Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.440
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 182(3): 563-577.e20, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615086

RESUMO

Adipose tissues dynamically remodel their cellular composition in response to external cues by stimulating beige adipocyte biogenesis; however, the developmental origin and pathways regulating this process remain insufficiently understood owing to adipose tissue heterogeneity. Here, we employed single-cell RNA-seq and identified a unique subset of adipocyte progenitor cells (APCs) that possessed the cell-intrinsic plasticity to give rise to beige fat. This beige APC population is proliferative and marked by cell-surface proteins, including PDGFRα, Sca1, and CD81. Notably, CD81 is not only a beige APC marker but also required for de novo beige fat biogenesis following cold exposure. CD81 forms a complex with αV/ß1 and αV/ß5 integrins and mediates the activation of integrin-FAK signaling in response to irisin. Importantly, CD81 loss causes diet-induced obesity, insulin resistance, and adipose tissue inflammation. These results suggest that CD81 functions as a key sensor of external inputs and controls beige APC proliferation and whole-body energy homeostasis.


Assuntos
Adipogenia/genética , Tecido Adiposo Bege/metabolismo , Metabolismo Energético/genética , Quinase 1 de Adesão Focal/metabolismo , Transdução de Sinais/genética , Células-Tronco/metabolismo , Tetraspanina 28/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Bege/citologia , Tecido Adiposo Bege/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Adulto , Animais , Ataxina-1/metabolismo , Feminino , Fibronectinas/farmacologia , Quinase 1 de Adesão Focal/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Resistência à Insulina/genética , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , RNA-Seq , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Células-Tronco/citologia , Tetraspanina 28/genética
2.
Nature ; 571(7763): 117-121, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31142833

RESUMO

Multipotent self-renewing haematopoietic stem cells (HSCs) regenerate the adult blood system after transplantation1, which is a curative therapy for numerous diseases including immunodeficiencies and leukaemias2. Although substantial effort has been applied to identifying HSC maintenance factors through the characterization of the in vivo bone-marrow HSC microenvironment or niche3-5, stable ex vivo HSC expansion has previously been unattainable6,7. Here we describe the development of a defined, albumin-free culture system that supports the long-term ex vivo expansion of functional mouse HSCs. We used a systematic optimization approach, and found that high levels of thrombopoietin synergize with low levels of stem-cell factor and fibronectin to sustain HSC self-renewal. Serum albumin has long been recognized as a major source of biological contaminants in HSC cultures8; we identify polyvinyl alcohol as a functionally superior replacement for serum albumin that is compatible with good manufacturing practice. These conditions afford between 236- and 899-fold expansions of functional HSCs over 1 month, although analysis of clonally derived cultures suggests that there is considerable heterogeneity in the self-renewal capacity of HSCs ex vivo. Using this system, HSC cultures that are derived from only 50 cells robustly engraft in recipient mice without the normal requirement for toxic pre-conditioning (for example, radiation), which may be relevant for HSC transplantation in humans. These findings therefore have important implications for both basic HSC research and clinical haematology.


Assuntos
Técnicas de Cultura de Células/métodos , Autorrenovação Celular/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Clonais/citologia , Células Clonais/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , Feminino , Fibronectinas/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Masculino , Camundongos , Álcool de Polivinil/farmacologia , Albumina Sérica , Fator de Células-Tronco/farmacologia , Trombopoetina/farmacologia , Fatores de Tempo , Condicionamento Pré-Transplante
3.
J Cell Biochem ; 125(5): e30565, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38591469

RESUMO

Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.


Assuntos
Adipogenia , Diferenciação Celular , Fibronectinas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas
4.
Microcirculation ; 31(5): e12859, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38818977

