Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
J Biol Chem ; 300(9): 107698, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173945

RESUMO

Aberrant activation of the cell cycle of terminally differentiated neurons results in their apoptosis and is known to contribute to neuronal loss in various neurodegenerative disorders like Alzheimer's Disease. However, the mechanisms that regulate cell cycle-related neuronal apoptosis are poorly understood. We identified several miRNA that are dysregulated in neurons from a transgenic APP/PS1 mouse model for AD (TgAD). Several of these miRNA are known to and/or are predicted to target cell cycle-related genes. Detailed investigation on miR-449a revealed the following: a, it promotes neuronal differentiation by suppressing the neuronal cell cycle; b, its expression in cortical neurons was impaired in response to amyloid peptide Aß42; c, loss of its expression resulted in aberrant activation of the cell cycle leading to apoptosis. miR-449a may prevent cell cycle-related neuronal apoptosis by targeting cyclin D1 and protein phosphatase CDC25A, which are important for G1-S transition. Importantly, the lentiviral-mediated delivery of miR-449a in TgAD mouse brain significantly reverted the defects in learning and memory, which are associated with AD.


Assuntos
Doença de Alzheimer , Apoptose , MicroRNAs , Neurônios , Fosfatases cdc25 , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fosfatases cdc25/metabolismo , Fosfatases cdc25/genética , Ciclo Celular , Diferenciação Celular , Ciclina D1/metabolismo , Ciclina D1/genética , Camundongos Transgênicos , MicroRNAs/metabolismo , MicroRNAs/genética , Neurônios/metabolismo , Neurônios/patologia
2.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588250

RESUMO

Although lengthening of the cell cycle and G1 phase is a generic feature of tissue maturation during development, the underlying mechanism remains poorly understood. Here, we develop a time-lapse imaging strategy to measure the four cell cycle phases in single chick neural progenitor cells in their endogenous environment. We show that neural progenitors are widely heterogeneous with respect to cell cycle length. This variability in duration is distributed over all phases of the cell cycle, with the G1 phase contributing the most. Within one cell cycle, each phase duration appears stochastic and independent except for a correlation between S and M phase duration. Lineage analysis indicates that the majority of daughter cells may have a longer G1 phase than mother cells, suggesting that, at each cell cycle, a mechanism lengthens the G1 phase. We identify that the CDC25B phosphatase known to regulate the G2/M transition indirectly increases the duration of the G1 phase, partly through delaying passage through the restriction point. We propose that CDC25B increases the heterogeneity of G1 phase length, revealing a previously undescribed mechanism of G1 lengthening that is associated with tissue development.


Assuntos
Células-Tronco Neurais , Ciclo Celular/fisiologia , Divisão Celular , Fase G1/fisiologia , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
3.
Genomics ; 116(5): 110946, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39326642

RESUMO

Patients with preimplantation embryo arrest (PREMBA) often experience assisted reproductive failure primarily due to the lack of transferable embryos, and the molecular mechanisms underlying PREMBA remain unclear. In our study, the embryos from five women with recurrent preimplantation embryo arrest and three women with tubal factor infertility were used for single-embryo transcriptome sequencing. Meanwhile, the transcriptomes of normal human preimplantation embryos obtained from GSE36552 were utilized to perform a comparative analysis with the transcriptomes of PREMBA embryos. Our results showed dysregulation of the cell cycle phase transition might be a potential pathogenic factor contributing to PREMBA. Through integrated analysis of the differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA), we identified a number of hub genes using the protein-protein interaction network. The top 5 hub genes were as follows: CCNB2, BUB1B, CDC25A, CCNB3, and PLK3. The expression of hub genes was validated in PREMBA embryos and donated embryos using RT-qPCR. The knockdown of Ccnb2 in mouse zygotes led to an increase in embryo fragmentation, a rise in apoptosis, and a reduction in blastocyst formation. Furthermore, silencing the expression of CDC25A in HEK293T cells resulted in a decrease in cell proliferation and an increase in apoptosis, providing further support for our findings. Our findings could predict the development outcomes of preimplantation embryos and be used as potential therapeutic targets to prevent recurrent failures of IVF/ICSI attempts.


