RESUMO
Cadmium (Cd)-contamination impairs biological nitrogen fixation in legumes (BNF), threatening global food security. Innovative strategies to enhance BNF and improve plant resistance to Cd are therefore crucial. This study investigates the effects of graphitic carbon nitride nanosheets (g-C3N4 NSs) on soybean (Glycine max L.) in Cd contaminated soil, focusing on Cd distribution, chemical forms and nitrogen (N) fixation. Soybean plants were treated with 100 mg kg-1 g-C3N4 NSs, with or without 10 mg kg-1 Cd for 4 weeks. Soil addition of g-C3N4 NSs alleviated Cd toxicity and promote soybean growth via scavenging Cd-mediated oxidative stress and improving photosynthesis. Compared to Cd treatment, g-C3N4 NSs increased shoot and root dry weights under Cd toxicity by 49.5% and 63.4%, respectively. g-C3N4 NSs lowered Cd content by 35.7%-54.1%, redistributed Cd subcellularly by increasing its proportion in the cell wall and decreasing it in soluble fractions and organelles, and converted Cd from high-toxicity to low-toxicity forms. Additionally, g-C3N4 NSs improved the soil N cycle, stimulated nodulation, and increased the N-fixing capacity of nodules, thus increasing N content in shoots and roots by 12.4% and 43.2%, respectively. Mechanistic analysis revealed that g-C3N4 NSs mitigated Cd-induced loss of endogenous nitric oxide in nodules, restoring nodule development. This study highlights the potential of g-C3N4 NSs for remediating Cd-contaminated soil, reducing Cd accumulation, and enhancing plant growth and N fixation, offering new insights into the use of carbon nanomaterials for soil improvement and legume productivity under metal(loid)s stress.
Assuntos
Cádmio , Glycine max , Nitrogênio , Poluentes do Solo , Solo , Glycine max/efeitos dos fármacos , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Solo/química , Grafite/química , Grafite/toxicidade , Fixação de Nitrogênio/efeitos dos fármacos , Compostos de NitrogênioRESUMO
The actinobacterium Arthrobacter sp. UMCV2 promotes plant growth through the emission of N,N-dimethylhexadecilamine (DMHDA). The Medicago-Sinorhizobium nodulation has been employed to study symbiotic nitrogen fixation by rhizobia in nodulating Fabaceae. Herein, we isolated three Sinorhizobium medicae strains that were used to induce nodules in Medicago truncatula. The co-inoculation of M. truncatula with Arthrobacter sp. strain UMCV2 produced a higher number of effective nodules than inoculation with only Sinorhizobium strains. Similarly, the exposure of inoculated M. truncatula to DMHDA produced a greater number of effective nodules compared to non-exposed plants. Thus, we conclude that Arthrobacter sp. UMCV2 promotes nodulation, and propose that this effect is produced, at least partly, via DMHDA emission.
Assuntos
Arthrobacter , Medicago truncatula , Medicago truncatula/microbiologia , Arthrobacter/efeitos dos fármacos , Arthrobacter/fisiologia , Sinorhizobium/fisiologia , Sinorhizobium/efeitos dos fármacos , Nodulação/efeitos dos fármacos , Simbiose , Fixação de Nitrogênio/efeitos dos fármacosRESUMO
The present study was undertaken to investigate the arsenite (As III)-induced changes in the diazotrophic cyanobacterium Anabaena PCC 7120. It was observed that the growth of cyanobacterial decreased with increase in As (III) concentration. The cells exposed to As (III) showed morphological variation (deformity) due to the formation of deeper constrictions in vegetative cells. Strain showed increased heterocyst differentiation (1.6-fold higher) whereas decreased nitrogenase activity at the concentration of 40 ppm As (III). The activities of NR, NiR, urease and GS decreased with increase in As (III) concentrations and attained their minimum levels at 40 ppm of As (III). The Ca2+-dependent ATPase activity increased with increase in As (III) concentration and attained its about 2.72-fold higher level at 40 ppm of As (III). In contrast, sharp decline in Mg2+-dependent ATPase activity (28%) was recorded at 1 ppm of As (III) over untreated control. The rates of photosynthetic O2 evolution and respiration decreased with increase in As (III) concentration and attained its minimal level at 40 ppm of As (III). Therefore, this study highlighted arsenite regimes efficiently correlated with behavioral changes in consort with strain.