RESUMO

OBJECTIVE: The endothelium regulates crucial aspects of vascular function, including hemostasis, vasomotor tone, proliferation, immune cell adhesion, and microvascular permeability. Endothelial cells (ECs), especially in arterioles, are pivotal for flow distribution and peripheral resistance regulation. Investigating vascular endothelium physiology, particularly in microvascular ECs, demands precise isolation and culturing techniques. METHODS: Freshly isolated ECs are vital for examining protein expression, ion channel behavior, and calcium dynamics. Establishing primary endothelial cell cultures is crucial for unraveling vascular functions and understanding intact microvessel endothelium roles. Despite the significance, detailed protocols and comparisons with intact vessels are scarce in microvascular research. We developed a reproducible method to isolate microvascular ECs, assessing substrate influence by cultivating cells on fibronectin and gelatin matrix gels. This comparative approach enhances our understanding of microvascular endothelial cell biology. RESULTS: Microvascular mesenteric ECs expressed key markers (VE-cadherin and eNOS) in both matrix gels, confirming cell culture purity. Under uncoated conditions, ECs were undetected, whereas proteins linked to smooth muscle cells and fibroblasts were evident. Examining endothelial cell (EC) physiological dynamics on distinct matrix substrates revealed comparable cell length, shape, and Ca2+ elevations in both male and female ECs on gelatin and fibronectin matrix gels. Gelatin-cultured ECs exhibited analogous membrane potential responses to acetylcholine (ACh) or adenosine triphosphate (ATP), contrasting with their fibronectin-cultured counterparts. In the absence of stimulation, fibronectin-cultured ECs displayed a more depolarized resting membrane potential than gelatin-cultured ECs. CONCLUSIONS: Gelatin-cultured ECs demonstrated electrical behaviors akin to intact endothelium from mouse mesenteric arteries, thus advancing our understanding of endothelial cell behavior within diverse microenvironments.


Assuntos
Células Endoteliais , Gelatina , Microvasos , Óxido Nítrico Sintase Tipo III , Animais , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Camundongos , Feminino , Masculino , Microvasos/citologia , Microvasos/metabolismo , Microvasos/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Células Cultivadas , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Géis , Antígenos CD/metabolismo , Caderinas/metabolismo , Cultura Primária de Células , Endotélio Vascular/metabolismo , Endotélio Vascular/citologia
5.
Ann Surg Oncol ; 31(6): 3718-3736, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38502294

RESUMO

BACKGROUND: High skeletal muscle mass might be a prognostic factor for patients with pancreatic ductal adenocarcinoma (PDAC); however, the underlying reason is unclear. We hypothesized that myokines, which are cytokines secreted by the skeletal muscle, function as suppressors of PDAC. We specifically examined irisin, a myokine, which plays a critical role in the modulation of metabolism, to clarify the anticancer mechanisms. METHODS: First, the effect of the conditioned medium (CM) from skeletal muscle cells and from irisin-knockdown skeletal muscle cells on PDAC cell lines was evaluated. We then investigated the effects and anticancer mechanism of irisin in PDAC cells, and evaluated the anticancer effect of recombinant irisin in a PDAC xenograft mouse model. Finally, patients undergoing pancreatic resection for PDAC were divided into two groups based on their serum irisin level, and the long-term outcomes were evaluated. RESULTS: The CM enhanced gemcitabine sensitivity by inducing apoptosis and decreasing cell migration by inhibiting epithelial-mesenchymal transition (EMT) in PDAC cell lines. The CM derived from irisin-knockdown skeletal muscle cells did not affect the PDAC cell lines. The addition of recombinant irisin to PDAC cell lines facilitated sensitivity to gemcitabine by inhibiting the mitogen-activated protein kinase (MAPK) pathway, and decreased migration by inhibiting EMT via the transforming growth factor-ß/SMAD pathway. Xenografts injected with gemcitabine and recombinant irisin grew slower than the xenografts injected with gemcitabine alone. The overall survival was prolonged in the high-irisin group compared with that in the low-irisin group. CONCLUSIONS: Skeletal muscle-derived irisin may affect PDAC by enhancing its sensitivity to gemcitabine and suppressing EMT.


Assuntos
Antimetabólitos Antineoplásicos , Apoptose , Carcinoma Ductal Pancreático , Movimento Celular , Proliferação de Células , Desoxicitidina , Transição Epitelial-Mesenquimal , Fibronectinas , Gencitabina , Músculo Esquelético , Neoplasias Pancreáticas , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Feminino , Humanos , Masculino , Camundongos , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Camundongos Nus , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Idoso
6.
Arterioscler Thromb Vasc Biol ; 43(9): 1639-1652, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409527