Assuntos
Blastocisto , Humanos , Animais , Camundongos , Feminino , Blastocisto/metabolismo , Células HEK293 , Transcriptoma , Perfilação da Expressão Gênica , Ciclina B2/genética , Ciclina B2/metabolismo , Mapas de Interação de Proteínas , Regulação da Expressão Gênica no Desenvolvimento , Apoptose , Desenvolvimento Embrionário/genética , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
4.
Genes Dev ; 31(6): 553-566, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404630

RESUMO

The female mammary gland is a very dynamic organ that undergoes continuous tissue remodeling during adulthood. Although it is well established that the number of menstrual cycles and pregnancy (in this case transiently) increase the risk of breast cancer, the reasons are unclear. Growing clinical and experimental evidence indicates that improper involution plays a role in the development of this malignancy. Recently, we described the miR-424(322)/503 cluster as an important regulator of mammary epithelial involution after pregnancy. Here, through the analysis of ∼3000 primary tumors, we show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers and describe the genetic aberrations that inactivate its expression. Furthermore, through the use of a knockout mouse model, we demonstrate for the first time that loss of miR-424(322)/503 promotes breast tumorigenesis in vivo. Remarkably, we found that loss of miR-424(322)/503 promotes chemoresistance due to the up-regulation of two of its targets: BCL-2 and insulin-like growth factor-1 receptor (IGF1R). Importantly, targeted therapies blocking the aberrant activity of these targets restore sensitivity to chemotherapy. Overall, our studies reveal miR-424(322)/503 as a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Deleção de Genes , Genes Supressores de Tumor , Humanos , Neoplasias Mamárias Experimentais/genética , Camundongos , Gravidez , Complicações Neoplásicas na Gravidez/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Fosfatases cdc25/genética
5.
J Neurosci ; 43(7): 1154-1165, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36596698

RESUMO

During development, cortical neurons are produced in a temporally regulated sequence from apical progenitors, directly or indirectly, through the production of intermediate basal progenitors. The balance between these major progenitor types is critical for the production of the proper number and types of neurons, and it is thus important to decipher the cellular and molecular cues controlling this equilibrium. Here we address the role of a cell cycle regulator, the CDC25B phosphatase, in this process. We show that, in the developing mouse neocortex of both sex, deleting CDC25B in apical progenitors leads to a transient increase in the production of TBR1+ neurons at the expense of TBR2+ basal progenitors. This phenotype is associated with lengthening of the G2 phase of the cell cycle, the total cell cycle length being unaffected. Using in utero electroporation and cortical slice cultures, we demonstrate that the defect in TBR2+ basal progenitor production requires interaction with CDK1 and is because of the G2 phase lengthening in CDC25B mutants. Together, this study identifies a new role for CDC25B and G2 phase length in direct versus indirect neurogenesis at early stages of cortical development.SIGNIFICANCE STATEMENT This study is the first analysis of the function of CDC25B, a G2/M regulator, in the developing neocortex. We show that removing CDC25B function leads to a transient increase in neuronal differentiation at early stages, occurring simultaneously with a decrease in basal intermediate progenitors (bIPs). Conversely, a CDC25B gain of function promotes production of bIPs, and this is directly related to CDC25B's ability to regulate CDK1 activity. This imbalance of neuron/progenitor production is linked to a G2 phase lengthening in apical progenitors; and using pharmacological treatments on cortical slice cultures, we show that shortening the G2 phase is sufficient to enhance bIP production. Our results reveal the importance of G2 phase length regulation for neural progenitor fate determination.