Assuntos
Anabaena , Arsenitos , Anabaena/efeitos dos fármacos , Anabaena/metabolismo , Arsenitos/farmacologia , Proteínas de Bactérias/metabolismo , Poluentes Ambientais/farmacologia , Ativação Enzimática/efeitos dos fármacos , Nitrogênio/metabolismo , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogenase/metabolismoRESUMO
Autoinducer 2 (or AI-2) is one of the molecules used by bacteria to trigger the Quorum Sensing (QS) response, which activates expression of genes involved in a series of alternative mechanisms, when cells reach high population densities (including bioluminescence, motility, biofilm formation, stress resistance, and production of public goods, or pathogenicity factors, among others). Contrary to most autoinducers, AI-2 can induce QS responses in both Gram-negative and Gram-positive bacteria, and has been suggested to constitute a trans-specific system of bacterial communication, capable of affecting even bacteria that cannot produce this autoinducer. In this work, we demonstrate that the ethanologenic Gram-negative bacterium Zymomonas mobilis (a non-AI-2 producer) responds to exogenous AI-2 by modulating expression of genes involved in mechanisms typically associated with QS in other bacteria, such as motility, DNA repair, and nitrogen fixation. Interestingly, the metabolism of AI-2-induced Z. mobilis cells seems to favor ethanol production over biomass accumulation, probably as an adaptation to the high-energy demand of N2 fixation. This opens the possibility of employing AI-2 during the industrial production of second-generation ethanol, as a way to boost N2 fixation by these bacteria, which could reduce costs associated with the use of nitrogen-based fertilizers, without compromising ethanol production in industrial plants.
Assuntos
Etanol/metabolismo , Homosserina/análogos & derivados , Lactonas/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Zymomonas/metabolismo , Homosserina/farmacologiaRESUMO
Soybean (Glycine max (L.) Merr.) plants form root nodules and fix atmospheric dinitrogen, while also utilizing the combined nitrogen absorbed from roots. In this study, nodulated soybean plants were supplied with 5 mM N nitrate, ammonium, or urea for 3 days, and the changes in metabolite concentrations in the xylem sap and each organ were analyzed. The ureide concentration in the xylem sap was the highest in the control plants that were supplied with an N-free nutrient solution, but nitrate and asparagine were the principal compounds in the xylem sap with nitrate treatment. The metabolite concentrations in both the xylem sap and each organ were similar between the ammonium and urea treatments. Considerable amounts of urea were present in the xylem sap and all the organs among all the treatments. Positive correlations were observed between the ureides and urea concentrations in the xylem sap as well as in the roots and leaves, although no correlations were observed between the urea and arginine concentrations, suggesting that urea may have originated from ureide degradation in soybean plants, possibly in the roots. This is the first finding of the possibility of ureide degradation to urea in the underground organs of soybean plants.