RESUMO

BACKGROUND: Treatment of occluded vessels can involve angioplasty, stenting, and bypass grafting, which can be limited by restenosis and thrombosis. Drug-eluting stents attenuate restenosis, but the current drugs used are cytotoxic, causing smooth muscle cell (SMC) and endothelial cell (EC) death that may lead to late thrombosis. N-cadherin is a junctional protein expressed by SMCs, which promotes directional SMC migration contributing to restenosis. We propose that engaging N-cadherin with mimetic peptides can act as a cell type-selective therapeutic strategy to inhibit polarization and directional migration of SMCs without negatively impacting ECs. METHODS: We designed a novel N-cadherin-targeting chimeric peptide with a histidine-alanine-valine cadherin-binding motif, combined with a fibronectin-binding motif from Staphylococcus aureus. This peptide was tested in SMC and EC culture assays of migration, viability, and apoptosis. Rat carotid arteries were balloon injured and treated with the N-cadherin peptide. RESULTS: Treating scratch-wounded SMCs with the N-cadherin-targeting peptide inhibited migration and reduced polarization of wound-edge cells. The peptide colocalized with fibronectin. Importantly, EC junction, permeability, or migration was not impacted by peptide treatment in vitro. We also demonstrated that the chimeric peptide persisted for 24 hours after transient delivery in the balloon-injured rat carotid artery. Treatment with the N-cadherin-targeting chimeric peptide reduced intimal thickening in balloon-injured rat carotid arteries at 1 and 2 weeks after injury. Reendothelialization of injured vessels after 2 weeks was unimpaired by peptide treatment. CONCLUSIONS: These studies show that an N-cadherin-binding and fibronectin-binding chimeric peptide is effective in inhibiting SMC migration in vitro and in vivo and limiting neointimal hyperplasia after balloon angioplasty without affecting EC repair. These results establish the potential of an advantageous SMC-selective strategy for antirestenosis therapy.


Assuntos
Lesões das Artérias Carótidas , Trombose , Ratos , Animais , Fibronectinas/farmacologia , Lesões das Artérias Carótidas/patologia , Caderinas , Artérias Carótidas/patologia , Hiperplasia/patologia , Peptídeos/farmacologia , Trombose/patologia
7.
J Periodontal Res ; 59(2): 336-345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38041212

RESUMO

OBJECTIVE: To investigate the effects of miR-221 and miR-222 and high glucose on human periodontal ligament (PL) cells morphology, cytoskeleton, adhesion, and migration. BACKGROUND: Chronic hyperglycemia is common in uncontrolled diabetes mellitus (DM) and plays a central role in long-term DM complications, such as impaired periodontal healing. We have previously shown that high glucose increases apoptosis of human PL cells by inhibiting miR-221 and miR-222 and consequently augmenting their target caspase-3. However, other effects of miR-221/222 downregulation on PL cells are still unknown. METHODS: Cells from young humans' premolar teeth were cultured for 7 days under 5 or 30 mM glucose. Directional and spontaneous migration on fibronectin were studied using transwell and time-lapse assays, respectively. F-actin staining was employed to study cell morphology and the actin cytoskeleton. MiR-221 and miR-222 were inhibited using antagomiRs, and their expressions were evaluated by real-time RT-PCR. RESULTS: High glucose inhibited PL cells early adhesion, spreading, and migration on fibronectin. Cells exposed to high glucose showed reduced polarization, velocity, and directionality. They formed several simultaneous unstable and short-lived protrusions, suggesting impairment of adhesion maturation. MiR-221 and miR-222 inhibition also reduced migration, decreasing cell directionality but not significantly cell velocity. After miR-221 and miR-222 downregulation cells showed morphological resemblance with cells exposed to high glucose. CONCLUSION: High glucose impairs human PL cells migration potentially through a mechanism involving reduction of microRNA-221 and microRNA-222 expression. These effects may contribute to the impairment of periodontal healing, especially after surgery and during guided regeneration therapies.


Assuntos
MicroRNAs , Humanos , MicroRNAs/metabolismo , Fibronectinas/farmacologia , Ligamento Periodontal/metabolismo , Movimento Celular , Glucose/farmacologia , Células Cultivadas
8.
Bull Exp Biol Med ; 177(1): 115-123, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38963596

RESUMO

The cardiac perivascular niche is a cellular microenvironment of a blood vessel. The principles of niche regulation are still poorly understood. We studied the effect of TGFß1 on cells forming the cardiac perivascular niche using 3D cell culture (cardiospheres). Cardiospheres contained progenitor (c-Kit), endothelial (CD31), and mural (αSMA) cells, basement membrane proteins (laminin) and extracellular matrix proteins (collagen I, fibronectin). TGFß1 treatment decreased the length of CD31+ microvasculature, VE cadherin protein level, and proportion of NG2+ cells, and increased proportion of αSMA+ cells and transgelin/SM22α protein level. We supposed that this effect is related to the stabilizing function of TGFß1 on vascular cells: decreased endothelial cell proliferation, as shown for HUVEC, and activation of mural cell differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Humanos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Animais , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Caderinas/metabolismo , Laminina/metabolismo , Laminina/farmacologia , Proteínas Musculares/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/citologia , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Antígenos CD/metabolismo , Miocárdio/metabolismo , Miocárdio/citologia , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/fisiologia , Colágeno Tipo I/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/citologia , Técnicas de Cultura de Células em Três Dimensões/métodos
9.
Morphologie ; 108(362): 100779, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38608628