Assuntos
Neocórtex , Células-Tronco Neurais , Neurogênese , Animais , Camundongos , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo
6.
J Biol Chem ; 299(3): 102957, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717077

RESUMO

Cyclin A and CDC25A are both activators of cyclin-dependent kinases (CDKs): cyclin A acts as an activating subunit of CDKs and CDC25A a phosphatase of the inhibitory phosphorylation sites of the CDKs. In this study, we uncovered an inverse relationship between the two CDK activators. As cyclin A is an essential gene, we generated a conditional silencing cell line using a combination of CRISPR-Cas9 and degron-tagged cyclin A. Destruction of cyclin A promoted an acute accumulation of CDC25A. The increase of CDC25A after cyclin A depletion occurred throughout the cell cycle and was independent on cell cycle delay caused by cyclin A deficiency. Moreover, we determined that the inverse relationship with cyclin A was specific for CDC25A and not for other CDC25 family members or kinases that regulate the same sites in CDKs. Unexpectedly, the upregulation of CDC25A was mainly caused by an increase in transcriptional activity instead of a change in the stability of the protein. Reversing the accumulation of CDC25A severely delayed G2-M in cyclin A-depleted cells. Taken together, these data provide evidence of a compensatory mechanism involving CDC25A that ensures timely mitotic entry at different levels of cyclin A.


Assuntos
Ciclina A , Quinases Ciclina-Dependentes , Fosfatases cdc25 , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Ciclo Celular , Divisão Celular , Ciclina A/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fosforilação
7.
Mol Biol Rep ; 51(1): 90, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194158

RESUMO

BACKGROUND: CDC25B, as a member of the cell cycle regulating protein family, is located in the cytoplasm and is involved in the transition of the cell cycle and mitosis. CDC25B is highly expressed in various tumors and is a newly discovered oncogene. This study aimed to investigate the impact of CDC25B on mitoxantrone resistance in stomach adenocarcinoma (STAD) and its possible mechanisms. METHODS: This study analyzed the expression of CDC25B and its potential transcription factor E2F3 in STAD, as well as the IC50 values of tumor tissues by bioinformatics analysis. Expression levels of CDC25B and E2F3 in STAD cells were measured by qRT-PCR. MTT was utilized to evaluate cell viability and IC50 values of STAD cells, and comet assay was utilized to analyze the level of DNA damage in STAD cells. Western blot was used to analyze the expression of DNA damage-related proteins. The targeting relationship between E2F3 and CDC25B was validated by dual-luciferase and ChIP assays. RESULTS: Bioinformatics analysis and molecular experiments showed that CDC25B and E2F3 were highly expressed in STAD, and CDC25B was enriched in the mismatch repair and nucleotide excision repair pathways. The IC50 values of tumor tissues with high expression of CDC25B were relatively high. Dual-luciferase and ChIP assays confirmed that CDC25B could be transcriptionally activated by E2F3. Cell experiments revealed that CDC25B promoted mitoxantrone resistance in STAD cells by regulating DNA damage. Further research found that low expression of E2F3 inhibited mitoxantrone resistance in STAD cells by DNA damage, but overexpression of CDC25B reversed the impact of E2F3 knockdown on mitoxantrone resistance in STAD cells. CONCLUSION: This study confirmed a novel mechanism by which E2F3/CDC25B mediated DNA damage to promote mitoxantrone resistance in STAD cells, providing a new therapeutic target for STAD treatment.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Mitoxantrona/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Dano ao DNA , Mitose , Luciferases , Fator de Transcrição E2F3 , Fosfatases cdc25/genética
8.
Mol Cell ; 62(2): 307-313, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27067599

RESUMO

One recurring theme in drug development is to exploit synthetic lethal properties as means to preferentially damage the DNA of cancer cells. We and others have previously developed inhibitors of the ATR kinase, shown to be particularly genotoxic for cells expressing certain oncogenes. In contrast, the mechanisms of resistance to ATR inhibitors remain unexplored. We report here on a genome-wide CRISPR-Cas9 screen that identified CDC25A as a major determinant of sensitivity to ATR inhibition. CDC25A-deficient cells resist high doses of ATR inhibitors, which we show is due to their failure to prematurely enter mitosis in response to the drugs. Forcing mitotic entry with WEE1 inhibitors restores the toxicity of ATR inhibitors in CDC25A-deficient cells. With ATR inhibitors now entering the clinic, our work provides a better understanding of the mechanisms by which these compounds kill cells and reveals genetic interactions that could be used for their rational use.