Assuntos
Compostos de Amônio/farmacologia , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Nitratos/farmacologia , Ureia/farmacologia , Alantoína/metabolismo , Aminoácidos/metabolismo , Fixação de Nitrogênio/efeitos dos fármacos , Nodulação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Açúcares/metabolismo , Ureia/metabolismo , Xilema/efeitos dos fármacos , Xilema/metabolismoRESUMO
Soybean [Glycine max (L.) Merr.] has great economic and nutritional importance mainly due to its high protein content. All plant's N needs can be met by the symbiosis with elite Bradyrhizobium strains applied as inoculants to the seeds at sowing time; however, the increasing use of pesticides in seed treatments can impair the contribution of the biological nitrogen fixation. In this study, we report decreases in cell survival of two strains, B. japonicum SEMIA 5079 and B. elkanii SEMIA 587 in seeds inoculated and treated with StandakTop™, composed of the fungicides pyraclostrobin and thiophanate-methyl and the insecticide fipronil, the pesticides most used in soybean seed treatment in several countries. Cell death was enhanced with the time of exposure to the pesticides, and B. elkanii was less tolerant, with almost no detectable viable cells after 15 days. Change in colony morphology with smaller colonies was observed in the presence of the pesticides, being more drastic with the time of exposure, and attributed to an adaptive response towards survival in the presence of the abiotic stress. However, morphological changes were reversible after elimination of the stressing agent and symbiotic performance under controlled greenhouse conditions was similar between strains that had been or not exposed to the pesticides. In addition, no changes in DNA profiles (BOX-PCR) of both strains were observed after the contact with the pesticides. In two field experiments, impacting effects of the pesticides were observed mainly on the total N accumulated in grains of plants relying on both N2-fixation and N-fertilizer. Our data indicate that StandakTop® affects parameters never reported before, including colony morphology of Bradyrhizobium spp. and N metabolism and/or N remobilization to soybean grains.
Assuntos
Bradyrhizobium/crescimento & desenvolvimento , Glycine max/microbiologia , Praguicidas/efeitos adversos , Bradyrhizobium/efeitos dos fármacos , Bradyrhizobium/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Nitrogênio/metabolismo , Fixação de Nitrogênio/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , SimbioseRESUMO
Pseudomonas stutzeri A1501 is a versatile nitrogen-fixing bacterium capable of living in diverse environments and coping with various oxidative stresses. NfiS, a regulatory noncoding RNA (ncRNA) involved in the control of nitrogen fixation in A1501, was previously shown to be required for optimal resistance to H2O2; however, the precise role of NfiS and the target genes involved in the oxidative stress response is entirely unknown. In this work, we systematically investigated the NfiS-based mechanisms underlying the response of this bacterium to H2O2 at the cellular and molecular levels. A mutant strain carrying a deletion of nfiS showed significant downregulation of oxidative stress response genes, especially katB, a catalase gene, and oxyR, an essential regulator for transcription of catalase genes. Secondary structure prediction revealed two binding sites in NfiS for katB mRNA. Complementation experiments using truncated nfiS genes showed that each of two sites is functional, but not sufficient, for NfiS-mediated regulation of oxidative stress resistance and nitrogenase activities. Microscale thermophoresis assays further indicated direct base pairing between katB mRNA and NfiS at both sites 1 and 2, thus enhancing the half-life of the transcript. We also demonstrated that katB expression is dependent on OxyR and that both OxyR and KatB are essential for optimal oxidative stress resistance and nitrogenase activities. H2O2 at low concentrations was detoxified by KatB, leaving O2 as a by-product to support nitrogen fixation under O2-insufficient conditions. Moreover, our data suggest that the direct interaction between NfiS and katB mRNA is a conserved and widespread mechanism among P. stutzeri strains.IMPORTANCE Protection against oxygen damage is crucial for survival of nitrogen-fixing bacteria due to the extreme oxygen sensitivity of nitrogenase. This work exemplifies how the small ncRNA NfiS coordinates oxidative stress response and nitrogen fixation via base pairing with katB mRNA and nifK mRNA. Hence, NfiS acts as a molecular link to coordinate the expression of genes involved in oxidative stress response and nitrogen fixation. Our study provides the first insight into the biological functions of NfiS in oxidative stress regulation and adds a new regulation level to the mechanisms that contribute to the oxygen protection of the MoFe nitrogenase.