RESUMO

BACKGROUND: One of the most recent hormones to be identified and isolated is irisin, extracted from mouse skeletal muscle in 2012. Irisin has been proven to alter blood pressure, which has an impact on blood vessels, enhance endothelial functions, and prevent injury to endothelial cells. The current study aimed to study the effect of irisin on the ultrastructure of the rat thoracic aorta using the transmission electron microscope (TEM). MATERIALS AND METHODS: Twenty female rats were recruited for this study and divided into a control group (non-injected), and four experimental groups (injected groups) each consisting of 4 rats. The experimental groups were injected intraperitoneally with different doses of irisin (250ng/mL, 500ng/mL, 1000ng/mL, and 2000ng/mL) twice a week for 4weeks. Then, the descending thoracic aorta of all experimental rats were resected and proceeded with imaging. RESULTS: The results of this study showed a change in the thickness of the tunica intima, internal elastic lamina, elastic lamellae, and external elastic lamina concerning increasing injected irisin concentration. While there was a significant increase in the thickness of tunica media (P<0.0001) and smooth muscle cells (P<0.05). Also, the results showed a significant increase in the number of elastic lamellae in the tunica media (P<0.0001). CONCLUSION: Irisin had a major impact on the elasticity of the rat thoracic aorta wall, suggesting that it influences the growth factors of the wall and activates smooth muscle cells in addition to endothelial cells.


Assuntos
Aorta Torácica , Fibronectinas , Microscopia Eletrônica de Transmissão , Animais , Fibronectinas/farmacologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/ultraestrutura , Ratos , Feminino , Túnica Íntima/ultraestrutura , Túnica Íntima/efeitos dos fármacos , Ratos Sprague-Dawley , Túnica Média/efeitos dos fármacos , Túnica Média/ultraestrutura
10.
Breast Cancer Res ; 25(1): 27, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922898

RESUMO

Inflammatory alterations of the extracellular matrix shape the tumor microenvironment and promote all stages of carcinogenesis. This study aims to determine the impact of cellular fibronectin on inflammatory facets of tumor-associated macrophages (TAMs) in breast cancer. Cellular fibronectin (FN) harboring the alternatively spliced extra domain A (FN-EDA) was determined to be a matrix component produced by the triple-negative breast cancer (TNBC) cells. High levels of FN-EDA correlated with poor survival in breast cancer patients. The proinflammatory cytokine IL-1ß enhanced the expression of cellular fibronectin including FN-EDA. TAMs were frequently observed in the tumor areas rich in FN-EDA. Conditioned media from TNBC cells induced the differentiation of CD206+CD163+ macrophages and stimulated the STAT3 pathway, ex vivo. In the macrophages, the STAT3 pathway enhanced FN-EDA-induced IL-1ß secretion and NF-κB signaling. In conclusion, our data indicate a self-reinforcing mechanism sustained by FN-EDA and IL-1ß through NF-κB and STAT3 signaling in TAMs which fosters an inflammatory environment in TNBC.


Assuntos
NF-kappa B , Neoplasias de Mama Triplo Negativas , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Retroalimentação , Neoplasias de Mama Triplo Negativas/genética , Transdução de Sinais , Microambiente Tumoral/genética
11.
Breast Cancer Res Treat ; 201(3): 515-533, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37458908

RESUMO

BACKGROUND: Breast cancer (BC) is regarded as one of the most common cancers diagnosed among the female population and has an extremely high mortality rate. It is known that Fibronectin 1 (FN1) drives the occurrence and development of a variety of cancers through metabolic reprogramming. Aspartic acid is considered to be an important substrate for nucleotide synthesis. However, the regulatory mechanism between FN1 and aspartate metabolism is currently unclear. METHODS: We used RNA sequencing (RNA seq) and liquid chromatography-mass spectrometry to analyze the tumor tissues and paracancerous tissues of patients. MCF7 and MDA-MB-231 cells were used to explore the effects of FN1-regulated aspartic acid metabolism on cell survival, invasion, migration and tumor growth. We used PCR, Western blot, immunocytochemistry and immunofluorescence techniques to study it. RESULTS: We found that FN1 was highly expressed in tumor tissues, especially in Lumina A and TNBC subtypes, and was associated with poor prognosis. In vivo and in vitro experiments showed that silencing FN1 inhibits the activation of the YAP1/Hippo pathway by enhancing YAP1 phosphorylation, down-regulates SLC1A3-mediated aspartate uptake and utilization by tumor cells, inhibits BC cell proliferation, invasion and migration, and promotes apoptosis. In addition, inhibition of FN1 combined with the YAP1 inhibitor or SLC1A3 inhibitor can effectively inhibit tumor growth, of which inhibition of FN1 combined with the YAP1 inhibitor is more effective. CONCLUSION: Targeting the "FN1/YAP1/SLC1A3/Aspartate metabolism" regulatory axis provides a new target for BC diagnosis and treatment. This study also revealed that intratumoral metabolic heterogeneity plays an important role in the progression of different subtypes of breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/patologia , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Apoptose/genética , Western Blotting , Proliferação de Células/genética , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
12.
Dev Growth Differ ; 65(5): 255-265, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37209318