Assuntos
Antineoplásicos/farmacologia , Sistemas CRISPR-Cas , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Embrionárias/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fosfatases cdc25/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/patologia , Estudo de Associação Genômica Ampla , Humanos , Mitose/efeitos dos fármacos , Terapia de Alvo Molecular , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transfecção , Fosfatases cdc25/genética
9.
Environ Toxicol ; 39(5): 3225-3237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38357781

RESUMO

Lung cancer (LC) is the most prevalent cancer type, with a high mortality rate worldwide. The current treatment options for LC have not been particularly successful in improving patient outcomes. Yifei Sanjie (YFSJ), a well-applicated traditional Chinese medicine formula, is widely used to treat pulmonary diseases, especially LC, yet little is known about its molecular mechanisms. This study was conducted to explore the molecular mechanism by which YFSJ ameliorated LC progression. The A549, NCI-H1975, and Calu-3 cells were treated with the YFSJ formula and observed for colony number, apoptosis, migration, and invasion properties recorded via corresponding assays. The PRMT6-YBX1-CDC25A axis was tested and verified through luciferase reporter, RNA immunoprecipitation, and chromatin immunoprecipitation assays and rescue experiments. Our results demonstrated that YFSJ ameliorated LC cell malignant behaviors by increasing apoptosis and suppressing proliferation, migration, and invasion processes. We also noticed that the xenograft mouse model treated with YFSJ significantly reduced tumor growth compared with the control untreated group in vivo. Mechanistically, it was found that YFSJ suppressed the expression of PRMT6, YBX1, and CDC25A, while the knockdown of these proteins significantly inhibited colony growth, migration, and invasion, and boosted apoptosis in LC cells. In summary, our results suggest that YFSJ alleviates LC progression via the PRMT6-YBX1-CDC25A axis, confirming its efficacy in clinical use. The findings of our study provide a new regulatory network for LC growth and metastasis, which could shed new insights into pulmonary medical research.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Animais , Camundongos , Neoplasias Pulmonares/patologia , Proliferação de Células/genética , Movimento Celular/genética , Pulmão/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/uso terapêutico , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
10.
Cell Biol Toxicol ; 39(5): 1-18, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35567596

RESUMO

Circular RNAs (circRNAs) have been extensively studied in tumor development and treatment. CircZNF609 (hsa_circ_0000615) has been shown to serve as an oncogene in all kinds of solid tumors and may act as the novel biomarker in tumor diagnosis and therapy in tumor early diagnosis and therapy. However, the underlying character and mechanism of circZNF609 in cisplatin chemosensitivity and bladder cancer (BCa) development were unknown. The expression level of cell division cycle 25B (CDC25B), microRNA 1200 (miR-1200), and circZNF609 in BCa cells and tissues depended on quantitative real-time PCR (qRT-PCR). CDC25B protein level was assayed with Western blot. Functional assays in vitro and in vivo had been conducted to inspect the important role of circZNF609 on BCa progression and cisplatin chemosensitivity in BCa. RNA sequencing and online databases were used to predict the interactions among circZNF609, miR-1200, and CDC25B. Mechanistic exploration was confirmed by RNA pull-down assay, RNA fluorescence in situ hybridization (FISH) and Dual luciferase reporter assay. CircZNF609 expression was increased significantly in BCa cell lines and tissues. For BCa patients, increased expression of circZNF609 was correlated with a worse survival. In vitro and in vivo, enforced expression of circZNF609 enhanced BCa cells proliferation, migration, and cisplatin chemoresistance. Mechanistically, circZNF609 alleviated the inhibition effect on target CDC25B expression by sponging miR-1200. CircZNF609 promoted tumor growth through novel circZNF609/miR-1200/CDC25B axis, implying that circZNF609 has significant potential to act as a new diagnostic biomarker and therapeutic target in BCa. Enhancing cisplatin sensitivity is an important direction for bladder cancer management. 1. This research reveals that circZNF609 improves bladder cancer progression and inhibits cisplatin sensitivity by inducing G1/S cell cycle arrest via a novel miR-1200/CDC25B cascades. 2. CircZNF609 was confirmed associated with worse survival of bladder cancer patients. 3. CircZNF609 act as a prognostic biomarker for bladder cancer treatment.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , MicroRNAs/genética , MicroRNAs/metabolismo , Hibridização in Situ Fluorescente , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
11.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675024