Assuntos
Catalase/genética , Peróxido de Hidrogênio/farmacologia , Pseudomonas stutzeri/genética , RNA não Traduzido/genética , Proteínas de Bactérias/genética , Pareamento de Bases , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mutação , Fixação de Nitrogênio/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pseudomonas stutzeri/efeitos dos fármacos , RNA Bacteriano/genética , Proteínas Repressoras/genéticaRESUMO
The rhizobium-legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H2S), a gaseous signaling molecule, may regulate various physiological processes in plants. However, whether H2S has regulatory effect in this symbiotic system remains unknown. Herein, we investigated the possible role of H2S in the symbiosis between soybean (Glycine max) and rhizobium (Sinorhizobium fredii). Our results demonstrated that an exogenous H2S donor (sodium hydrosulfide [NaHS]) treatment promoted soybean growth, nodulation, and nitrogenase (Nase) activity. Western blotting analysis revealed that the abundance of Nase component nifH was increased by NaHS treatment in nodules. Quantitative real-time polymerase chain reaction data showed that NaHS treatment upregulated the expressions of symbiosis-related genes nodA, nodC, and nodD of S. fredii. In addition, expression of soybean nodulation marker genes, including early nodulin 40 (GmENOD40), ERF required for nodulation (GmERN), nodulation signaling pathway 2b (GmNSP2b), and nodulation inception genes (GmNIN1a, GmNIN2a, and GmNIN2b), were upregulated. Moreover, the expressions of glutamate synthase (GmGOGAT), asparagine synthase (GmAS), nitrite reductase (GmNiR), ammonia transporter (GmSAT1), leghemoglobin (GmLb), and nifH involved in nitrogen metabolism were upregulated in NaHS-treated soybean roots and nodules. Together, our results suggested that H2S may act as a positive signaling molecule in the soybean-rhizobia symbiotic system and enhance the system's nitrogen fixation ability.
Assuntos
Glycine max , Sulfeto de Hidrogênio , Fixação de Nitrogênio , Nodulação , Rhizobium , Gasotransmissores/farmacologia , Sulfeto de Hidrogênio/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Nodulação/efeitos dos fármacos , Rhizobium/fisiologia , Glycine max/microbiologia , Simbiose/efeitos dos fármacosRESUMO
Cyanothece sp., a coccoid, unicellular, nitrogen-fixing and hydrogen-producing cyanobacterium, has been used in this study to biosynthesize customized gold nanoparticles under certain chemical conditions. The produced gold nanoparticles had a characteristic absorption band at 525-535 nm. Two types of gold nanoparticle, the purple and blue, were formed according to the chemical environment in which the cyanobacterium was grown. Dynamic light scattering was implemented to estimate the size of the purple and blue nanoparticles, which ranged from 80 ± 30 nm and 129 ± 40 nm in diameter, respectively. The highest scattering of laser light was recorded for the blue gold nanoparticles, which was possibly due to their larger size and higher concentration. The appearance of anodic and cathodic peaks in cyclic voltammetric scans of the blue gold nanoparticles reflected the oxidation into gold oxide, followed by the subsequent reduction into the nano metal state. The two produced forms of gold nanoparticles were used to treat isoproterenol-induced myocardial infarction in experimental rats. Both forms of nanoparticles ameliorated myocardial infarction injury, with a slight difference in their curative activity with the purple being more effective. Mechanisms that might explain the curative effect of these nanoparticles on the myocardial infarction were proposed. The morphological, physiological, and biochemical attributes of the Cyanothece sp. cyanobacterium were fundamental for the successful production of "tailored" nanoparticles, and complemented the chemical conditions for the differential biosynthesis process. The present research represents a novel approach to manipulate cyanobacterial cells towards the production of different-sized gold nanoparticles whose curative impacts vary accordingly. This is the first report on that type of manipulated gold nanoparticles biosynthesis which will hopefully open doors for further investigations and biotechnological applications.
Assuntos
Cianobactérias/química , Cyanothece/química , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Infarto do Miocárdio/tratamento farmacológico , Animais , Isoproterenol/química , Luz , Masculino , Miocárdio/química , Nitrogênio/química , Fixação de Nitrogênio/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
Cultivation on selective media revealed that the oil-sorbents, wheat straw, corncobs and sugarcane bagasse harbor hydrocarbonoclastic, diazotrophic and heavy metal-resistant microorganisms. Nitrogen-free media containing 1.0% crude oil lost between 32.2 and 37.5% of this oil, after 8 months when they have been inoculated with such microorganism-loaded sorbents. The used wheat straw, corncobs and sugarcane bagasse samples, 1.0â¯g each, absorbed respectively, 1.9, 1.1 and 2.5â¯g oil samples, and lost 24.3-39.2% of these amounts, after they had been incubated for 8 months. Total genomic DNA's from culture media and sorbents revealed various nitrogenase-coding nifH-genes. Pure hydrocarbonoclastic microbial isolates tolerated certain concentrations of, Hg2+, Cd2+, Pb2+, AsO43- and AsO33-. Some of those isolates even grew excellently with up to 1000â¯ppm of Pb2+ and 36,000â¯ppm of AsO43- also in the presence of oil. Tested strains removed the tested heavy metals, Hg2+, Cd2+ and Pb2+ from the media and thus, reduced their toxicity against the hydrocarbon-degraders. It was concluded that plant-based sorbents, not only remove oil physically, but also harbor microbial communities effective in spilled oil-bioremediation under multiple stresses. Although each community consisted of one to three species only, the consortia which reached in numbers millions of CFU ml-1 enrich the oily media with fixed nitrogen, and remove heavy metals which otherwise inhibit the oil-degrading microorganisms.
Assuntos
Metais Pesados/toxicidade , Microbiota , Nitrogênio/metabolismo , Poluição por Petróleo/análise , Plantas , Adsorção , Biodegradação Ambiental , Hidrocarbonetos/química , Microbiota/efeitos dos fármacos , Modelos Teóricos , Fixação de Nitrogênio/efeitos dos fármacos , Plantas/química , Plantas/microbiologia , Resíduos SólidosRESUMO
Copper-based fungicides have been used for a long time in viticulture and have accumulated in many vineyard soils. In this study, incrementing Cu(OH)2-based fungicide application from 0.05 to 5 g Cu kg-1 on two agricultural soils (an acidic sandy loam (L, pH 4.95) and an alkaline silt loam (D, pH 7.45)) resulted in 5 times more mobile Cu in the acidic soil. The most sensitive parameters of alfalfa (Medicago sativa) growing in these soils were the root nodule number, decreasing to 34% and 15% of the control at 0.1 g Cu kg-1 in soil L and at 1.5 g Cu kg-1 in soil D, respectively, as well as the nodule biomass, decreasing to 25% and 27% at 0.5 g Cu kg-1 in soil L and at 1.5 g Cu kg-1 in soil D, respectively. However, the enzymatic N2-fixation was not directly affected by Cu in spite of the presence of Cu in the meristem and the zone of effective N2-fixation, as illustrated by chemical imaging. The strongly different responses observed in the two tested soils reflect the higher buffering capacity of the alkaline silt loam and showed that Cu mitigation and remediation strategies should especially target vineyards with acidic, sandy soils.
Assuntos
Cobre/metabolismo , Fungicidas Industriais/efeitos adversos , Medicago sativa/efeitos dos fármacos , Fixação de Nitrogênio/efeitos dos fármacos , Nodulação/efeitos dos fármacos , Disponibilidade Biológica , Hidróxidos/metabolismo , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/microbiologiaRESUMO
Nitrogen (N2) fixation by moss-associated cyanobacteria is one of the main sources of new N input in pristine ecosystems such as boreal forests and arctic tundra. Given the non-vascular physiology of mosses, they are especially sensitive to e.g. increased N input and heavy metal deposition. While the effects of increased N input on moss-associated N2 fixation has been comprehensively assessed, hardly any reports exist on the effects of increased heavy metal load on this key ecosystem function. To address this knowledge gap, we made use of an extreme metal pollution gradient in boreal forests of Northern Sweden originating from a metal mine and its associated smelters. We collected the common moss Pleurozium schreberi, known to host cyanobacteria, along a distance gradient away from the metal source of pollution and measured moss-metal content (Fe, Cu, Zn, Pb) as well as N2 fixation. We found a strong distance gradient in moss-metal content for all investigated metals: a sharp decline in metal content with distance away from the metal pollution source. However, we found a similarly steep gradient in moss-associated N2 fixation, with highest activity closest to the metal source of pollution. Hence, while mosses may be sensitive to increased heavy metal inputs, the activity of colonising cyanobacteria seem to be unaffected by heavy metals, and consequently, ecosystem function may not be compromised by elevated metal input.
