RESUMO
BACKGROUND: The escalating impacts of global warming intensify the detrimental effects of heat stress on crop growth and yield. Among the earliest and most vulnerable sites of damage is Photosystem II (PSII). Plants exposed to recurring high temperatures develop heat stress memory, a phenomenon that enables them to retain information from previous stress events to better cope with subsequent one. Understanding the components and regulatory networks associated with heat stress memory is crucial for the development of heat-resistant crops. RESULTS: Physiological assays revealed that heat priming (HP) enabled tall fescue to possess higher Photosystem II photochemical activity when subjected to trigger stress. To investigate the underlying mechanisms of heat stress memory, we performed comparative proteomic analyses on tall fescue leaves at S0 (control), R4 (primed), and S5 (triggering), using an integrated approach of Tandem Mass Tag (TMT) labeling and Liquid Chromatography-Mass Spectrometry. A total of 3,851 proteins were detected, with quantitative information available for 3,835 proteins. Among these, we identified 1,423 differentially abundant proteins (DAPs), including 526 proteins that were classified as Heat Stress Memory Proteins (HSMPs). GO and KEGG enrichment analyses revealed that the HSMPs were primarily associated with the "autophagy" in R4 and with "PSII repair", "HSP binding", and "peptidase activity" in S5. Notably, we identified 7 chloroplast-localized HSMPs (HSP21, DJC77, EGY3, LHCA4, LQY1, PSBR and DEGP8, R4/S0 > 1.2, S5/S0 > 1.2), which were considered to be effectors linked to PSII heat stress memory, predominantly in cluster 4. Protein-protein interaction (PPI) analysis indicated that the ubiquitin-proteasome system, with key nodes at UPL3, RAD23b, and UCH3, might play a role in the selective retention of memory effectors in the R4 stage. Furthermore, we conducted RT-qPCR validation on 12 genes, and the results showed that in comparison to the S5 stage, the R4 stage exhibited reduced consistency between transcript and protein levels, providing additional evidence for post-transcriptional regulation in R4. CONCLUSIONS: These findings provide valuable insights into the establishment of heat stress memory under recurring high-temperature episodes and offer a conceptual framework for breeding thermotolerant crops with improved PSII functionality.
Assuntos
Resposta ao Choque Térmico , Complexo de Proteína do Fotossistema II , Proteômica , Termotolerância , Complexo de Proteína do Fotossistema II/metabolismo , Proteômica/métodos , Festuca/metabolismo , Festuca/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteoma/metabolismoRESUMO
BACKGROUND: Festuca kryloviana is a significant native grass species in the Qinghai Lake region, and its low emergence rate is a primary factor limiting the successful establishment of cultivated grasslands. The region's arid and low-rainfall climate characteristics result in reduced soil moisture content at the surface. Despite the recognized impact of water availability on plant growth, the specific role of moisture in seedling development remains not fully elucidated. This study aims to investigate the germination rate and seedling growth velocity of F. kryloviana seeds under varying moisture conditions, and to integrate physiological and transcriptomic analyses of seedlings under these conditions to reveal the mechanisms by which water influences seedling development. RESULTS: The emergence rate of F. kryloviana seedlings exhibited an initial increase followed by a decrease with increasing moisture content. The highest emergence rate, reaching 75%, was observed under 20% soil moisture conditions. By the eighth day of the experiment, the lengths of the plumules and radicles under the optimal emergence rate (full water, FW) were 21.82% and 10.87% longer, respectively, than those under closely matching the soil moisture content during the background survey (stress water, SW). The differential development of seedlings under varying moisture regimes is attributed to sugar metabolism within the seeds and the accumulation of abscisic acid (ABA). At FW conditions, enhanced sugar metabolism, which generates more energy for seedling development, is facilitated by higher activities of α-amylase, sucrose synthase, and trehalose-6-phosphate synthase compared to SW conditions. This is reflected at the transcriptomic level with upregulated expression of the α-amylase (AMY2) gene and trehalose-6-phosphate synthase (TPS6), while genes associated with ABA signaling and transduction are downregulated. Additionally, under FW conditions, the expression of genes related to the chloroplast thylakoid photosystems, such as photosystem II (PSII) and photosystem I (PSI), is upregulated, enhancing the seedlings' light-capturing ability and photosynthetic efficiency, thereby improving their autotrophic capacity. Furthermore, FW treatment enhances the expression of the non-enzymatic antioxidant system, promoting metabolism within the seeds. In contrast, SW treatment increases the activity of the enzymatic antioxidant system, including peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), to cope with water stress. CONCLUSIONS: Our experiment systematically evaluated the impact of moisture conditions on the growth and development of F. kryloviana seedlings. Physiological and transcriptomic data collectively indicate that adequate water (20%) supply enhances seedling growth and development by reducing ABA levels and increasing α-amylase activity within seeds, thereby boosting sugar metabolism and promoting the growth of seedling, which in turn leads to an improved emergence rate. Considering water management in future cultivation practices may be a crucial strategy for enhancing the successful establishment of F. kryloviana in grassland ecosystems.