RESUMO

Cell division regulators play a vital role in neural progenitor cell (NPC) proliferation and differentiation. Cell division cycle 25C (CDC25C) is a member of the CDC25 family of phosphatases which positively regulate cell division by activating cyclin-dependent protein kinases (CDKs). However, mice with the Cdc25c gene knocked out were shown to be viable and lacked the apparent phenotype due to genetic compensation by Cdc25a and/or Cdc25b. Here, we investigate the function of Cdc25c in developing rat brains by knocking down Cdc25c in NPCs using in utero electroporation. Our results indicate that Cdc25c plays an essential role in maintaining the proliferative state of NPCs during cortical development. The knockdown of Cdc25c causes early cell cycle exit and the premature differentiation of NPCs. Our study uncovers a novel role of CDC25C in NPC division and cell fate determination. In addition, our study presents a functional approach to studying the role of genes, which elicit genetic compensation with knockout, in cortical neurogenesis by knocking down in vivo.


Assuntos
Proteínas de Ciclo Celular , Células-Tronco Neurais , Neurogênese , Fosfatases cdc25 , Animais , Ratos , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Quinases Ciclina-Dependentes/metabolismo , Regulação para Baixo/genética , Neurogênese/genética , Neurogênese/fisiologia , Células-Tronco Neurais/metabolismo
12.
Cancer ; 128(9): 1775-1786, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143052

RESUMO

BACKGROUND: The objective of this study was to investigate the role and molecular mechanism of cyclin-dependent kinase 5 (CDK5) in regulating the growth of tongue squamous cell carcinoma (TSCC). METHODS: The authors used multiple methods to detect the levels of CDK5 expression in samples of TSCC and to explore the relation between CDK5 expression and various clinicopathologic factors. In vivo and in vitro cell experiments were performed to detect the proliferation, invasion, and migration of TSCC cells with CDK5 knockdown or overexpression. These studies verified that CDK5 regulates the occurrence and development of TSCC cells through the microRNA 513c-5p/cell division cycle 25B pathway. RESULTS: An elevated level of CDK5 expression in TSCC tissues was identified as an independent risk factor affecting TSCC growth and patient prognosis. Patients who had TSCC with low levels of CDK5 expression had a higher survival rate than those with high levels. Knockdown of CDK5 reduced the proliferation, migration, and invasion of TSCC cells both in vitro and in vivo. In addition, the authors observed that CDK5 regulated the growth of TSCC through the microRNA 513c-5p/cell division cycle C25B pathway. CONCLUSIONS: CDK5 functions as an oncogene in TSCC and might serve as a molecular marker for use in the diagnosis and treatment of TSCC. LAY SUMMARY: Tongue squamous cell carcinoma (TSCC) is 1 of the most common malignant tumors of the head and neck, and the survival rate of patients with tongue cancer has been very low. Therefore, it is important to study the molecular mechanism of TSCC progression to identify biomarkers that can be used to improve its clinical diagnosis and treatment. Cyclin-dependent kinase 5 (CDK5) is an atypical member of the cyclin-dependent kinase family and is involved in regulating the cell cycle. Changes in the cell cycle are of great significance for the occurrence and development of tumor cells; and, in recent years, increasing evidence has suggested that CDK5 exists in a disordered state in cancer cells. In this study, the authors demonstrate that CDK5 functions as an oncogene in TSCC and might serve as a molecular marker for use in the diagnosis and treatment of TSCC.


Assuntos
Quinase 5 Dependente de Ciclina , MicroRNAs , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias da Língua , Fosfatases cdc25 , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
13.
Pharmacol Res ; 175: 106040, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954029

RESUMO

Inducing homologous recombination (HR) deficiency is a promising strategy to broaden the indication of PARP1/2 inhibitors in pancreatic cancer treatment. In addition to inhibition kinases, repression of the transcriptional function of FOXM1 has been reported to inhibit HR-mediated DNA repair. We found that FOXM1 inhibitor FDI-6 and PARP1/2 inhibitor Olaparib synergistically inhibited the malignant growth of pancreatic cancer cells in vitro and in vivo. The results of bioinformatic analysis and mechanistic study showed that FOXM1 directly interacted with PARP1. Olaparib induced the feedback overexpression of PARP1/2, FOXM1, CDC25A, CCND1, CDK1, CCNA2, CCNB1, CDC25B, BRCA1/2 and Rad51 to promote the acceleration of cell mitosis and recovery of DNA repair, which caused the generation of adaptive resistance. FDI-6 reversed Olaparib-induced adaptive resistance and inhibited cell cycle progression and DNA damage repair by repressing the expression of FOXM1, PARP1/2, BUB1, CDC25A, BRCA1 and other genes-involved in cell cycle control and DNA damage repair. We believe that targeting FOXM1 and PARP1/2 is a promising combination therapy for pancreatic cancer without HR deficiency.


Assuntos
Proteína Forkhead Box M1/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Piridinas/uso terapêutico , Tiofenos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Proteína BRCA1/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio Cometa , Feminino , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia , Fosfatases cdc25/genética
14.
Clin Exp Pharmacol Physiol ; 49(11): 1209-1220, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36184488

RESUMO

Circular RNA (circRNAs) Fibronectin Type III Domain Containing 3B (FNDC3B) (circFNDC3B) has been revealed to be involved in the progression of oesophageal squamous cell carcinoma (ESCC). Hence, the potential regulatory network of circFNDC3B in ESCC was further investigated. Levels of genes and proteins were examined by qRT-PCR and Western blot. In vitro assays were performed using colony formation assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, wound healing assay, and transwell assay. The target relationship between miR-214-3p and circFNDC3B or cell division cycle 25 homologue A (CDC25A) was verified by dual-luciferase reporter and RIP assays. In vivo assay was carried out using the xenograft nude mice model. CircFNDC3B was highly expressed in ESCC, and high circFNDC3B expression was tightly associated with poor prognosis in ESCC patients. Functionally, circFNDC3B knockdown not only suppressed ESCC cell growth, migration and invasion in vitro, but hindered ESCC tumour growth in vivo. Mechanistically, circFNDC3B acted as a sponge for miR-214-3p to up-regulate the expression of its target CDC25A. Rescue experiments showed that miR-214-3p inhibitor reversed the anticancer effects of circFNDC3B knockdown. Moreover, forced expression of miR-214-3p suppressed the malignant phenotypes mentioned above, while this condition was abolished by CDC25A overexpression. CircFNDC3B silencing restrains the tumorigenesis of oesophageal squamous cell carcinoma through miR-214-3p/CDC25A axis, which opens a new window to the development of novel therapeutic strategy for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
15.
Genomics ; 113(1 Pt 1): 142-150, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276007

RESUMO

To select candidate genes for goat prolificacy, we managed six multi- and six single-kid female goats at the same feeding level and in the same management mode over a 4-year period. These goats showed stable differences in litter size over five continuous parturition records. Whole-genome re-sequencing was used in all 12 to select candidate genes, namely, AURKA, ENDOG, SOX2, RORA, GJA10, RXFP2, CDC25C, and NANOS3, by the strength of their differentiation signals. Most of the selected genes were enriched in the coiled coil process and ovarian development, which suggests that the coiled coil process has a potential regulatory effect on fecundity. Detection of the distribution of variants and association analyses with litter size in 400 goats showed that NANOS3 exon mutations may lead to a transformation of the protein structure. The variation in CDC25C, ENDOG, and NANOS3 showed a significant association with litter size. These results can contribute to the improvement of reproduction traits in the artificial breeding of goats.