RESUMO

Pleurodeles waltl is coming to light as a model animal, especially in regeneration studies, but deep studies on the molecular mechanisms have been limited due to the absence of primary tissue cells for wide usage. Therefore, we aimed to grow primary cells from limb tissue of P. waltl for in vitro experiments. Limb tissues were cut into small pieces and seeded as "explants" on culture dishes coated with fibronectin and gelatin. Compared to the control without coating, both fibronectin and gelatin supported quicker outgrowth of cells from explants and faster cell adhesion, and fibronectin showed significantly better performance than gelatin. Interestingly, the doubling time of cells on fibronectin- and gelatin-coated surfaces was almost the same (42.39 ± 2.79 h vs. 42.91 ± 3.69 h) and was not significantly different from that on non-coated plates (49.64 ± 3.63 h). The cryopreserved cells were successfully recovered and showed a multiplication capacity that was similar to that of fresh cells. Senescent cells were barely detected even after long-term sub-culture (>15 passages). Moreover, enhanced fluorescence of MitoSOX™ Red in cells under H2 O2 exposure confirmed the respondence to chemical stimuli. Collectively, our results show that we are able to grow enough good-quality cells from P. waltl limb tissue for in vitro experiments, and fibronectin coating provides the best biocompatible environment for cell outgrowth and attachment.


Assuntos
Fibronectinas , Pleurodeles , Animais , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Pleurodeles/metabolismo , Gelatina/farmacologia , Gelatina/metabolismo
13.
Reprod Biol Endocrinol ; 21(1): 6, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653830

RESUMO

BACKGROUND: Human embryos express the prolactin (PRL) receptor at the morula and blastocyst stages. Treatment with PRL from cleavage to the blastocyst stage improves blastocyst outgrowth on fibronectin-coated dishes. However, whether post-warming PRL treatment of blastocysts cultured without PRL could improve outgrowth competence remains unknown. Furthermore, the optimal time for post-warming PRL treatment remains to be ascertained. This study investigated the effects of PRL treatment during recovery culture on human blastocyst outgrowth and its related genes. METHODS: In total, 374 discarded vitrified blastocysts were randomly allocated to two groups, to be cultured with (n = 208) or without PRL (control; n = 166) for 120 min for recovery, and then plated on fibronectin-coated dishes. The expression level of PRL-interacting genes, blastocyst adhesion rate, outgrowth area, distance of trophoblast migration, and outgrowth degeneration were examined. RESULTS: The mRNA expression of ezrin, radixin, and moesin, which regulate cell adhesion and invasion by controlling actin reorganization during epithelial-to-mesenchymal transition (EMT), was stimulated by PRL treatment for 120 min. The expression of EMT-related genes, transforming growth factor ß1, snail1, and twist1 was also promoted following treatment with PRL for 120 min. PRL-treated blastocysts also exhibited augmented expression of cadherin 2 and transcriptional repression of cadherin 1. Higher mRNA expression of integrin-based focal adhesion-related genes, ITGA5 and ITGB1, was observed after treatment with PRL for 120 min than in the non- and shorter-treatment groups. PRL treatment for 120 min did not alter the rate of blastocyst adhesion to fibronectin-coated dishes 96 h after the outgrowth culture assay. However, multiple linear regression analysis revealed that the outgrowth area was significantly increased in PRL-treated blastocysts. The migration distance of trophoblast cells was significantly increased and degeneration rate was significantly decreased after PRL treatment. Furthermore, a more beneficial effect of PRL treatment on blastocyst outgrowth was observed when the blastocysts were vitrified on day 5 than when they were vitrified on day 6. CONCLUSIONS: Post-warming culture of human vitrified blastocysts with PRL for 120 min promoted trophoblast outgrowth in vitrified human blastocysts. Furthermore, PRL treatment may reduce outgrowth degeneration by increasing resistance to apoptosis during trophoblast migration.


Assuntos
Prolactina , Trofoblastos , Humanos , Trofoblastos/metabolismo , Prolactina/farmacologia , Prolactina/metabolismo , Fibronectinas/genética , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Blastocisto/fisiologia , RNA Mensageiro/metabolismo , Criopreservação , Vitrificação
14.
Int Immunol ; 34(8): 435-444, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35689642

RESUMO

LILRB4 (B4, also known as ILT3/CD85k) is an immune checkpoint of myeloid lineage cells, albeit its mode of function remains obscure. Our recent identification of a common ligand for both human B4 and its murine ortholog gp49B as the fibronectin (FN) N-terminal 30 kDa domain poses the question of how B4/gp49B regulate cellular activity upon recognition of FN in the plasma and/or the extracellular matrix. Since FN in the extracellular matrix is tethered by FN-binding integrins, we hypothesized that B4/gp49B would tether FN in cooperation with integrins on the cell surface, thus they should be in close vicinity to integrins spatially. This scenario suggests a mode of function of B4/gp49B by which the FN-induced signal is regulated. The FN pull-down complex was found to contain gp49B and integrin ß 1 in bone marrow-derived macrophages. The confocal fluorescent signals of the three molecules on the intrinsically FN-tethering macrophages were correlated to each other. When FN-poor macrophages adhered to culture plates, the gp49-integrin ß 1 signal correlation increased at the focal adhesion, supporting the notion that gp49B and integrin ß 1 become spatially closer to each other there. Adherence of RAW264.7 and THP-1 cells to immobilized FN induced phosphorylation of spleen tyrosine kinase, whose level was augmented under B4/gp49B deficiency. Thus, we concluded that B4/gp49B can co-tether FN in cooperation with integrin in the cis configuration on the same cell, forming a B4/gp49B-FN-integrin triplet as a regulatory unit of a focal adhesion-dependent pro-inflammatory signal in macrophages.


Assuntos
Fibronectinas , Integrinas , Animais , Adesão Celular , Fibronectinas/química , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Humanos , Integrinas/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Fosforilação , Receptores Imunológicos/metabolismo
15.
Biomacromolecules ; 24(2): 886-895, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36668816

RESUMO

Fibronectin (FN) is an essential glycoprotein in the extracellular matrix with favorable biological functions for potential applications in various biomedical fields including wound healing, regenerative medicine, tissue engineering, as well as diagnosis and treatment of cancer and inflammatory diseases. Herein, we aim to explore the influence of intracellular FN delivery on macrophage functions and its possible therapeutic applications. We prepared phenylboronic acid (PBA)-functionalized generation 5 (G5) poly(amidoamine) dendrimers (G5.NH2-PBA) as a nanocarrier to load FN, and reveal that the obtained dendrimers enable efficient intracellular delivery of FN at an optimized dendrimer-to-FN weight ratio of 8, which guides macrophages toward anti-inflammatory M2 phenotype polarization. Studies on action mechanisms show that the dendrimer-mediated FN intracellular delivery acts strongly on suppressing the nuclear factor-κB pathway, leading to reduced pro-inflammatory cytokine secretion and enhanced reactive oxygen species depletion in lipopolysaccharide (LPS)-activated macrophages. Further investigation in vivo using an LPS-induced mouse model of acute lung injury (ALI) shows that the dendrimer-mediated FN delivery can effectively alleviate the ALI symptoms through alleviation of lung inflammation and oxidation stress. Our work suggests a general approach to using dendrimers for mediating intracellular delivery of FN, thereby offering many opportunities to explore the biological functions of FN for different therapeutic applications toward inflammation-associated diseases.


Assuntos
Lesão Pulmonar Aguda , Dendrímeros , Animais , Camundongos , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Lipopolissacarídeos/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Macrófagos
16.
Exp Mol Pathol ; 134: 104869, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37690529