Assuntos
Festuca , Plântula , Água , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/metabolismo , Festuca/genética , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Água/metabolismo , Transcriptoma , Germinação , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismoRESUMO
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous at relatively high concentrations by atmospheric deposition, and they are threatening to the environment. In this study, the toxicity of naphthalene on tall fescue and its potential responding mechanism was first studied by integrating approaches. Tall fescue seedlings were exposed to 0, 20, and 100 mg L-1 naphthalene in a hydroponic environment for 9 days, and toxic effects were observed by the studies of general physiological studies, chlorophyll fluorescence, and root morphology. Additionally, Ultra Performance Liquid Chromatography - Electrospray Ionization - High-Resolution Mass Spectrometry (UPLC-ESI-HRMS) was used to depict metabolic profiles of tall fescue under different exposure durations of naphthalene, and the intrinsic molecular mechanism of tall fescue resistance to abiotic stresses. Tall fescue shoots were more sensitive to the toxicity of naphthalene than roots. Low-level exposure to naphthalene inhibited the electron transport from the oxygen-evolving complex (OEC) to D1 protein in tall fescue shoots but induced the growth of roots. Naphthalene induced metabolic change of tall fescue roots in 12 h, and tall fescue roots maintained the level of sphingolipids after long-term exposure to naphthalene, which may play important roles in plant resistance to abiotic stresses.
Assuntos
Festuca , Lolium , Hidrocarbonetos Policíclicos Aromáticos , Festuca/metabolismo , Naftalenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Lolium/metabolismo , Espectrometria de MassasRESUMO
The application of an external magnetic field has been shown to improve the Cd phytoremediation efficiency of F. arundinacea by leaf harvesting. However, the influencing mechanisms of the promoting effect have not yet been revealed. This study evaluated variations in the Cd subcellular allocation and fractions in various F. arundinacea leaves, with or without magnetized water irrigation. Over 50 % of the metal were sequestered within the cell wall in all tissues under all treatments, indicating that cell wall binding was a critical detoxification pathway for Cd. After magnetized water treatment, the metal stored in the cytoplasm of roots raised from 33.1 % to 45.3 %, and the quantity of soluble Cd in plant roots enhanced from 53.4 % to 59.0 %. The findings suggested that magnetized water mobilized Cd in the roots, and thus drove it into the leaves. In addition, the proportion of Cd in the organelles, and the concentration of ethanol-extracted Cd in emerging leaves, decreased by 13.0 % and 47.1 %, respectively, after magnetized water treatment. These results explained why an external field improved the phytoextraction effect of the plant through leaf harvesting.
Assuntos
Biodegradação Ambiental , Cádmio , Festuca , Folhas de Planta , Raízes de Plantas , Folhas de Planta/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Raízes de Plantas/metabolismo , Festuca/metabolismo , Festuca/efeitos dos fármacos , Irrigação Agrícola/métodos , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Água/químicaRESUMO
The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has biological toxicity, persistence, long-range migration and bioaccumulation ability. However, there is currently little research on the phytotoxicity of DBDPE in plants. The perennial herbaceous plant tall fescue (Festuca elata Keng ex E. B. Alexeev) was selected as the model organism for use in seed germination experiments, and the phytotoxicity of DBDPE in the soil of tall fescue was studied. The results indicated that DBDPE had a significant effect on the germination and growth of tall fescue seedlings. Citric acid reduced the stress caused by DBDPE in plants, effectively alleviating the phytotoxicity of DBDPE in tall fescue. The root vitality and protein content significantly increased after the application of citric acid, increasing by 74.93-183.90%, 146.44-147.67%, respectively. The contents of proline and soluble sugars significantly decreased after the application of citric acid, decreasing by 45.18-59.69% and 23.03%, respectively (P < 0.05). There was no significant difference in superoxide dismutase (SOD) or peroxidase (POD) activity in tall fescue seedlings, and the catalase (CAT) activity and malondialdehyde (MDA) content were significantly lower after the application of citric acid, decreasing by 64.62-67.91% and 29.10-49.80%, respectively (P < 0.05). Tall fescue seedlings bioaccumulated DBDPE, with biological concentration factors (BCFs) ranging from 4.28 to 18.38 and transfer factors (TFs) ranging from 0.43 to 0.54. This study provides theoretical support for the study of the toxicity of DBDPE to plants and offers a research foundation for exploring the phytoremediation of DBDPE-contaminated soil by tall fescue.