Assuntos
Cabras/genética , Tamanho da Ninhada de Vivíparos/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Aurora Quinase A/genética , Endodesoxirribonucleases/genética , Feminino , Cabras/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Fatores de Transcrição SOX/genética , Proteínas Smad/genética , Sequenciamento Completo do Genoma , Fosfatases cdc25/genética
16.
Genes Dev ; 28(4): 384-95, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24478331

RESUMO

The vertebrate body forms from a multipotent stem cell-like progenitor population that progressively contributes newly differentiated cells to the most posterior end of the embryo. How the progenitor population balances proliferation and other cellular functions is unknown due to the difficulty of analyzing cell division in vivo. Here, we show that proliferation is compartmentalized at the posterior end of the embryo during early zebrafish development by the regulated expression of cdc25a, a key controller of mitotic entry. Through the use of a transgenic line that misexpresses cdc25a, we show that this compartmentalization is critical for the formation of the posterior body. Upon misexpression of cdc25a, several essential T-box transcription factors are abnormally expressed, including Spadetail/Tbx16, which specifically prevents the normal onset of myoD transcription, leading to aberrant muscle formation. Our results demonstrate that compartmentalization of proliferation during early embryogenesis is critical for both extension of the vertebrate body and differentiation of the multipotent posterior progenitor cells to the muscle cell fate.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco/citologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Animais , Diferenciação Celular , Divisão Celular , Proliferação de Células , Células Musculares/citologia , Fosforilação , Células-Tronco/enzimologia , Proteínas com Domínio T/genética , Proteínas de Peixe-Zebra/genética
17.
EMBO J ; 36(24): 3666-3681, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29150431

RESUMO

Mutations of microcephalin (MCPH1) can cause the neurodevelopmental disorder primary microcephaly type 1. We previously showed that MCPH1 deletion in neural stem cells results in early mitotic entry that distracts cell division mode, leading to exhaustion of the progenitor pool. Here, we show that MCPH1 interacts with and promotes the E3 ligase ßTrCP2 to degrade Cdc25A independent of DNA damage. Overexpression of ßTrCP2 or the knockdown of Cdc25A remedies the high mitotic index and rescues the premature differentiation of Mcph1-deficient neuroprogenitors in vivo MCPH1 itself is degraded by APC/CCdh1, but not APC/CCdc20, in late mitosis and G1 phase. Forced MCPH1 expression causes cell death, underlining the importance of MCPH1 turnover after mitosis. Ectopic expression of Cdh1 leads to premature differentiation of neuroprogenitors, mimicking differentiation defects of Mcph1-knockout neuroprogenitors. The homeostasis of MCPH1 in association with the ubiquitin-proteasome system ensures mitotic entry independent of cell cycle checkpoint. This study provides a mechanistic understanding of how MCPH1 controls neural stem cell fate and brain development.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Fosfatases cdc25/metabolismo , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Linhagem Celular , Proteínas do Citoesqueleto , Dano ao DNA , Técnicas de Inativação de Genes , Homeostase , Humanos , Camundongos , Mitose , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética , Proteínas Contendo Repetições de beta-Transducina/genética , Fosfatases cdc25/genética
18.
J Cell Sci ; 132(2)2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30635443

RESUMO

Chk1 (encoded by CHEK1 in mammals) is an evolutionarily conserved protein kinase that transduces checkpoint signals from ATR to Cdc25A during the DNA damage response (DDR). In mammals, Chk1 also controls cellular proliferation even in the absence of exogenous DNA damage. However, little is known about how Chk1 regulates unperturbed cell cycle progression, and how this effect under physiological conditions differs from its regulatory role in DDR. Here, we have established near-diploid HCT116 cell lines containing endogenous Chk1 protein tagged with a minimum auxin-inducible degron (mAID) through CRISPR/Cas9-based gene editing. Establishment of these cells enabled us to induce specific and rapid depletion of the endogenous Chk1 protein, which resulted in aberrant accumulation of DNA damage factors that induced cell cycle arrest at S or G2 phase. Cdc25A was stabilized upon Chk1 depletion before the accumulation of DNA damage factors. Simultaneous depletion of Chk1 and Cdc25A partially suppressed the defects caused by Chk1 single depletion. These results indicate that, similar to its function in DDR, Chk1 controls normal cell cycle progression mainly by inducing Cdc25A degradation.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Pontos de Checagem da Fase G2 do Ciclo Celular , Proteólise , Pontos de Checagem da Fase S do Ciclo Celular , Fosfatases cdc25/metabolismo , Sistemas CRISPR-Cas , Quinase 1 do Ponto de Checagem/genética , Edição de Genes , Células HCT116 , Humanos , Fosfatases cdc25/genética
19.
Biochem Biophys Res Commun ; 571: 96-103, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34314996