Assuntos
Bryopsida/efeitos dos fármacos , Cianobactérias/efeitos dos fármacos , Poluentes Ambientais/efeitos adversos , Metais Pesados/efeitos adversos , Fixação de Nitrogênio/efeitos dos fármacos , Simbiose/efeitos dos fármacos , Bryopsida/metabolismo , Cianobactérias/metabolismo , Monitoramento Ambiental , SuéciaRESUMO
Plant communities play an important role in the C-sink function of peatlands. However, global change and local perturbations are expected to modify peatland plant communities, leading to a shift from Sphagnum mosses to vascular plants. Most studies have focused on the direct effects of modification in plant communities or of global change (such as climate warming, N fertilization) in peatlands without considering interactions between these disturbances that may alter peatlands' C function. We set up a mesocosm experiment to investigate how Greenhouse Gas (CO2, CH4, N2O) fluxes, and dissolved organic carbon (DOC) and total dissolved N (TN) contents are affected by a shift from Sphagnum mosses to Molinia caerulea dominated peatlands combined with N fertilization. Increasing N deposition did not alter the C fluxes (CO2 exchanges, CH4 emissions) or DOC content. The lack of N effect on the C cycle seems due to the capacity of Sphagnum to efficiently immobilize N. Nevertheless, N supply increased the N2O emissions, which were also controlled by the plant communities with the presence of Molinia caerulea reducing N2O emissions in the Sphagnum mesocosms. Our study highlights the role of the vegetation composition on the C and N fluxes in peatlands and their responses to the N deposition. Future research should now consider the climate change in interaction to plants community modifications due to their controls of peatland sensitivity to environmental conditions.
Assuntos
Ciclo do Carbono/efeitos dos fármacos , Ciclo do Nitrogênio/efeitos dos fármacos , Nitrogênio/farmacologia , Poaceae/química , Poaceae/efeitos dos fármacos , Sphagnopsida/química , Sphagnopsida/efeitos dos fármacos , Fertilizantes/análise , Fixação de Nitrogênio/efeitos dos fármacosRESUMO
Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation.
Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Medicago truncatula/metabolismo , Fixação de Nitrogênio , Proteínas de Plantas/metabolismo , Simbiose , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte de Cátions/genética , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cobre/farmacologia , Transportador de Cobre 1 , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Medicago truncatula/citologia , Família Multigênica , Mutação/genética , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogenase/metabolismo , Fenótipo , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Simbiose/efeitos dos fármacosRESUMO
N-fixing nodules are new organs formed on legume roots as a result of the beneficial interaction with soil bacteria, rhizobia. The nodule functioning is still a poorly characterized step of the symbiotic interaction, as only a few of the genes induced in N-fixing nodules have been functionally characterized. We present here the characterization of a member of the Lotus japonicus nitrate transporter1/peptide transporter family, LjNPF8.6 The phenotypic characterization carried out in independent L. japonicus LORE1 insertion lines indicates a positive role of LjNPF8.6 on nodule functioning, as knockout mutants display N-fixation deficiency (25%) and increased nodular superoxide content. The partially compromised nodule functioning induces two striking phenotypes: anthocyanin accumulation already displayed 4 weeks after inoculation and shoot biomass deficiency, which is detected by long-term phenotyping. LjNPF8.6 achieves nitrate uptake in Xenopus laevis oocytes at both 0.5 and 30 mm external concentrations, and a possible role as a nitrate transporter in the control of N-fixing nodule activity is discussed.
Assuntos
Proteínas de Transporte de Ânions/metabolismo , Lotus/metabolismo , Família Multigênica , Fixação de Nitrogênio , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Animais , Antocianinas/metabolismo , Biomassa , Éxons/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Íntrons/genética , Lotus/efeitos dos fármacos , Lotus/genética , Mutagênese Insercional/genética , Mutação/genética , Transportadores de Nitrato , Nitratos/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Fixação de Nitrogênio/genética , Nitrogenase/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Fenótipo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/genética , Superóxidos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Xenopus laevisRESUMO
Aluminum (Al) toxicity is a major problem affecting soil fertility, microbial diversity, and nutrient uptake of plants. Rhizobia response and legume interaction under Al conditions are still unknown; it is important to understand how to develop and improve legume cultivation under Al stress. In this study, rhizobia response was recorded under different Al concentrations. Al effect on rhizobial cells was characterized by combination with different two pH conditions. Symbiosis process was compared between α- and ß-rhizobia inoculated onto soybean varieties. Rhizobial cell numbers was decreased as Al concentration increased. However, induced Al tolerance considerably depended on rhizobia types and their origins. Accordingly, organic acid results were in correlation with growth rate and cell density which suggested that citric acid might be a positive selective force for Al tolerance and plant interaction on rhizobia. Al toxicity delayed and interrupted the plant-rhizobia interaction and the effect was more pronounced under acidic conditions. Burkholderia fungorum VTr35 significantly improved plant growth under acid-Al stress in combination with all soybean varieties. Moreover, plant genotype was an important factor to establish an effective nodulation and nitrogen fixation under Al stress. Additionally, tolerant rhizobia could be applied as an inoculant on stressful agroecosystems. Furthermore, metabolic pathways have still been unknown under Al stress.
Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Alumínio/toxicidade , Glycine max/microbiologia , Rhizobium/fisiologia , Simbiose/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fixação de Nitrogênio/efeitos dos fármacos , Nodulação/efeitos dos fármacos , Rhizobium/efeitos dos fármacos , Rhizobium/genética , Solo/química , Microbiologia do Solo , Glycine max/genética , Glycine max/fisiologiaRESUMO
Petroleum hydrocarbons are well known by their high toxicity and recalcitrant properties. Their increasing utilization around worldwide led to environmental contamination. Phytoremediation using plant-associated microbe is an interesting approach for petroleum degradation and actinobacteria have a great potential for that. For this purpose, our study aimed to isolate, characterize, and assess the ability of endophytic actinobacteria to degrade crude petroleum, as well as to produce plant growth promoting traits. Seventeen endophytic actinobacteria were isolated from roots of plants grown naturally in sandy contaminated soil. Among them, six isolates were selected on the basis of their tolerance to petroleum on solid minimal medium and characterized by 16S rDNA gene sequencing. All petroleum-tolerant isolates belonged to the Streptomyces genus. Determination by crude oil degradation by gas chromatorgraph-flame ionization detector revealed that five strains could use petroleum as sole carbon and energy source and the petroleum removal achieved up to 98% after 7 days of incubation. These isolates displayed an important role in the degradation of the n-alkanes (C6-C30), aromatic and polycyclic aromatic hydrocarbons. All strains showed a wide range of plant growth promoting features such as siderophores, phosphate solubilization, 1-aminocyclopropane-1-carboxylate deaminase, nitrogen fixation and indole-3-acetic acid production as well as biosurfactant production. This is the first study highlighting the petroleum degradation ability and plant growth promoting attributes of endophytic Streptomyces. The finding suggests that the endophytic actinobacteria isolated are promising candidates for improving phytoremediation efficiency of petroleum contaminated soil.
Assuntos
Endófitos/metabolismo , Petróleo/análise , Plantas/microbiologia , Poluentes do Solo/análise , Streptomyces/metabolismo , Argélia , Biodegradação Ambiental , Carbono-Carbono Liases/metabolismo , Endófitos/crescimento & desenvolvimento , Fixação de Nitrogênio/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Plantas/metabolismo , Solo/química , Streptomyces/crescimento & desenvolvimentoRESUMO
Fungal plant pathogens are persistent and global food security threats. To invade their hosts they often form highly specialized infection structures, known as appressoria. The cAMP/ PKA- and MAP kinase-signaling cascades have been functionally delineated as positive-acting pathways required for appressorium development. Negative-acting regulatory pathways that block appressorial development are not known. Here, we present the first detailed evidence that the conserved Target of Rapamycin (TOR) signaling pathway is a powerful inhibitor of appressorium formation by the rice blast fungus Magnaporthe oryzae. We determined TOR signaling was activated in an M. oryzae mutant strain lacking a functional copy of the GATA transcription factor-encoding gene ASD4. Δasd4 mutant strains could not form appressoria and expressed GLN1, a glutamine synthetase-encoding orthologue silenced in wild type. Inappropriate expression of GLN1 increased the intracellular steady-state levels of glutamine in Δasd4 mutant strains during axenic growth when compared to wild type. Deleting GLN1 lowered glutamine levels and promoted appressorium formation by Δasd4 strains. Furthermore, glutamine is an agonist of TOR. Treating Δasd4 mutant strains with the specific TOR kinase inhibitor rapamycin restored appressorium development. Rapamycin was also shown to induce appressorium formation by wild type and Δcpka mutant strains on non-inductive hydrophilic surfaces but had no effect on the MAP kinase mutant Δpmk1. When taken together, we implicate Asd4 in regulating intracellular glutamine levels in order to modulate TOR inhibition of appressorium formation downstream of cPKA. This study thus provides novel insight into the metabolic mechanisms that underpin the highly regulated process of appressorium development.
Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Fator de Transcrição GATA4/metabolismo , Glutamato-Amônia Ligase/metabolismo , Magnaporthe/fisiologia , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Antifúngicos/farmacologia , Chaperoninas/genética , Chaperoninas/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ativação Enzimática/efeitos dos fármacos , Proteínas Fúngicas/agonistas , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Estruturas Fúngicas/efeitos dos fármacos , Estruturas Fúngicas/enzimologia , Estruturas Fúngicas/fisiologia , Fator de Transcrição GATA4/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Glutamina/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Magnaporthe/efeitos dos fármacos , Magnaporthe/enzimologia , Mutação , Fixação de Nitrogênio/efeitos dos fármacos , Oryza/microbiologia , Inibidores de Proteínas Quinases/farmacologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismoRESUMO
Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15 N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : 15 N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.
Assuntos
Briófitas/fisiologia , Ecossistema , Molibdênio/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Fósforo/farmacologia , Acetileno/metabolismo , Biomassa , Cianobactérias/efeitos dos fármacos , Cianobactérias/metabolismo , Isótopos de NitrogênioRESUMO
Cryptogamic species and their associated cyanobacteria have attracted the attention of biogeochemists because of their critical roles in the nitrogen cycle through symbiotic and asymbiotic biological fixation of nitrogen (BNF). BNF is mediated by the nitrogenase enzyme, which, in its most common form, requires molybdenum at its active site. Molybdenum has been reported as a limiting nutrient for BNF in many ecosystems, including tropical and temperate forests. Recent studies have suggested that alternative nitrogenases, which use vanadium or iron in place of molybdenum at their active site, might play a more prominent role in natural ecosystems than previously recognized. Here, we studied the occurrence of vanadium, the role of molybdenum availability on vanadium acquisition and the contribution of alternative nitrogenases to BNF in the ubiquitous cyanolichen Peltigera aphthosa s.l. We confirmed the use of the alternative vanadium-based nitrogenase in the Nostoc cyanobiont of these lichens and its substantial contribution to BNF in this organism. We also showed that the acquisition of vanadium is strongly regulated by the abundance of molybdenum. These findings show that alternative nitrogenase can no longer be neglected in natural ecosystems, particularly in molybdenum-limited habitats.