Assuntos
Ácido Cítrico , Festuca , Germinação , Plântula , Poluentes do Solo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Festuca/metabolismo , Festuca/efeitos dos fármacos , Ácido Cítrico/metabolismo , Germinação/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Bromobenzenos/toxicidade , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacosRESUMO
A process of plant recovery after drought cessation is a complex trait which has not been fully recognized. The most important organ associated with this phenomenon in monocots, including forage grasses, is the crown tissue located between shoots and roots. The crown tissue is a meristematic crossroads for metabolites and other compounds between these two plant organs. Here, for the first time, we present a metabolomic and lipidomic study focused on the crown tissue under drought and recovery in forage grasses, important for agriculture in European temperate regions. The plant materials involve high (HDT) and low drought-tolerant (LDT) genotypes of Festuca arundinacea, and Lolium multiflorum/F. arundinacea introgression forms. The obtained results clearly demonstrated that remodeling patterns of the primary metabolome and lipidome in the crown under drought and recovery were different between HDT and LDT plants. Furthermore, HDT plants accumulated higher contents of primary metabolites under drought in the crown tissue, especially carbohydrates which could function as osmoprotectants and storage materials. On the other hand, LDT plants characterized by higher membranes damage under drought, simultaneously accumulated membrane phospholipids in the crown and possessed the capacity to recover their metabolic functions after stress cessation to the levels observed in HDT plants.
Assuntos
Resistência à Seca , Festuca , Lolium , Resistência à Seca/genética , Secas , Festuca/genética , Festuca/metabolismo , Lolium/genética , Lolium/metabolismo , GenótipoRESUMO
Glyphosate is an herbicide extensively used worldwide that can remain in the soil. Phytoremediation to decontaminate polluted water or soil requires a plant that can accumulate the target compound. Vulpia myuros is an annual fescue that can be used as a heavy mental phytoremediation strategy. Recently, it has been used to intercrop with tea plant to prohibit the germination and growth of other weeds in tea garden. In order to know whether it can be used an decontaminating glyphosate' plant in water or soil, in this study, glyphosate degradation behavior was investigated in Vulpia myuros cultivated in a hydroponic system. The results showed that the concentration of glyphosate in the nutrient solution decreased from 43.09 µg mL-1 to 0.45 µg mL-1 in 30 days and that 99% of the glyphosate molecules were absorbed by V. myuros. The contents of glyphosate in the roots reached the maximum (224.33 mg kg-1) on day 1 and then decreased. After 3 days, the content of glyphosate in the leaves reached the highest value (215.64 mg kg-1), while it decreased to 156.26 mg kg-1 in the roots. The dissipation dynamics of glyphosate in the whole hydroponic system fits the first-order kinetic model C = 455.76e-0.21 t, with a half-life of 5.08 days. Over 30 days, 80% of the glyphosate was degraded. The contents of the glyphosate metabolite amino methyl phosphoric acid (AMPA), ranged from 0.103 mg kg-1 on day 1-0.098 mg kg-1 on day 30, not changing significantly over time. The Croot/solution, Cleaf/solution and Cleaf/root were used to express the absorption, transfer, and distribution of glyphosate in V. myuros. These results indicated that glyphosate entered into the root system through free diffusion, which was influenced by both the log Kow and the concentration of glyphosate in the nutrient solution, and that glyphosate was either easily transferred to the leaves through the transpiration stream, accumulated, or degraded. The degradation of glyphosate in V. myuros indicated that it has potential as a remediating plant for environmental restoration.
Assuntos
Festuca , Herbicidas , Poluentes do Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Festuca/metabolismo , Solo , Herbicidas/análise , Água , Chá , GlifosatoRESUMO
In many studies, grasses were used to increase the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil because they are the most common plant species on the ground level and are quite resistant to contamination with these compounds. One of the main failures in PAH remediation in soil using plant species was the negative impact on germination and seedling growth. The objective of this study was to evaluate grass seed germination and seedling growth affected by drill cuttings to determine the resistance of selected grass species to the impact of PAH and their suitability for an effective phytoremediation of soils contaminated with waste that contain compounds from this group. In the study four grass species: tall fescue (Festuca arundinacea), red fescue (Festuca rubra), perennial ryegrass (Lolium perenne) and common meadow-grass (Poa pratensis). The germination energy of all species decreased as the amount of drill cuttings increased. Among the species studied, the highest germination energy and capacity were found in Lolium perenne (54.1 and 73.2 respectively), and the lowest - in Poa pratensis (16.7 and 23.3 respectively). With an increasing amount of drill cuttings, the root and seedling height were decreased. Festuca arundinacea seedlings were distinctly the highest and had the longest roots (96.7 and 52.7, respectively), while Poa pratensis seedlings showed the significantly slowest seedling and root elongation rate (30.4 and 12.4, respectively). However, the strongest decrease in seedling height and root length compared to the control was observed in Festuca rubra. Based on IC50, the greatest tolerance to the addition of drilling waste to the substrate was found for Festuca arundinacea and Festuca rubra. The conducted investigation indicates that Festuca arundinacea and Lolium perenne are grass species that are least sensitive to drilling waste in the substrate because no significant differences were found in root length and seedling height between the control soil and the soil where a PAH dose of 5% and 10% was applied.
Assuntos
Festuca , Lolium , Poa , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Festuca/metabolismo , Germinação , Plantas/metabolismo , Poa/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Plântula/metabolismo , Solo/química , Poluentes do Solo/análiseRESUMO
Paclobutrazol (PBZ) is a plant-growth regulator (PGR) in the triazole family that enhances plant tolerance to environmental stresses. Low-light (LL) intensity is a critical factor adversely affecting the growth of tall fescue (Festuca arundinacea Schreb.). Therefore, in this study, tall fescue seedlings were treated with PBZ under control and LL conditions to investigate the effects of PBZ on enhancing LL stress resistance by regulating the growth, photosynthesis, oxidative defense, and hormone levels. Our results reveal that LL stress reduced the total biomass, chlorophyll (Chl) content, photosynthetic capacity, and photochemical efficiency of photosystem II (PSII) but increased the membrane lipid peroxidation level and reactive oxygen species (ROS) generation. However, the application of PBZ increased the photosynthetic pigment contents, net photosynthetic rate (Pn), maximum quantum yield of PSII photochemistry (Fv/Fm), ribulose-1,5-bisphosphate carboxylase (RuBisCO) activity, and starch content. In addition, PBZ treatment activated the antioxidant enzyme activities, antioxidants contents, ascorbate acid-glutathione (AsA-GSH) cycle, and related gene expression, lessening the ROS burst (H2O2 and O2â-). However, the gibberellic acid (GA) anabolism was remarkably decreased by PBZ treatment under LL stress, downregulating the transcript levels of kaurene oxidase (KO), kaurenoic acid oxidase (KAO), and GA 20-oxidases (GA20ox). At the same time, PBZ treatment up-regulated 9-cis-epoxycarotenoid dioxygenase (NCED) gene expression, significantly increasing the endogenous abscisic acid (ABA) concentration under LL stress. Thus, our study revealed that PBZ improves the antioxidation and photosynthetic capacity, meanwhile increasing the ABA concentration and decreasing GA concentration, which ultimately enhances the LL stress tolerance in tall fescue.
Assuntos
Festuca , Lolium , Antioxidantes/farmacologia , Clorofila/metabolismo , Festuca/metabolismo , Hormônios/metabolismo , Peróxido de Hidrogênio/metabolismo , Lolium/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triazóis/metabolismo , Triazóis/farmacologiaRESUMO
BACKGROUND: Tall fescue (Festuca arundinacea Schreb.) is a major cool-season forage and turfgrass species. The low tiller density and size dramatically limits its turf performance and forage yield. MicroRNAs (miRNA)-genes modules play critical roles in tiller development in plants. In this study, a genome-wide small RNA profiling was carried out in two tall fescue genotypes contrasting for tillering production ('Ch-3', high tiller production rate and 'Ch-5', low tiller production rate) and two types of tissue samples at different tillering development stage (Pre-tillering, grass before tillering; Tillering, grass after tillering). 'Ch-3', 'Ch-5', Pre-tillering, and Tillering samples were analyzed using high-throughput RNA sequencing. RESULTS: A total of 222 million high-quality clean reads were generated and 208 miRNAs were discovered, including 148 known miRNAs belonging to 70 families and 60 novel ones. Furthermore, 18 miRNAs were involved in tall fescue tiller development process. Among them, 14 miRNAs displayed increased abundance in both Ch-3 and Tillering plants compared with that in Ch-5 and Pre-tillering plants and were positive with tillering, while another four miRNAs were negative with tiller development. Out of the three miRNAs osa-miR156a, zma-miR528a-3p and osa-miR444b.2, the rest of 15 miRNAs were newfound and associated with tiller development in plants. Based on our previous full-length transcriptome analysis in tall fescue, 28,927 potential target genes were discovered for all identified miRNAs. Most of the 212 target genes of the 18 miRNAs were dominantly enriched into "ubiquitin-mediated proteolysis", "phagosome", "fatty acid biosynthesis", "oxidative phosphorylation", and "biosynthesis of unsaturated fatty acids" KEGG pathways. In addition, bdi-miR167e-3p targets two kinase proteins EIF2AK4 and IRAK4, and osa-miR397a targets auxin response factor 5, which may be the significant miRNA-genes controllers in tillering development. CONCLUSIONS: This is the first genome-wide miRNA profiles analysis to identify regulators involved in tiller development in cool-season turfgrass. Tillering related 18 miRNAs and their 212 target genes provide novel information for the understanding of the molecular mechanisms of miRNA-genes mediated tiller development in cool-season turfgrass.
Assuntos
Festuca/genética , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs/metabolismo , TranscriptomaRESUMO
BACKGROUND: It has been reported that nitric oxide (NO) could ameliorate cadmium (Cd) toxicity in tall fescue; however, the underlying mechanisms of NO mediated Cd detoxification are largely unknown. In this study, we investigated the possible molecular mechanisms of Cd detoxification process by comparative transcriptomic and metabolomic approaches. RESULTS: The application of Sodium nitroprusside (SNP) as NO donor decreased the Cd content of tall fescue by 11% under Cd stress (T1 treatment), but the Cd content was increased by 24% when treated with Carboxy-PTIO (c-PTIO) together with Nitro-L-arginine methyl ester (L-NAME) (T2 treatment). RNA-seq analysis revealed that 904 (414 up- and 490 down-regulated) and 118 (74 up- and 44 down-regulated) DEGs were identified in the T1 vs Cd (only Cd treatment) and T2 vs Cd comparisons, respectively. Moreover, metabolite profile analysis showed that 99 (65 up- and 34-down- regulated) and 131 (45 up- and 86 down-regulated) metabolites were altered in the T1 vs Cd and T2 vs Cd comparisons, respectively. The integrated analyses of transcriptomic and metabolic data showed that 81 DEGs and 15 differentially expressed metabolites were involved in 20 NO-induced pathways. The dominant pathways were antioxidant activities such as glutathione metabolism, arginine and proline metabolism, secondary metabolites such as flavone and flavonol biosynthesis and phenylpropanoid biosynthesis, ABC transporters, and nitrogen metabolism. CONCLUSIONS: In general, the results revealed that there are three major mechanisms involved in NO-mediated Cd detoxification in tall fescue, including (a) antioxidant capacity enhancement; (b) accumulation of secondary metabolites related to cadmium chelation and sequestration; and (c) regulation of cadmium ion transportation, such as ABC transporter activation. In conclusion, this study provides new insights into the NO-mediated cadmium stress response.
Assuntos
Adaptação Fisiológica , Cádmio/metabolismo , Festuca/genética , Metaboloma , Óxido Nítrico/metabolismo , Transcriptoma , Cádmio/toxicidade , Festuca/metabolismo , Estresse FisiológicoRESUMO
BACKGROUND: Soil and water pollution due to nitrate are becoming increasingly serious worldwide. The government also put forward relevant governance policies, and a large number of scholars studied chemical physics and other methods to remove nitrate in water, but the cost was substantial. Studies have found that planting systems including grasses have the potential to remove nitrates. However, there are few studies on nitrate linked pathway and nitrate assimilation during its early growth. RESULTS: We have evaluated three different feed-plant species with three levels of overnight seed nitrate treatments along with a control. The activity of different enzymes from 2 weeks old shoots was measured to get a comprehension of proline-associated pentose phosphate pathway coupled with nitrate assimilation and phenolic-linked antioxidant response system in these species under nitrate treatments. All three feed-plant species showed high nitrate tolerance during germination and early growth stages. It is perceived that the accumulation of total soluble phenolics and total antioxidant activity was high in all three feed-plant species under high nitrate treatments. In terms of high G6PDH activity along with low SDH activity in alfalfa, there may be a shift of carbon flux in this species under high nitrate treatments. Higher activity of these enzymes along with higher SOD and GPX activity was observed in alfalfa. The efficient mechanism of nitrate stress tolerance of alfalfa also correlated with higher photochemical efficiency. Perennial ryegrass also showed excellent potential under high nitrate treatments by adopting an efficient mechanism to counter nitrate-induced oxidative stress. CONCLUSIONS: Under the condition of nitrate treatment, the germination rates of the three feed-plant species are still ideal, and they have good enzyme activity and have the potential to remove nitrate.
Assuntos
Antioxidantes/farmacologia , Festuca/metabolismo , Lolium/metabolismo , Medicago sativa/metabolismo , Nitratos/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Sementes/metabolismo , Catalase/metabolismo , Relação Dose-Resposta a Droga , Festuca/efeitos dos fármacos , Germinação/efeitos dos fármacos , Glucosefosfato Desidrogenase/metabolismo , Lolium/efeitos dos fármacos , Medicago sativa/efeitos dos fármacos , Nitrato Redutase/metabolismo , Nitratos/farmacologia , Peroxidase/metabolismo , Fenóis/farmacologia , Fotossíntese/efeitos dos fármacos , Prolina/metabolismo , Prolina Oxidase/metabolismo , Sementes/efeitos dos fármacos , Succinato Desidrogenase/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Festuca L. has more than 600 perennial species described, which makes it the largest genus within the family Poaceae. In Brazil, only two native species of Festuca have been described, for which cytogenetic studies need to be strengthened: Festuca ulochaeta and Festuca fimbriata. The aim of this study was to characterize the karyotypes of F. ulochaeta and F. fimbriata based on the mapping of rDNA sites. The FISH was performed with 35S and 5S rDNA probes. Both species have 42 chromosomes, of which 36 were metacentric and six were submetacentric. Festuca fimbriata has two pairs of 35S rDNA sites, one located on the metacentric pair 4, in an interstitial position, and one at the submetacentric pair 14 in the proximal position. Festuca ulochaeta has one pair of 35S rDNA in interstitial-proximal position in the metacentric pair 3. Both species showed 5S rDNA sites only on chromosome pair 21 in the terminal position of the short arm. The analysis of the chromosomal characteristics indicates that these species have a symmetrical karyotype and allopolyploid origin.
Assuntos
DNA Ribossômico/genética , Festuca/genética , Brasil , DNA Ribossômico/metabolismo , Diploide , Festuca/metabolismo , Hibridização in Situ Fluorescente/métodos , Cariótipo , Poaceae/genética , Poaceae/metabolismo , RNA Ribossômico 5S/genética , Ribossomos/genéticaRESUMO
Tall fescue might be an alternative to timothy in northeastern North America because of its tolerance of recurring drought periods and its good summer regrowth, but is not always considered as an option in dairy rations because of its possible lack of palatability. The objective of this study was to evaluate the effects on the performance of lactating dairy cows of (1) replacing timothy silage by tall fescue silage, offered as sole forage in the diet or in combination with alfalfa silage, and (2) feeding tall fescue as silage (35% dry matter, DM) or haylage (55% DM). Experimental diets with a forage-to-concentrate ratio of 70:30 were (1) 100% timothy silage (TS); (2) 100% tall fescue silage (TFS); (3) 55:45 timothy:alfalfa silages (TS + AS); (4) 55:45 tall fescue:alfalfa silages (TFS + AS); and (5) 100% tall fescue haylage (TFH). Fifteen Holstein cows in mid-lactation (5 fitted with a rumen fistula) were randomly assigned to treatments in a triple 5 × 5 Latin square design with treatment periods of 21 d. Preplanned contrasts were timothy versus tall fescue silages, sole grass species versus grass-alfalfa, interaction between sole grass species and grass-alfalfa, and TFS versus TFH. Grass species did not affect dry matter intake (DMI) or milk yield and fat concentration. Milk protein concentration was not affected by grass species when offered in combination with alfalfa, but it was higher with the TS diet than the TFS diet when offered as sole forages. Adding alfalfa to either tall fescue or timothy silage resulted in greater DMI and milk yield, but lower milk fat concentration, than when the grass silages were the sole forage in the diet. The molar proportion of propionate in the rumen was greater when cows were fed diets with tall fescue silage compared with timothy silage, which resulted in a lower acetate-to-propionate ratio. Milk fat concentrations of fatty acids from microbial origin, namely branched-chain fatty acids, were greater when grass silage, and especially timothy silage, were fed as sole forages rather than with alfalfa silage. Feeding TFH rather than TFS caused a decrease in DMI and tended to lower milk protein concentration, but did not affect milk yield. A more fibrolytic fermentation profile was observed in rumen of cows fed TFH compared with TFS, as indicated by the increase in the molar proportion of acetate and the higher acetate-to-propionate ratio in rumen fluid, and a concomitant increase in branched-chain fatty acid concentration in milk fat. Tall fescue as silage or haylage is a valuable alternative to timothy silage for lactating dairy cows.
Assuntos
Dieta/veterinária , Festuca/metabolismo , Medicago sativa/metabolismo , Phleum/metabolismo , Ração Animal/análise , Ração Animal/normas , Animais , Bovinos , Digestão , Ácidos Graxos/metabolismo , Feminino , Fermentação , Lactação/fisiologia , Leite/química , Distribuição Aleatória , Rúmen/metabolismo , Silagem/análiseRESUMO
Different forms of aluminum (Al) in soil can be toxic to plants and the bacterial community. In our previous study, the distribution and toxicity to plants of soil Al species and soil labile Al fractions were examined. However, the toxicity of different forms of Al on the bacterial community has not been completely studied. In this study, five soil samples (pH: 4.92, 6.17, 6.62, 6.70, 8.51) were collected from Lichuan, China. Tall fescue was planted in rhizosphere boxes with those soils for 120 days. The toxicity of soil Al species and soil labile Al fractions on the bacterial community of near-rhizosphere (NR) soils and far-rhizosphere (FR) soils were analyzed. The effect of different forms of Al on bacterial community between NR and FR soils was small, but the difference was obvious according to the different spatial distribution of samples. An individual bacterial community has eosinophilia, and most bacterial communities are tolerant of heavy metals (e.g., Cu, Zn, Cd). The toxicity of exchangeable Al has a strong effect on the bacterial community. Meanwhile, the toxicity of Al3+ to the bacterial community is strong. In this study, the key finding was that the toxicity of the Al-F- complex toward the bacterial community and plants was different. AlF2+, AlF2+, AlF3, and AlF4- are toxic for the bacterial community, and the correlation decreases with the addition of F-. This finding is of considerable significance to the treatment of acid-contaminated soil and the study of the tolerance mechanism of plants toward Al.
Assuntos
Alumínio/toxicidade , Festuca/microbiologia , Microbiota/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/toxicidade , Alumínio/química , Biodegradação Ambiental , Festuca/metabolismo , Concentração de Íons de Hidrogênio , Metais Pesados/metabolismo , Rizosfera , Solo/química , Poluentes do Solo/químicaRESUMO
Lead is one of the most hazardous pollutants to both the environment as well as human beings. As one of the approaches to enhance phytoremediation, brassinosteroids are predicted as a potential candidate phytohormone for assisted phytoremediation. Few studies have focused on the physiological regulations of tall fescue plants (Festuca arundinacea Schreb.), a potential phytoremediation species, for its responses to applications of brassinosteroids under lead stress. Therefore, the objectives of this study were to investigate the effects of foliar application of 24-epibrassinolide, a brassinosteroids analogue, on reactive oxygen species accumulation and antioxidative defense systems of tall fescue when exposed to lead, and ultimately its potential to be used in phytoremediation. When exposed to lead (1000â¯mg/kg) for 80â¯d, decreases in shoot and root biomass of tall fescue biomass as well as chlorophyll and carotenoid productions were found. Foliar application of 24-epibrassinolide at three rates and five applications every 7â¯d improved the biomass of both shoots and roots, and increased the photosynthetic pigments. The improved lead tolerance in tall fescue plants after 24-epibrassinolide applications was associated with reduced H2O2 and O2.- accumulations and increased antioxidative enzyme activities including superoxide dismutase, catalase, and guaiacol peroxidase. Additionally, osmoprotectants increased and lipid peroxidation decreased. Ultimately, foliar applications of 24-epibrassinolide enhanced the lead recovery rate of tall fescue plants, proving its potential role in phytoremediation for soil contaminated with heavy metals such as lead.
Assuntos
Antioxidantes/metabolismo , Brassinosteroides/farmacologia , Festuca/efeitos dos fármacos , Chumbo/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Esteroides Heterocíclicos/farmacologia , Biodegradação Ambiental , Clorofila/metabolismo , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Chumbo/metabolismo , Peroxidação de Lipídeos , Reguladores de Crescimento de Plantas/farmacologia , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidadeRESUMO
High temperature damage impairs the growth of tall fescue by inhibiting secondary metabolites. Little is known about the regulation pattern of the fatty acids and carbohydrate metabolism at the whole-transcriptome level in tall fescue under high temperature stress. Here, two tall fescue genotypes, heat tolerant PI578718 and heat sensitive PI234881 were subjected to high temperature stress for 36 h. PI 578718 showed higher SPAD chloroplast value, lower EL and leaf injury than PI 234881 during the first 36 h high-temperature stress. Furthermore, by transcriptomic analysis, 121 genes were found to be induced during the second energy production phase in tall fescue exposed to high-temperature conditions, indicating that there may be one energy-sensing system in cool-season turfgrass to adapt high-temperature conditions. PI 578718 showed higher differentially expressed unigenes involved in fatty acids and carbohydrate metabolism compared with PI 234881 for 36 h heat stress. Interestingly, a metabolomic analysis using GC-MS uncovered that the sugars and sugar alcohol accounted for more than 65.06% of the total 41 metabolites content and high-temperature elevated the rate to 82.89-91.16% in PI 578718. High-temperature damage decreased the rate of fatty acid in the total 41 metabolites content and PI 578718 showed lower content than in PI 234881, which might be attributed to the down-regulated genes in fatty acid biosynthesis pathway in tall fescue. The integration of deep transcriptome and metabolome analyses provides systems-wide datasets to facilitate the identification of crucial regulation factors in cool-season turfgrass in response to high-temperature damage.
Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Festuca , Resposta ao Choque Térmico , Temperatura Alta , Metabolismo dos Carboidratos/genética , Ácidos Graxos/genética , Festuca/genética , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Metabolômica , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismoRESUMO
Phytoremediation is a promising "green technique" used to purify contaminated soils. The performed phytoremediation experiments assisted by the fertilization process involving pots of F.arundinacea grown on soils with diverse concentrations and types of contaminations produced the following decreased percentages after 6 months: Pb (25.4-34.1%), Ni (18.7-23.8%), Cd (26.3-46.7%), TPH (49.4-60.1%). Primarily, TPH biodegradation was occurring as a result of basic bioremediation stimulated by adding optimal volumes of biogenic substances and corrections in the soil reaction, while phytoremediation improved this process by 17.4 - 23.1%. The highest drop in a range of 45.6 - 55.5% was recorded for the group of C12-C18 hydrocarbons, with the lowest one for C25-C36, amounting to 9.1-17.4%. Translocation factor values were: TF<1 and ranged, respectively, for: Pb (0.46-0.53), Ni (0.29-0.33), and Cd (0.21-0.25), which indicate that heavy metals absorbed by Festuca arundinacea they mainly accumulated in the root of the tissue in descending order: Cd Assuntos
Festuca/metabolismo
, Metais Pesados/análise
, Petróleo/análise
, Poluentes do Solo/análise
, Solo/química
, Biodegradação Ambiental
, Cádmio/análise
, Cádmio/metabolismo
, Festuca/efeitos dos fármacos
, Germinação/efeitos dos fármacos
, Chumbo/análise
, Chumbo/metabolismo
, Lepidium sativum/metabolismo
, Metais Pesados/metabolismo
, Níquel/análise
, Níquel/metabolismo
, Petróleo/metabolismo
, Poluentes do Solo/metabolismo
RESUMO
In plants, tolerance to cadmium (Cd) stress is closely related to indole-3-acetic acid (IAA) and hydrogen peroxide (H2O2). However, it is unclear whether Cd-resistant and -sensitive varieties respond differently to Cd stress. In this study, the effects of dimethylthiourea (DMTU, a H2O2 scavenger) and p-chlorophenoxy isobutyric acid (PCIB, an IAA signaling inhibitor) on root growth, endogenous hormones and antioxidant system were investigated to decipher how DMTU and PCIB treatments alleviate the inhibition of root elongation in Cd-resistant (Commander) and -sensitive (Crossfire III) tall fescue varieties under Cd stress. Both varieties subjected to 10 µM Cd treatments for 12 h presented a substantial decrease in root elongation coupled with a reduction in brassinosteroid (BR) and zeatin riboside (ZR) contents, but the changes in IAA and abscisic acid (ABA) contents under Cd stress were opposite in the two varieties. In addition, the H2O2 content and antioxidant enzyme activities significantly increased in both varieties. However, pretreatment with PCIB or DMTU mitigated the inhibition of root elongation caused by Cd, accompanied by the significant changes of aforementioned physiological parameters. PCIB significantly reduced the IAA content in 'Commander', while DMTU significantly increased the IAA content in 'Crossfire III' and effectively relieved the inhibition of root elongation. But both treatments decreased the Cd-induced H2O2 accumulation. These results indicated that DMTU or PCIB can alleviate the Cd-inhibited root elongation in two varieties whose resistance differed under Cd stress, but they presented differences in the response of hormones, especially IAA, which may be due to the different adaptation mechanisms of two varieties in response to Cd stress.
Assuntos
Cádmio/toxicidade , Ácido Clofíbrico/farmacologia , Festuca/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Tioureia/análogos & derivados , Ácido Abscísico/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Tioureia/farmacologiaRESUMO
Though winter-hardiness is a complex trait, freezing tolerance was proved to be its main component. Species from temperate regions acquire tolerance to freezing in a process of cold acclimation, which is associated with the exposure of plants to low but non-freezing temperatures. However, mechanisms of cold acclimation in Lolium-Festuca grasses, important for forage production in Europe, have not been fully recognized. Thus, two L. multiflorum/F. arundinacea introgression forms with distinct freezing tolerance were used herein as models in the comprehensive research to dissect these mechanisms in that group of plants. The work was focused on: (i) analysis of cellular membranes' integrity; (ii) analysis of plant photosynthetic capacity (chlorophyll fluorescence; gas exchange; gene expression, protein accumulation, and activity of selected enzymes of the Calvin cycle); (iii) analysis of plant antioxidant capacity (reactive oxygen species generation; gene expression, protein accumulation, and activity of selected enzymes); and (iv) analysis of Cor14b accumulation, under cold acclimation. The more freezing tolerant introgression form revealed a higher integrity of membranes, an ability to cold acclimate its photosynthetic apparatus and higher water use efficiency after three weeks of cold acclimation, as well as a higher capacity of the antioxidant system and a lower content of reactive oxygen species in low temperature.