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) has been verified as a really common cancer worldwide. Several studies have suggested that the suppression of malignancy growth can be traced to miR-199a-5p. Even though CDC25A could activate the tumorigenesis of various cancer by modulating cell cycle, the modulation of the miR-199a-5p/CDC25A axis is still not clear in HCC. Our aim is to identify the modulation of the miR-199a-5p/CDC25A axis in HCC. METHODS: The expression of CDC25A and miR-199a-5p in HCC cells and tissues was assessed using qRT-PCR. After using western blot assay to confirm the protein level, luciferase reporter and RNA pull-down assays were performed to explore the relation between CDC25A and miR-199a-5p. Functional assays such as CCK8 assay, BrdU proliferation assay and flow cytometry analysis identified the cell progression. RESULTS: Experimental findings indicated the downregulation of miR-199a-5p in HCC samples. It was also found that miR-199a-5p overexpression declined the development of the cells with HCC and that it could bind to CDC25A to suppress the progression of HCC. CONCLUSION: Research suggested that miR-199a-5p could restrain the proliferation ability of HCC cells by regulating CDC25A, thus inducing cell-cycle arrest.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Fosfatases cdc25/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Células Tumorais Cultivadas , Fosfatases cdc25/genética
20.
Biochem Biophys Res Commun ; 585: 103-110, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34800881

RESUMO

OBJECTIVE: This study aimed to screen pyroptosis-related genes influencing the therapeutic effect of dehydroabietic acid in liver cancer and to construct an effective survival prognostic nomogram model. METHODS: Differentially expressed genes (DEGs) between liver cancer tissues and normal tissues were analyzed with The Cancer Genome Atlas database, weighted gene coexpression network analysis and a genetic expression compilation database. The targets of dehydroabietic acid were screened with databases such as TCMSP and pharmacy. Spearman correlation analysis was analyzed. The prognosis model was built through one-factor Cox analysis and LASSO regression. The final core targets were screened by prognosis-related genes combined with a protein-protein interaction (PPI) network. On this basis, the survival nomogram was constructed. The effects of different concentrations of dehydroabietic acid on the growth of HepG2 liver cancer cells were detected by CCK8. Moreover, the expression of related genes was further verified through real-time fluorescence quantitative PCR and Western blot. RESULTS: Venn diagram analysis of DEGs of liver cancer in three databases was performed, through which 890 genes related to the genesis and development of liver cancer were acquired. According to Venn diagram analysis of targets of dehydroabietic acid and related genes of liver cancer, 44 intersecting targets for liver cancer treatment with dehydroabietic acid were acquired. Then, 7 prognosis-related genes were identified through one-factor Cox analysis and LASSO regression of 25 related genes. Next, 10 targets were screened through the PPI network, and the intersection was processed, thus obtaining 3 ultimate core targets of KIF11, CCNA2 and CDC25A. The IC50 of dehydroabietic acid is 23.22 ± 0.98 µg/mL. According to further verification of related genes, the mRNA and protein levels of KIF11, CCNA2 and CDC25A decrease significantly after treatment with dehydroabietic acid. The nomogram shows that T stage is an independent risk factor, and the postoperative survival C-index of the model group was 0.709. CONCLUSIONS: Three pyroptosis-related genes that influence the therapeutic effect of dehydroabietic acid in liver cancer were screened through bioinformatics methods. The survival prognostic nomogram model, which is built based on independent risk factors that influence the postoperative survival of patients in the T stage, has good accuracy and can provide references for clinical and fundamental studies in the future.


Assuntos
Abietanos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Detecção Precoce de Câncer , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Piroptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Ciclina A2/genética , Ciclina A2/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Células Hep G2 , Humanos , Estimativa de Kaplan-Meier , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Masculino , Nomogramas , Piroptose/genética , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA