruses and for the screening of inhibitory drugs and the development of therapeutic monoclonal antibodies.
Assuntos
Phlebovirus , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Phlebovirus/genética , Febre do Vale de Rift/prevenção & controle , Pseudotipagem Viral , Vírus da Febre do Vale do Rift/genéticaRESUMO
Rift Valley fever (RVF) is an emerging, zoonotic, arboviral hemorrhagic fever threatening livestock and humans mainly in Africa. RVF is of global concern, having expanded its geographical range over the last decades. The impact of control measures on epidemic dynamics using empirical data has not been assessed. Here, we fitted a mathematical model to seroprevalence livestock and human RVF case data from the 2018-2019 epidemic in Mayotte to estimate viral transmission among livestock, and spillover from livestock to humans through both direct contact and vector-mediated routes. Model simulations were used to assess the impact of vaccination on reducing the epidemic size. The rate of spillover by direct contact was about twice as high as vector transmission. Assuming 30% of the population were farmers, each transmission route contributed to 45% and 55% of the number of human infections, respectively. Reactive vaccination immunizing 20% of the livestock population reduced the number of human cases by 30%. Vaccinating 1 mo later required using 50% more vaccine doses for a similar reduction. Vaccinating only farmers required 10 times as more vaccine doses for a similar reduction in human cases. Finally, with 52.0% (95% credible interval [CrI] [42.9-59.4]) of livestock immune at the end of the epidemic wave, viral reemergence in the next rainy season (2019-2020) is unlikely. Coordinated human and animal health surveillance, and timely livestock vaccination appear to be key to controlling RVF in this setting. We furthermore demonstrate the value of a One Health quantitative approach to surveillance and control of zoonotic infectious diseases.
Assuntos
Febre do Vale de Rift/epidemiologia , Zoonoses/epidemiologia , Animais , Comores/epidemiologia , Epidemias , Humanos , Gado/virologia , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/isolamento & purificação , Vírus da Febre do Vale do Rift/fisiologia , Estações do Ano , Estudos Soroepidemiológicos , Vacinação , Vacinas Virais/administração & dosagem , Zoonoses/transmissão , Zoonoses/virologiaRESUMO
This work analyzes the immunogenicity of six genetically engineered constructs based on elastin-like recombinamers (ELRs) fused to the Gn glycoprotein from Rift Valley fever virus (RVFV). Upon transfection, all constructs showed no effect on cell viability. While fusion constructs including ELR blocks containing hydrophobic amino acids (alanine or isoleucine) did not increase the expression of viral Gn in eukaryotic cells, glutamic acid- or valine-rich fusion proteins showed enhanced expression levels compared with the constructs encoding the viral antigen alone. However, in vivo DNA plasmid immunization assays determined that the more hydrophobic constructs reduced viremia levels after RVFV challenge to a higher extent than glutamic- or valine-rich encoding plasmids and were better inducers of cellular immunity as judged by in vitro restimulation experiments. Although the Gn-ELR fusion constructs did not surpass the protective efficacy of a plasmid vaccine expressing nonfused Gn, our results warrant further experiments directed to take advantage of the immunomodulatory potential of ELR biomaterials for improving vaccines against infectious diseases.
Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Vacinas de DNA , Vacinas Virais , Animais , Anticorpos Antivirais , Elastina/genética , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , Ovinos , Doenças dos Ovinos/prevenção & controle , Valina , Vacinas Virais/genéticaRESUMO
Rift Valley fever virus (RVFV) is an arbovirus that causes disease in livestock and humans in Africa and the Middle East. While human disease is typically mild and self-limiting, some individuals develop severe manifestations, such as hepatitis, hemorrhagic fever, or encephalitis. Encephalitis occurs 2 to 3 weeks after acute illness; therefore, we hypothesized that it was a result of an inadequate adaptive immunity. To test this hypothesis in vivo, we used an attenuated virus (DelNSsRVFV) that does not typically cause disease in mice. We first characterized the normal immune response to infection with DelNSsRVFV in immunocompetent mice and noted expansion of natural killer cells and monocytes, as well as activation of both CD8 and CD4 T cells. Depleting C57BL/6 mice of CD4 T cells prior to DelNSsRVFV infection resulted in encephalitis in 30% of the mice; in encephalitic mice, we noted infiltration of T cells and inflammatory monocytes into the brain. CD4 and CD8 codepletion in C57BL/6 mice, as well as CD4 depletion in CCR2 knockout mice, increased the frequency of encephalitis, demonstrating that these cell types normally contributed to the prevention of disease. Encephalitic mice had similar viral RNA loads in the brain regardless of which cell types were depleted, suggesting that CD4 T cells, CD8 T cells, and inflammatory monocytes did little to control viral replication in the brain. CD4-depleted mice exhibited diminished humoral and T cell memory responses, suggesting that these immune mechanisms contributed to peripheral control of virus, thus preventing infection of the brain.IMPORTANCE RVFV is found in Africa and the Middle East and is transmitted by mosquitos or through contact with infected animals. Infected individuals can develop mild disease or more severe forms, such as hepatitis or encephalitis. In order to understand why some individuals develop encephalitis, we first need to know which immune functions protect those who do not develop this form of disease. In this study, we used a mouse model of RVFV infection to demonstrate that CD4 T cells, CD8 T cells, and monocytes all contribute to prevention of encephalitis. Their likely mechanism of action is preventing RVFV from ever reaching the brain.
Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Encefalite Viral/prevenção & controle , Monócitos/metabolismo , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Encefalite Viral/imunologia , Imunidade Humoral , Imunidade Inata , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR2/genética , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/patogenicidadeRESUMO
The aim of this work was to evaluate the immunogenicity and efficacy of DNA and MVA vaccines encoding the RVFV glycoproteins Gn and Gc in an ovine model of RVFV infection. Adult sheep of both sexes were challenged 12 weeks after the last immunization and clinical, virological, biochemical and immunological consequences, were analyzed. Strategies based on immunization with homologous DNA or heterologous DNA/MVA prime-boost were able to induce a rapid in vitro neutralizing antibody response as well as IFNγ production after in vitro virus specific re-stimulation. In these animals we observed reduced viremia levels and less clinical signs when compared with mock-immunized controls. In contrast, sheep inoculated with a homologous MVA prime-boost showed increased viremia correlating with the absence of detectable neutralizing antibody responses, despite of inducing cellular responses after the last immunization. However, faster induction of neutralizing antibodies and IFNγ production after challenge were found in this group when compared to the mock vaccinated group, indicative of a primed immune response. In conclusion, these results suggest that vaccination strategies based on DNA priming were able to mount and maintain specific anti-RVFV glycoprotein immune responses upon homologous or heterologous booster doses, warranting further optimization in large animal models of infection.
Assuntos
Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Doenças dos Ovinos/prevenção & controle , Vacinação/veterinária , Vacinas de DNA/farmacologia , Vacinas Virais/farmacologia , Animais , Feminino , Masculino , Febre do Vale de Rift/virologia , Ovinos , Doenças dos Ovinos/virologiaRESUMO
Rift Valley fever virus (RVFV) is an arthropod-borne bunyavirus that can cause serious and fatal disease in humans and animals. RVFV is a negative-sense RNA virus of the Phlebovirus genus in the Bunyaviridae family. The main envelope RVFV glycoproteins, Gn and Gc, are encoded on the M segment of RVFV and known inducers of protective immunity. In an attempt to develop a safe and efficacious RVF vaccine, we constructed and tested a vectored equine herpesvirus type 1 (EHV-1) vaccine that expresses RVFV Gn and Gc. The Gn and Gc genes were custom-synthesized after codon optimization and inserted into EHV-1 strain RacH genome. The rH_Gn-Gc recombinant virus grew in cultured cells with kinetics that were comparable to those of the parental virus and stably expressed Gn and Gc. Upon immunization of sheep, the natural host, neutralizing antibodies against RVFV were elicited by rH_Gn-Gc and protective titers reached to 1:320 at day 49 post immunization but not by parental EHV-1, indicating that EHV-1 is a promising vector alternative in the development of a safe marker RVFV vaccine.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vetores Genéticos , Herpesvirus Equídeo 1/genética , Vírus da Febre do Vale do Rift/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/genética , Ovinos , Doenças dos Ovinos/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genéticaRESUMO
BACKGROUND: On December 8th, 2015, World Health Organization published a priority list of eight pathogens expected to cause severe outbreaks in the near future. To better understand global research trends and characteristics of publications on these emerging pathogens, we carried out this bibliometric study hoping to contribute to global awareness and preparedness toward this topic. METHOD: Scopus database was searched for the following pathogens/infectious diseases: Ebola, Marburg, Lassa, Rift valley, Crimean-Congo, Nipah, Middle Eastern Respiratory Syndrome (MERS), and Severe Respiratory Acute Syndrome (SARS). Retrieved articles were analyzed to obtain standard bibliometric indicators. RESULTS: A total of 8619 journal articles were retrieved. Authors from 154 different countries contributed to publishing these articles. Two peaks of publications, an early one for SARS and a late one for Ebola, were observed. Retrieved articles received a total of 221,606 citations with a mean ± standard deviation of 25.7 ± 65.4 citations per article and an h-index of 173. International collaboration was as high as 86.9%. The Centers for Disease Control and Prevention had the highest share (344; 5.0%) followed by the University of Hong Kong with 305 (4.5%). The top leading journal was Journal of Virology with 572 (6.6%) articles while Feldmann, Heinz R. was the most productive researcher with 197 (2.3%) articles. China ranked first on SARS, Turkey ranked first on Crimean-Congo fever, while the United States of America ranked first on the remaining six diseases. Of retrieved articles, 472 (5.5%) were on vaccine - related research with Ebola vaccine being most studied. CONCLUSION: Number of publications on studied pathogens showed sudden dramatic rise in the past two decades representing severe global outbreaks. Contribution of a large number of different countries and the relatively high h-index are indicative of how international collaboration can create common health agenda among distant different countries.
Assuntos
Bibliometria/história , Doenças Transmissíveis/epidemiologia , Surtos de Doenças/prevenção & controle , Pesquisa/tendências , Organização Mundial da Saúde/organização & administração , Animais , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Infecções por Coronavirus/complicações , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Febre Hemorrágica da Crimeia/complicações , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/prevenção & controle , Doença pelo Vírus Ebola/complicações , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , História do Século XX , História do Século XXI , Humanos , Febre Lassa/complicações , Febre Lassa/epidemiologia , Febre Lassa/prevenção & controle , Doença do Vírus de Marburg/complicações , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/prevenção & controle , Vírus Nipah/patogenicidade , Pesquisa/estatística & dados numéricos , Febre do Vale de Rift/complicações , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/prevenção & controle , Síndrome Respiratória Aguda Grave/complicações , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/prevenção & controleRESUMO
On March 9, 2016, a male butcher from Kabale District, Uganda, aged 45 years, reported to the Kabale Regional Referral Hospital with fever, fatigue, and headache associated with black tarry stools and bleeding from the nose. One day later, a student aged 16 years from a different sub-county in Kabale District developed similar symptoms and was admitted to the same hospital. The student also had a history of contact with livestock. Blood specimens collected from both patients were sent for testing for Marburg virus disease, Ebola virus disease, Rift Valley fever (RVF), and Crimean Congo Hemorrhagic fever at the Uganda Virus Research Institute, as part of the viral hemorrhagic fevers surveillance program. The Uganda Virus Research Institute serves as the national viral hemorrhagic fever reference laboratory and hosts the national surveillance program for viral hemorrhagic fevers, in collaboration with the CDC Viral Special Pathogens Branch and the Uganda Ministry of Health.
Assuntos
Surtos de Doenças/prevenção & controle , Vigilância da População , Febre do Vale de Rift/diagnóstico , Febre do Vale de Rift/prevenção & controle , Adolescente , Animais , Evolução Fatal , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Profissionais , Vírus da Febre do Vale do Rift/isolamento & purificação , Uganda/epidemiologiaRESUMO
BACKGROUND: Rift Valley fever is an emerging zoonotic viral disease, enzootic and endemic in Africa and the Arabian Peninsula, which poses a significant threat to both human and animal health. The disease is most severe in ruminants causing abortions in pregnant animals, especially sheep animals and high mortality in young populations. High mortality rates and severe clinical manifestation have also been reported among camel populations in Africa, to attend however none of the currently available live vaccines against RVF have been tested for safety and efficacy in this species. In this study, the safety and efficacy (through a neutralizing antibody response) of the thermostable live attenuated RVF CL13T vaccine were evaluated in camels in two different preliminary experiments involving 16 camels, (that 12 camels and 4 pregnant camels). RESULTS: The study revealed that the CL13T vaccine was safe to use in camels and no abortions or teratogenic effects were observed. The single dose of the vaccine stimulated a strong and long-lasting neutralizing antibody response for up to 12 months. CONCLUSION: The presence of neutralization antibodies is likely to correlate with protection; however protection would need to be confirmed by challenge experiments using the virulent RVF virus.
Assuntos
Anticorpos Antivirais/sangue , Camelus , Vírus da Febre do Vale do Rift/imunologia , Vacinas Virais/normas , Animais , Anticorpos Neutralizantes/sangue , Feminino , Gravidez , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/prevenção & controle , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/normas , Vacinas Virais/imunologiaRESUMO
In this work we have tested the potential antiviral activity of silver nanoparticles formulated as Argovit™ against Rift Valley fever virus (RVFV). The antiviral activity of Argovit was tested on Vero cell cultures and in type-I interferon receptor deficient mice (IFNAR (-/-) mice) by two different approaches: (i) different dilutions of Argovit were added to previously infected cells or administrated to animals infected with a lethal dose of virus; (ii) virus was pre-incubated with different dilutions of Argovit before inoculation in mice or cells. Though the ability of silver nanoparticles to control an ongoing RVFV infection in the conditions tested was limited, the incubation of virus with Argovit before the infection led to a reduction of the infectivity titers both in vitro and in vivo. These results reveal the potential application of silver nanoparticles to control the infectivity of RVFV, which is an important zoonotic pathogen.
Assuntos
Antivirais/farmacologia , Nanopartículas/uso terapêutico , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Prata/uso terapêutico , Animais , Camundongos , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/patogenicidadeRESUMO
Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease affecting domestic and wild ruminants, camels and humans. The causative agent of RVF, the RVF virus (RVFV), has the capacity to cause large and severe outbreaks in animal and human populations and to cross significant natural geographic barriers. Rift Valley fever is usually inapparent in non-pregnant adult animals, but pregnant animals and newborns can be severely affected; outbreaks are characterised by a sudden onset of abortions and high neonatal mortality. The majority of human infections are subclinical or associated with moderate to severe, non-fatal, febrile illness, but some patients may develop a haemorrhagic syndrome and/or ocular and neurological lesions. In both animals and humans, the primary site of RVFV replication and tissue pathology is the liver. Outbreaks of RVF are associated with persistent high rainfalls leading to massive flooding and the emergence of large numbers of competent mosquito vectors that transmit the virus to a wide range of susceptible vertebrate species. Outbreaks of RVF have devastating economic effects on countries for which animal trade constitutes the main source of national revenue. The propensity of the virus to spread into new territories and re-emerge in traditionally endemic regions, where it causes large outbreaks in human and animal populations, presents a formidable challenge for public and veterinary health authorities. The presence of competent mosquito vectors in RVF-free countries, the wide range of mammals susceptible to the virus, altering land use, the global changes in climate, and increased animal trade and travel are some of the factors which might contribute to international spread of RVF.
Assuntos
Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift , Animais , Surtos de Doenças/veterinária , Especificidade de Hospedeiro , Humanos , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/transmissãoRESUMO
Rift Valley fever is a mosquito-borne zoonotic disease of domestic ruminants. This disease causes abortions in pregnant animals, and it has a high mortality rate in newborn animals. Recently, a Rift Valley fever virus (RVFV) outbreak in the Arabian Peninsula increased its potential spread to new regions worldwide. In non-endemic or disease-free countries, early detection and surveillance are important for preventing the introduction of RVFV. In this study, a serological surveillance was conducted to detect antibodies against RVFV. A total of 2382 serum samples from goats and cattle were randomly collected from nine areas in South Korea from 2011 to 2013. These samples were tested for antibodies against RVFV, using commercial ELISA kits. None of the goats and cattle were positive for antibodies against RVFV. This finding suggests that this disease is not present in South Korea, and furthermore presents the evidence of the RVFV-free status of this country.
Assuntos
Aborto Animal/epidemiologia , Surtos de Doenças/veterinária , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Aborto Animal/sangue , Aborto Animal/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Bovinos , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Cabras , Masculino , Gravidez , República da Coreia/epidemiologia , Febre do Vale de Rift/sangue , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologiaRESUMO
The report discusses the research into the impact of some factors, especially the passage in a suspension of continuous cells BHK-21/13 and storage at different temperatures, upon immunobiological characteristics of the Rift Valley fever (RVF) virus strain 1974-VNIIVViM. The limits for the passage levels and optimal storage conditions providing maximal infectious and immunogenic activity, as well as protection of the attenuated RVF strain 1974- VNIIVViM, were determined. It was found that the RVF virus growth in VHK-21123 cell suspension in the course of 20 consecutive passages and storage at -50 degrees C for 1 to 2 years did not reduce any infectious, immunogenic or protective characteristics of the virus, It was also shown that the RVF virus strain 1974-VNIIVViM could be stored at the following temperature ranges: 1 month at 4 to 6 degrees C, 4 months at -10 to -12 degrees C, 6 months at -20 degrees C, and up to 2 years at -50 degrees C.
Assuntos
Criopreservação , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Vacinas Virais/farmacologia , Animais , Cricetinae , Camundongos , Vírus da Febre do Vale do Rift/patogenicidade , Fatores de Tempo , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/farmacologia , Vacinas Virais/imunologiaRESUMO
Replicon-particle-based vaccines combine the efficacy of live-attenuated vaccines with the safety of inactivated or subunit vaccines. Recently, we developed Rift Valley fever virus (RVFV) replicon particles, also known as nonspreading RVFV (NSR), and demonstrated that a single vaccination with these particles can confer sterile immunity in target animals. NSR particles can be produced by transfection of replicon cells, which stably maintain replicating RVFV S and L genome segments, with an expression plasmid encoding the RVFV glycoproteins, Gn and Gc, normally encoded by the M-genome segment. Here, we explored the possibility to produce NSR with the use of a helper virus. We show that replicon cells infected with a Newcastle disease virus expressing Gn and Gc (NDV-GnGc) were able to produce high levels of NSR particles. In addition, using reverse genetics and site-directed mutagenesis, we were able to create an NDV-GnGc variant that lacks the NDV fusion protein and contains two amino acid substitutions in, respectively, Gn and HN. The resulting virus uses a unique entry pathway that facilitates the efficient production of NSR in a one-component system. The novel system provides a promising alternative for transfection-based NSR production.