RESUMO

INTRODUCTION: Irisin plays an important role in regulating tissue stress, cardiac function, and inflammation. Integrin αvß5 was recently identified as a receptor for irisin to elicit its physiologic function. It remains unknown whether integrin αvß5 is required for irisin's function in modulating the physiologic response to hemorrhage. The objective of this study is to examine if integrin αvß5 contributes to the effects of irisin during the hemorrhagic response. METHODS: Hemorrhage was induced in mice by achieving a mean arterial blood pressure of 35-45 mmHg for one hour, followed by two hours of resuscitation. Irisin (0.5  µg/kg) was administrated to assess its pharmacologic effects in hemorrhage. Cilengitide, a cyclic Arg-Gly-Asp peptide (cRGDyK) which is an inhibitor of integrin αvß5, or control RGDS (1 mg/kg) was administered with irisin. In another cohort of mice, the irisin-induced protective effect was examined after knocking down integrin ß5 with nanoparticle delivery of integrin ß5 sgRNA using CRSIPR/Cas-9 gene editing. Cardiac function and hemodynamics were measured using echocardiography and femoral artery catheterization, respectively. Systemic cytokine releases were measured using Enzyme-linked immunosorbent assay (ELISA). Histological analyses were used to determine tissue damage in myocardium, skeletal muscles, and lung tissues. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was carried out to assess apoptosis in tissues. RESULTS: Hemorrhage induced reduction of integrin αvß5 in skeletal muscles and repressed recovery of cardiac performance and hemodynamics. Irisin treatment led to significantly improved cardiac function, which was abrogated by treatment with Cilengitide or knockdown of integrin ß5. Furthermore, irisin resulted in a marked suppression of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1), muscle edema, and inflammatory cells infiltration in myocardium and skeletal muscles, which was attenuated by Cilengitide or knockdown of integrin ß5. Irisin-induced reduction of apoptosis in the myocardium, skeletal muscles, and lung, which were attenuated by either the inhibition of integrin αvß5, or knockdown of integrin ß5. CONCLUSION: Integrin αvß5 plays an important role for irisin in modulating the protective effect during hemorrhage.


Assuntos
Fibronectinas , Integrina alfaV , Animais , Humanos , Camundongos , Fibronectinas/genética , Fibronectinas/farmacologia , Hemorragia , RNA Guia de Sistemas CRISPR-Cas
17.
J Periodontal Res ; 58(2): 336-349, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36625247

RESUMO

BACKGROUND: Irisin is expressed in human periodontal ligament (hPDL), and its administration enhances growth, migration and matrix deposition in hPDL cells cultured in monolayers in vitro. OBJECTIVES: To identify whether irisin affects the gene expression patterns directing the morphology, mechanical properties, extracellular matrix (ECM) formation, osteogenic activity and angiogenic potential in hPDL cell spheroids cultured in 3D. MATERIALS AND METHODS: Spheroids of primary human hPDL cells were generated in a rotational 3D culture system and treated with or without irisin. The gene expression patterns were evaluated by Affymetrix microarrays. The morphology of the spheroids was characterized using histological staining. Mechanical properties were quantified by nanoindentation. The osteogenic and angiogenic potential of spheroids were assessed through immunofluorescence staining for collagen type I, periostin fibronectin and von Willebrand factor (vWF), and mRNA expression of osteogenic markers. The secretion of multiple myokines was evaluated using Luminex immunoassays. RESULTS: Approximately 1000 genes were differentially expressed between control and irisin-treated groups by Affymetrix. Several genes related to ECM organization were differentially expressed, and multiple deubiquitinating enzymes were upregulated in the irisin-exposed samples analyzed. These represent cellular and molecular mechanisms indicative of a role for irisin in tissue remodeling. Irisin induced a rim-like structure on the outer region of the hPDL spheroids, ECM-related protein expression and the stiffness of the spheroids were enhanced by irisin. The expression of osteogenic and angiogenetic markers was increased by irisin. CONCLUSIONS: Irisin altered the morphology in primary hPDL cell-derived spheroids, enhanced its ECM deposition, mechanical properties, differentiation and remodeling potential.


Assuntos
Diferenciação Celular , Matriz Extracelular , Fibronectinas , Ligamento Periodontal , Humanos , Células Cultivadas , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/farmacologia , Osteogênese/genética , Ligamento Periodontal/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnicas de Cultura de Células em Três Dimensões
18.
Biochemistry (Mosc) ; 88(6): 810-822, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37748877

RESUMO

Normalization of secretory activity and differentiation status of mesenchymal cells, including fibroblasts, is an important biomedical problem. One of the possible solutions is modulation of unfolded protein response (UPR) activated during fibroblast differentiation. Here, we investigated the effect of phytohormones on the secretory activity and differentiation of cultured human skin fibroblasts. Based on the analysis of expression of genes encoding UPR markers, abscisic acid (ABA) upregulated expression of the GRP78 and ATF4 genes, while gibberellic acid (GA) upregulated expression of CHOP. Evaluation of the biosynthetic activity of fibroblasts showed that ABA promoted secretion and synthesis of procollagen I and synthesis of fibronectin, as well as the total production of collagen and non-collagen proteins of the extracellular matrix (ECM). ABA also stimulated the synthesis of smooth muscle actin α (α-SMA), which is the marker of myofibroblasts, and increased the number of myofibroblasts in the cell population. On the contrary, GA increased the level of fibronectin secretion, but reduced procollagen I synthesis and the total production of the ECM collagen proteins. GA downregulated the synthesis of α-SMA and decreased the number of myofibroblasts in the cell population. Our results suggest that phytohormones modulate the biosynthetic activity of fibroblasts and affect their differentiation status.


Assuntos
Fibronectinas , Reguladores de Crescimento de Plantas , Humanos , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Pró-Colágeno/genética , Pró-Colágeno/metabolismo , Pró-Colágeno/farmacologia , Células Cultivadas , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Diferenciação Celular , Colágeno , Proteínas da Matriz Extracelular/metabolismo , Actinas/metabolismo , Resposta a Proteínas não Dobradas
19.
Metab Brain Dis ; 38(5): 1643-1656, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36947333

RESUMO

This study aims to investigate the effect of irisin on ethanol-induced behavioral deficits and explore the underlying mechanisms. A mouse model of ethanol addiction/withdrawal was constructed through chronic ethanol administration. Depressive-like behaviors were evaluated by the tail suspension test and forced swimming test, and anxiety-like behaviors were evaluated by the marble-burying test and elevated plus maze test. The expression of Nrf2 was measured by western blotting. Levels of inflammatory mediators (NF-κB, TNF-α, IL-1ß and IL-6) and oxidative stress factors (ROS, MDA, GSH and SOD) were detected by ELISA. The ethanol-induced PC12/BV2 cell injury model was used to elucidate whether the effect of irisin on ethanol-induced neurological injury was related to anti-inflammatory and antioxidant mechanisms. Ethanol-induced ethanol preference and emotional deficits were improved by chronic irisin treatment; however, these improvements were partly reversed by cotreatment with the Nrf2 inhibitor ML385. Further results implied that the improvement effect of irisin on behavioral abnormalities may be related to its anti-inflammatory and antioxidant effects. In detail, irisin inhibited ethanol-induced abnormal expression of ROS and MDA and upregulated the expression of GSH and SOD. Meanwhile, irisin treatment inhibited ethanol-induced overexpression of NF-κB, TNF-α, IL-1ß and IL-6 in the hippocampus and cerebral cortex. The regulation of oxidative stress factors by irisin was reversed after ML385 treatment. In the in vitro study, overexpression of oxidative stress factors in ethanol-treated PC12 cells was inhibited by irisin treatment; however, the prevention was reversed after the knockdown of Nrf2 siRNA. Moreover, ethanol-induced overexpression of inflammatory mediators in BV2 cells was also inhibited by irisin treatment. Irisin improved depressive and anxiety-like behaviors induced by ethanol addiction/withdrawal in mice, and this protection was greatly associated with the NF-κB-mediated anti-inflammatory signaling pathway and Nrf2-mediated antioxidative stress signaling pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Ratos , Camundongos , Animais , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Etanol/toxicidade , Antioxidantes/farmacologia , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Superóxido Dismutase/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo
20.
Biotechnol Lett ; 45(8): 1013-1027, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37227598

RESUMO

Bioactive materials interact with cells and modulate their characteristics which enable the generation of cell-based products with desired specifications. However, their evaluation and impact are often overlooked when establishing a cell therapy manufacturing process. In this study, we investigated the role of different surfaces for tissue culture including, untreated polystyrene surface, uncoated Cyclic Olefin Polymer (COP) and COP coated with collagen and recombinant fibronectin. It was observed that human mesenchymal stromal cells (hMSCs) expanded on COP-coated plates with different bioactive materials resulted in improved cell growth kinetics compared to traditional polystyrene plates and non-coated COP plates. The doubling time obtained was 2.78 and 3.02 days for hMSC seeded in COP plates coated with collagen type I and recombinant fibronectin respectively, and 4.64 days for cells plated in standard polystyrene treated plates. Metabolite analysis reinforced the findings of the growth kinetic studies, specifically that cells cultured on COP plates coated with collagen I and fibronectin exhibited improved growth as evidenced by a higher lactate production rate (9.38 × 105 and 9.67 × 105 pmol/cell/day, respectively) compared to cells from the polystyrene group (5.86 × 105 pmol/cell/day). This study demonstrated that COP is an effective alternative to polystyrene-treated plates when coated with bioactive materials such as collagen and fibronectin, however COP-treated plates without additional coatings were found not to be sufficient to support cell growth. These findings demonstrate the key role biomaterials play in the cell manufacturing process and the importance of optimising this selection.


Assuntos
Fibronectinas , Células-Tronco Mesenquimais , Humanos , Fibronectinas/farmacologia , Células Cultivadas , Poliestirenos , Cinética , Proliferação de Células , Colágeno Tipo I
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA