Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.663
Filtrar
1.
Immunity ; 55(9): 1627-1644.e7, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35977543

RESUMO

The apolipoprotein E4 (APOE4) allele is associated with an increased risk of Alzheimer disease and a decreased risk of glaucoma, but the underlying mechanisms remain poorly understood. Here, we found that in two mouse glaucoma models, microglia transitioned to a neurodegenerative phenotype characterized by upregulation of Apoe and Lgals3 (Galectin-3), which were also upregulated in human glaucomatous retinas. Mice with targeted deletion of Apoe in microglia or carrying the human APOE4 allele were protected from retinal ganglion cell (RGC) loss, despite elevated intraocular pressure (IOP). Similarly to Apoe-/- retinal microglia, APOE4-expressing microglia did not upregulate neurodegeneration-associated genes, including Lgals3, following IOP elevation. Genetic and pharmacologic targeting of Galectin-3 ameliorated RGC degeneration, and Galectin-3 expression was attenuated in human APOE4 glaucoma samples. These results demonstrate that impaired activation of APOE4 microglia is protective in glaucoma and that the APOE-Galectin-3 signaling can be targeted to treat this blinding disease.


Assuntos
Apolipoproteína E4 , Glaucoma , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E4/uso terapêutico , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/uso terapêutico , Glaucoma/tratamento farmacológico , Glaucoma/genética , Glaucoma/metabolismo , Humanos , Camundongos , Microglia/metabolismo
2.
Hum Mol Genet ; 32(15): 2523-2531, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37220876

RESUMO

Rare missense and nonsense variants in the Angiopoietin-like 7 (ANGPTL7) gene confer protection from primary open-angle glaucoma (POAG), though the functional mechanism remains uncharacterized. Interestingly, a larger variant effect size strongly correlates with in silico predictions of increased protein instability (r = -0.98), suggesting that protective variants lower ANGPTL7 protein levels. Here, we show that missense and nonsense variants cause aggregation of mutant ANGPTL7 protein in the endoplasmic reticulum (ER) and decreased levels of secreted protein in human trabecular meshwork (TM) cells; a lower secreted:intracellular protein ratio strongly correlates with variant effects on intraocular pressure (r = 0.81). Importantly, accumulation of mutant protein in the ER does not increase expression of ER stress proteins in TM cells (P > 0.05 for all variants tested). Cyclic mechanical stress, a glaucoma-relevant physiologic stressor, also significantly lowers ANGPTL7 expression in primary cultures of human Schlemm's canal (SC) cells (-2.4-fold-change, P = 0.01). Collectively, these data suggest that the protective effects of ANGPTL7 variants in POAG stem from lower levels of secreted protein, which may modulate responses to physiologic and pathologic ocular cell stressors. Downregulation of ANGPTL7 expression may therefore serve as a viable preventative and therapeutic strategy for this common, blinding disease.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Glaucoma de Ângulo Aberto/patologia , Glaucoma/metabolismo , Malha Trabecular/metabolismo , Pressão Intraocular , Angiopoietinas/genética , Angiopoietinas/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteína 7 Semelhante a Angiopoietina/genética
3.
FASEB J ; 38(10): e23651, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752537

RESUMO

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Assuntos
Autofagia , Interferon beta , Pressão Intraocular , Malha Trabecular , Autofagia/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Humanos , Animais , Camundongos , Pressão Intraocular/fisiologia , Interferon beta/metabolismo , Masculino , Feminino , Glaucoma/patologia , Glaucoma/metabolismo , Glaucoma/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/metabolismo , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Camundongos Endogâmicos C57BL , Mutação , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Atrofia Óptica/patologia , Linhagem , Odontodisplasia , Calcificação Vascular , Hipoplasia do Esmalte Dentário , Metacarpo/anormalidades , Osteoporose , Doenças Musculares , Doenças da Aorta , Receptores Imunológicos
4.
Exp Cell Res ; 440(1): 114137, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897410

RESUMO

Glaucoma is characterized by pathological elevation of intraocular pressure (IOP) due to dysfunctional trabecular meshwork (TM), which is the primary cause of irreversible vision loss. There are currently no effective treatment strategies for glaucoma. Mitochondrial function plays a crucial role in regulating IOP within the TM. In this study, primary TM cells treated with dexamethasone were used to simulate glaucomatous changes, showing abnormal cellular cytoskeleton, increased expression of extracellular matrix, and disrupted mitochondrial fusion and fission dynamics. Furthermore, glaucomatous TM cell line GTM3 exhibited impaired mitochondrial membrane potential and phagocytic function, accompanied by decreased oxidative respiratory levels as compared to normal TM cells iHTM. Mechanistically, lower NAD + levels in GTM3, possibly associated with increased expression of key enzymes CD38 and PARP1 related to NAD + consumption, were observed. Supplementation of NAD + restored mitochondrial function and cellular viability in GTM3 cells. Therefore, we propose that the aberrant mitochondrial function in glaucomatous TM cells may be attributed to increased NAD + consumption dependent on CD38 and PARP1, and NAD + supplementation could effectively ameliorate mitochondrial function and improve TM function, providing a novel alternative approach for glaucoma treatment.


Assuntos
Glaucoma , Mitocôndrias , NAD , Malha Trabecular , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Glaucoma/metabolismo , Glaucoma/patologia , Glaucoma/tratamento farmacológico , NAD/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pressão Intraocular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/genética , Linhagem Celular , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Dexametasona/farmacologia , Células Cultivadas
5.
Mol Ther ; 32(6): 1760-1778, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38659223

RESUMO

Glaucoma is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, and its risk increases with aging. Yet comprehensive insights into the complex mechanisms are largely unknown. Here, we found that anti-aging molecule Sirt6 was highly expressed in RGCs. Deleting Sirt6 globally or specifically in RGCs led to progressive RGC loss and optic nerve degeneration during aging, despite normal intraocular pressure (IOP), resembling a phenotype of normal-tension glaucoma. These detrimental effects were potentially mediated by accelerated RGC senescence through Caveolin-1 upregulation and by the induction of mitochondrial dysfunction. In mouse models of high-tension glaucoma, Sirt6 level was decreased after IOP elevation. Genetic overexpression of Sirt6 globally or specifically in RGCs significantly attenuated high tension-induced degeneration of RGCs and their axons, whereas partial or RGC-specific Sirt6 deletion accelerated RGC loss. Importantly, therapeutically targeting Sirt6 with pharmacological activator or AAV2-mediated gene delivery ameliorated high IOP-induced RGC degeneration. Together, our studies reveal a critical role of Sirt6 in preventing RGC and optic nerve degeneration during aging and glaucoma, setting the stage for further exploration of Sirt6 activation as a potential therapy for glaucoma.


Assuntos
Envelhecimento , Modelos Animais de Doenças , Glaucoma , Nervo Óptico , Células Ganglionares da Retina , Sirtuínas , Animais , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Camundongos , Sirtuínas/metabolismo , Sirtuínas/genética , Glaucoma/metabolismo , Glaucoma/genética , Glaucoma/patologia , Glaucoma/etiologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Envelhecimento/metabolismo , Envelhecimento/genética , Pressão Intraocular , Humanos , Axônios/metabolismo , Axônios/patologia , Camundongos Knockout , Degeneração Neural/metabolismo
6.
Mol Cell Proteomics ; 22(11): 100654, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793503

RESUMO

The pathogenesis of glaucoma is still unknown. There are few studies on the dynamic change of tissue-specific and time-specific molecular pathophysiology caused by ocular hypertension (OHT). This study aimed to identify the early proteomic alterations in the retina, optic nerve head (ONH), and optic nerve (ON). After establishing a rat model of OHT, we harvested the tissues from control and glaucomatous eyes and analyzed the changes in protein expression using a multiplexed quantitative proteomics approach (TMT-MS3). Our study identified 6403 proteins after 1-day OHT and 4399 proteins after 7-days OHT in the retina, 5493 proteins after 1-day OHT and 4544 proteins after 7-days OHT in ONH, and 5455 proteins after 1-day OHT and 3835 proteins after 7-days OHT in the ON. Of these, 560 and 489 differential proteins were identified on day 1 and 7 after OHT in the retina, 428 and 761 differential proteins were identified on day 1 and 7 after OHT in the ONH, and 257 and 205 differential proteins on days 1 and 7 after OHT in the ON. Computational analysis on day 1 and 7 of OHT revealed that alpha-2 macroglobulin was upregulated across two time points and three tissues stably. The differentially expressed proteins between day 1 and 7 after OHT in the retina, ONH, and ON were associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, oxidative stress, microtubule, and crystallin. And the most significant change in retina are crystallins. We validated this proteomic result with the Western blot of crystallin proteins and found that upregulated on day 1 but recovered on day 7 after OHT, which are promising as therapeutic targets. These findings provide insights into the time- and region-order mechanisms that are specifically affected in the retina, ONH, and ON in response to elevated IOP during the early stages.


Assuntos
Cristalinas , Glaucoma , Hipertensão Ocular , Disco Óptico , Ratos , Animais , Disco Óptico/metabolismo , Disco Óptico/patologia , Proteômica , Pressão Intraocular , Glaucoma/metabolismo , Retina/metabolismo , Retina/patologia , Hipertensão Ocular/metabolismo , Hipertensão Ocular/patologia , Nervo Óptico/patologia , Cristalinas/metabolismo
7.
Am J Physiol Cell Physiol ; 326(5): C1505-C1519, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557355

RESUMO

Glaucoma is a blinding disease. Reduction of intraocular pressure (IOP) is the mainstay of treatment, but current drugs show side effects or become progressively ineffective, highlighting the need for novel compounds. We have synthesized a family of perhydro-1,4-oxazepine derivatives of digoxin, the selective inhibitor of Na,K-ATPase. The cyclobutyl derivative (DcB) displays strong selectivity for the human α2 isoform and potently reduces IOP in rabbits. These observations appeared consistent with a hypothesis that in ciliary epithelium DcB inhibits the α2 isoform of Na,K-ATPase, which is expressed strongly in nonpigmented cells, reducing aqueous humor (AH) inflow. This paper extends assessment of efficacy and mechanism of action of DcB using an ocular hypertensive nonhuman primate model (OHT-NHP) (Macaca fascicularis). In OHT-NHP, DcB potently lowers IOP, in both acute (24 h) and extended (7-10 days) settings, accompanied by increased aqueous humor flow rate (AFR). By contrast, ocular normotensive animals (ONT-NHP) are poorly responsive to DcB, if at all. The mechanism of action of DcB has been analyzed using isolated porcine ciliary epithelium and perfused enucleated eyes to study AH inflow and AH outflow facility, respectively. 1) DcB significantly stimulates AH inflow although prior addition of 8-Br-cAMP, which raises AH inflow, precludes additional effects of DcB. 2) DcB significantly increases AH outflow facility via the trabecular meshwork (TM). Taken together, the data indicate that the original hypothesis on the mechanism of action must be revised. In the OHT-NHP, and presumably other species, DcB lowers IOP by increasing AH outflow facility rather than by decreasing AH inflow.NEW & NOTEWORTHY When applied topically, a cyclobutyl derivative of digoxin (DcB) potently reduces intraocular pressure in an ocular hypertensive nonhuman primate model (Macaca fascicularis), associated with increased aqueous humor (AH) flow rate (AFR). The mechanism of action of DcB involves increased AH outflow facility as detected in enucleated perfused porcine eyes and, in parallel, increased (AH) inflow as detected in isolated porcine ciliary epithelium. DcB might have potential as a drug for the treatment of open-angle human glaucoma.


Assuntos
Humor Aquoso , Digoxina , Pressão Intraocular , Macaca fascicularis , Hipertensão Ocular , Animais , Pressão Intraocular/efeitos dos fármacos , Digoxina/farmacologia , Humor Aquoso/metabolismo , Humor Aquoso/efeitos dos fármacos , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/fisiopatologia , Hipertensão Ocular/metabolismo , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Coelhos , Humanos , Corpo Ciliar/efeitos dos fármacos , Corpo Ciliar/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Masculino , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo
8.
J Neuroinflammation ; 21(1): 43, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317227

RESUMO

Glaucoma is a complex neurodegenerative disorder characterized by the progressive loss of retinal ganglion cells (RGC) and optic nerve axons, leading to irreversible visual impairment. Despite its clinical significance, the underlying mechanisms of glaucoma pathogenesis remain poorly understood. In this study, we aimed to unravel the multifaceted nature of glaucoma by investigating the interaction between T cells and retinas. By utilizing clinical samples, murine glaucoma models, and T cell transfer models, we made several key findings. Firstly, we observed that CD4+ T cells from glaucoma patients displayed enhanced activation and a bias towards T helper (Th) 1 responses, which correlated with visual impairment. Secondly, we identified the infiltration of Th1 cells into the retina, where they targeted RGC and integrated into the pro-inflammatory glial network, contributing to progressive RGC loss. Thirdly, we discovered that circulating Th1 cells upregulated vascular cell adhesion protein 1 (VCAM-1) on retinal microvessels, facilitating their entry into the neural retina. Lastly, we found that Th1 cells underwent functional reprogramming before reaching the retina, acquiring a phenotype associated with lymphocyte migration and neurodegenerative diseases. Our study provides novel insights into the role of peripheral CD4+ T cells in glaucoma pathogenesis, shedding light on the mechanisms underlying their infiltration into the retina and offering potential avenues for innovative therapeutic interventions in this sight-threatening disease.


Assuntos
Glaucoma , Células Ganglionares da Retina , Humanos , Camundongos , Animais , Células Ganglionares da Retina/patologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Células Th1/patologia , Glaucoma/metabolismo , Retina/patologia , Transtornos da Visão/patologia , Modelos Animais de Doenças
9.
J Neuroinflammation ; 21(1): 145, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824526

RESUMO

BACKGROUND: Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS: Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS: Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS: A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.


Assuntos
Astrócitos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Glaucoma , Doenças Neuroinflamatórias , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Camundongos , Astrócitos/metabolismo , Astrócitos/patologia , Glaucoma/metabolismo , Glaucoma/patologia , Glaucoma/genética , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Citocinas/metabolismo , Retina/metabolismo , Retina/patologia , Camundongos Endogâmicos C57BL , Nervo Óptico/patologia , Nervo Óptico/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo
10.
J Neuroinflammation ; 21(1): 105, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649885

RESUMO

BACKGROUND: NADPH oxidase (NOX), a primary source of endothelial reactive oxygen species (ROS), is considered a key event in disrupting the integrity of the blood-retinal barrier. Abnormalities in neurovascular-coupled immune signaling herald the loss of ganglion cells in glaucoma. Persistent microglia-driven inflammation and cellular innate immune system dysregulation often lead to deteriorating retinal degeneration. However, the crosstalk between NOX and the retinal immune environment remains unresolved. Here, we investigate the interaction between oxidative stress and neuroinflammation in glaucoma by genetic defects of NOX2 or its regulation via gp91ds-tat. METHODS: Ex vivo cultures of retinal explants from wildtype C57BL/6J and Nox2 -/- mice were subjected to normal and high hydrostatic pressure (Pressure 60 mmHg) for 24 h. In vivo, high intraocular pressure (H-IOP) was induced in C57BL/6J mice for two weeks. Both Pressure 60 mmHg retinas and H-IOP mice were treated with either gp91ds-tat (a NOX2-specific inhibitor). Proteomic analysis was performed on control, H-IOP, and treatment with gp91ds-tat retinas to identify differentially expressed proteins (DEPs). The study also evaluated various glaucoma phenotypes, including IOP, retinal ganglion cell (RGC) functionality, and optic nerve (ON) degeneration. The superoxide (O2-) levels assay, blood-retinal barrier degradation, gliosis, neuroinflammation, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative PCR were performed in this study. RESULTS: We found that NOX2-specific deletion or activity inhibition effectively attenuated retinal oxidative stress, immune dysregulation, the internal blood-retinal barrier (iBRB) injury, neurovascular unit (NVU) dysfunction, RGC loss, and ON axonal degeneration following H-IOP. Mechanistically, we unveiled for the first time that NOX2-dependent ROS-driven pro-inflammatory signaling, where NOX2/ROS induces endothelium-derived endothelin-1 (ET-1) overexpression, which activates the ERK1/2 signaling pathway and mediates the shift of microglia activation to a pro-inflammatory M1 phenotype, thereby triggering a neuroinflammatory outburst. CONCLUSIONS: Collectively, we demonstrate for the first time that NOX2 deletion or gp91ds-tat inhibition attenuates iBRB injury and NVU dysfunction to rescue glaucomatous RGC loss and ON axon degeneration, which is associated with inhibition of the ET-1/ERK1/2-transduced shift of microglial cell activation toward a pro-inflammatory M1 phenotype, highlighting NOX2 as a potential target for novel neuroprotective therapies in glaucoma management.


Assuntos
Barreira Hematorretiniana , Pressão Intraocular , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , Doenças Neuroinflamatórias , Animais , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Camundongos , Barreira Hematorretiniana/patologia , Barreira Hematorretiniana/metabolismo , Pressão Intraocular/fisiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Camundongos Knockout , Proliferação de Células/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neuroglia/metabolismo , Neuroglia/patologia , Hipertensão Ocular/patologia , Hipertensão Ocular/metabolismo , Glaucoma/patologia , Glaucoma/metabolismo , Estresse Oxidativo/fisiologia
11.
Exp Eye Res ; 238: 109722, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952724

RESUMO

We characterize a new experimental model for inducing retinal ganglion cell (RGC) dysfunction and degeneration in mice. C57BL/6J mice were subjected to two acute periods of intraocular pressure (IOP) elevation (50 mmHg for 30 min) by cannulation of the anterior chamber. We used full-field electroretinography and visual evoked potentials (VEPs) to measure subsequent changes in retina and optic nerve function, and histochemical techniques to assess RGC survival and optic nerve structure. In 12 month old mice, a single IOP challenge caused loss and subsequent recovery of RGC function over the following 28 days with minimal cell death and no observed axonal damage. A second identical IOP challenge resulted in persistent RGC dysfunction and significant (36%) loss of RGC somas. This was accompanied by a 16.7% delay in the latency and a 27.6% decrease in the amplitude of the VEP. Severe axonal damage was seen histologically with enlargement of axons, myelin disruption, reduced axon density, and the presence of glial scarring. In contrast, younger 3 month old mice when exposed to a single or repeat IOP challenge showed quicker RGC functional recovery after a single challenge and full functional recovery after a repeat challenge with no detectable optic nerve dysfunction. These data demonstrate a highly reproducible and minimally invasive method for inducing RGC degeneration and axonal damage in mice. Resilience of the optic nerve to damage is highly dependent on animal age. The time-defined nature of functional versus structural loss seen in this model stands to facilitate investigation of neuroglial responses in the retina after IOP injury and the associated evaluation of neuroprotective treatment strategies. Further, the model may be used to investigate the impact of aging and the cellular switch between neurorecovery and neurodegeneration.


Assuntos
Glaucoma , Pressão Intraocular , Camundongos , Animais , Potenciais Evocados Visuais , Camundongos Endogâmicos C57BL , Nervo Óptico/patologia , Retina/metabolismo , Glaucoma/metabolismo , Axônios/patologia , Modelos Animais de Doenças
12.
Exp Eye Res ; 241: 109855, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453040

RESUMO

Transgenic C57BL/6 mice expressing human myocilinY437 (Tg-MYOCY437H) are a well-established model for primary open-angle glaucoma (POAG). While the reduced trabecular meshwork (TM) cellularity due to severe endoplasmic reticulum (ER) stress has been characterized as the etiology of this model, there is a limited understanding of how glaucomatous phenotypes evolve over the lifespan of Tg-MyocY437H mice. In this study, we compiled the model's intraocular pressure (IOP) data recorded in our laboratory from 2017 to 2023 and selected representative eyes to measure the outflow facility (Cr), a critical parameter indicating the condition of the conventional TM pathway. We found that Tg-MYOCY437H mice aged 4-12 months exhibited significantly higher IOPs than age-matched C57BL/6 mice. Notably, a decline in IOP was observed in Tg-MYOCY437H mice at 17-24 months of age, a phenomenon not attributable to the gene dosage of mutant myocilin. Measurements of the Cr of Tg-MYOCY437H mice indicated that the age-related IOP reduction was not a result of ongoing TM damage. Instead, Hematoxylin and Eosin staining, immunohistochemistry analysis, and transmission electron microscopic examination revealed that this reduction might be induced by degenerations of the non-pigmented epithelium in the ciliary body of aged Tg-MYOCY437H mice. Overall, our findings provide a comprehensive profile of mutant myocilin-induced ocular changes over the Tg-MYOCY437H mouse lifespan and suggest a specific temporal window of elevated IOP that may be ideal for experimental purposes.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Animais , Humanos , Camundongos , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Glaucoma/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo , Pressão Intraocular , Longevidade , Camundongos Endogâmicos C57BL , Malha Trabecular/metabolismo
13.
Exp Eye Res ; 240: 109813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331016

RESUMO

Glaucoma is a multifactorial progressive ocular pathology that manifests clinically with damage to the optic nerve (ON) and the retina, ultimately leading to blindness. The optic nerve head (ONH) shows the earliest signs of glaucoma pathology, and therefore, is an attractive target for drug discovery. The goal of this study was to elucidate the effects of reactive astrocytosis on the elastin metabolism pathway in primary rat optic nerve head astrocytes (ONHA), the primary glial cell type in the unmyelinated ONH. Following exposure to static equibiaxial mechanical strain, we observed prototypic molecular and biochemical signatures of reactive astrocytosis that were associated with a decrease in lysyl oxidase like 1 (Loxl1) expression and a concomitant decrease in elastin (Eln) gene expression. We subsequently investigated the role of Loxl1 in reactive astrocytosis by generating primary rat ONHA cultures with ∼50% decreased Loxl1 expression. Our results suggest that reduced Loxl1 expression is sufficient to elicit molecular signatures of elastinopathy in ONHA. Astrocyte derived exosomes (ADE) significantly increased the length of primary neurites of primary neurons in vitro. In contrast, ADE from Loxl1-deficient ONHA were deficient of trophic effects on neurite outgrowth in vitro, positing that Loxl1 dysfunction and the ensuing impaired elastin synthesis during reactive astrocytosis in the ONH may contribute to impaired neuron-glia signaling in glaucoma. Our data support a role of dysregulated Loxl1 function in eliciting reactive astrocytosis in glaucoma subtypes associated with increased IOP, even in the absence of genetic polymorphisms in LOXL1 typically associated with exfoliation glaucoma. This suggests the need for a paradigm shift toward considering lysyl oxidase activity and elastin metabolism and signaling as contributors to an altered secretome of the ONH that may lead to the progression of glaucomatous changes. Future research is needed to investigate cargo of exosomes in the context of reactive astrocytosis and identify the pathways leading to the observed transcriptome changes during reactive astrocytosis.


Assuntos
Exossomos , Glaucoma , Disco Óptico , Ratos , Animais , Disco Óptico/metabolismo , Proteína-Lisina 6-Oxidase/genética , Astrócitos/metabolismo , Exossomos/metabolismo , Gliose/metabolismo , Glaucoma/metabolismo , Elastina/genética , Inflamação/metabolismo
14.
Exp Eye Res ; 244: 109917, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697276

RESUMO

In glaucoma, scleral fibroblasts are exposed to IOP-associated mechanical strain and elevated TGFß levels. These stimuli, in turn, lead to scleral remodeling. Here, we examine the scleral fibroblast migratory and transcriptional response to these stimuli to better understand mechanisms of glaucomatous scleral remodeling. Human peripapillary scleral (PPS) fibroblasts were cultured on parallel grooves, treated with TGFß (2 ng/ml) in the presence of vehicle or TGFß signaling inhibitors, and exposed to uniaxial strain (1 Hz, 5%, 12-24 h). Axis of cellular orientation was determined at baseline, immediately following strain, and 24 h after strain cessation with 0° being completely aligned with grooves and 90° being perpendicular. Fibroblasts migration in-line and across grooves was assessed using a scratch assay. Transcriptional profiling of TGFß-treated fibroblasts with or without strain was performed by RT-qPCR and pERK, pSMAD2, and pSMAD3 levels were measured by immunoblot. Pre-strain alignment of TGFß-treated cells with grooves (6.2 ± 1.5°) was reduced after strain (21.7 ± 5.3°, p < 0.0001) and restored 24 h after strain cessation (9.5 ± 2.6°). ERK, FAK, and ALK5 inhibition prevented this reduction; however, ROCK, YAP, or SMAD3 inhibition did not. TGFß-induced myofibroblast markers were reduced by strain (αSMA, POSTN, ASPN, MLCK1). While TGFß-induced phosphorylation of ERK and SMAD2 was unaffected by cyclic strain, SMAD3 phosphorylation was reduced (p = 0.0004). Wound healing across grooves was enhanced by ROCK and SMAD3 inhibition but not ERK or ALK5 inhibition. These results provide insight into the mechanisms by which mechanical strain alters the cellular response to TGFß and the potential signaling pathways that underlie scleral remodeling.


Assuntos
Movimento Celular , Fibroblastos , Esclera , Estresse Mecânico , Fator de Crescimento Transformador beta , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Células Cultivadas , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Esclera/metabolismo , Transdução de Sinais , Reação em Cadeia da Polimerase em Tempo Real , Regulação da Expressão Gênica , Glaucoma/metabolismo , Glaucoma/patologia
15.
Exp Eye Res ; 241: 109835, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373629

RESUMO

The etiology of elevated intraocular pressure (IOP), a major risk factor for glaucoma (optic nerve atrophy), is poorly understood despite continued efforts. Although the gene variant of CACNA2D1 (encoding α2δ1), a calcium voltage-gated channel auxiliary subunit, has been reported to be associated with primary open-angle glaucoma, and the pharmacological mitigation of α2δ1 activity by pregabalin lowers IOP, the cellular basis for α2δ1 role in the modulation of IOP remains unclear. Our recent findings reveled readily detectable levels of α2δ1 and its ligand thrombospondin in the cytoskeletome fraction of human trabecular meshwork (TM) cells. To understand the direct role of α2δ1 in the modulation of IOP, we evaluated α2δ1 null mice for changes in IOP and found a moderate (∼10%) but significant decrease in IOP compared to littermate wild type control mice. Additionally, to gain cellular insights into α2δ1 antagonist (pregabalin) induced IOP changes, we assessed pregabalin's effects on human TM cell actin cytoskeletal organization and cell adhesive interactions in comparison with a Rho kinase inhibitor (Y27632), a known ocular hypotensive agent. Unlike Y27632, pregabalin did not have overt effects on cell morphology, actin cytoskeletal organization, or cell adhesion in human TM cells. These results reveal a modest but significant decrease in IOP in α2δ1 deficient mice, and this response appears to be not associated with the contractile and cell adhesive characteristics of TM cells based on the findings of pregabalin effects on isolated TM cells. Therefore, the mechanism by which pregabalin lowers IOP remains elusive.


Assuntos
Amidas , Glaucoma de Ângulo Aberto , Glaucoma , Piridinas , Animais , Humanos , Camundongos , Actinas/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Glaucoma/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo , Pressão Intraocular , Pregabalina , Malha Trabecular/metabolismo
16.
Exp Eye Res ; 240: 109806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272381

RESUMO

Primary open-angle glaucoma (POAG) is the most common type of glaucoma leading to blindness. The search for ways to prevent/treat this entity is one of the main challenges of today's ophthalmology. One of such solution seems to be biologically active substances of natural origin, such as genistein (GEN), which can affect the function of isolated trabecular meshwork by the inhibition of protein tyrosine kinase. However, the role of GEN in viability as well as myofibroblastic transformation in human trabecular meshwork cells stimulated by TGF-ß is unknown. Using human trabecular meshwork cells (HTMCs) we investigated the effect of genistein on cell viability and myofibroblastic transformation stimulated by TGF-ß1 and TGF-ß2. Using Real-Time PCR, western blot and immunofluorescence we determined the effect on the expression changes of αSMA, TIMP1, collagen 1 and 3 at mRNA and protein level. We found that genistein increases the viability of HTMCs (1, 2, 3 µg/ml; P < 0.05 and 4, 5, 10, 15, 20 µg/ml; P < 0.01). Moreover, we found that addition of 10, 15 and 20 µg/ml is able to prevent myofibroblastic transformation of HTMCs by decreasing αSMA, TIMP1, collagen 1 and 3 mRNA and protein expression (P < 0.01). Based on the obtained results, we can conclude that genistein is a potential factor that can prevent the myofibroblastic transformation of HTMCs accompanying glaucoma. Describing GEN influence on myofibroblastic transformation processes in HTMC allows us to conclude that it can be considered a potential therapeutic agent or a substance supporting treatment in patients with glaucoma.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Genisteína/farmacologia , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/prevenção & controle , Glaucoma de Ângulo Aberto/genética , Malha Trabecular/metabolismo , Células Cultivadas , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Glaucoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Colágeno/metabolismo
17.
Exp Eye Res ; 244: 109927, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750784

RESUMO

Subconjunctival fibrosis is the major cause of failure in both conventional and modern minimally invasive glaucoma surgeries (MIGSs) with subconjunctival filtration. The search for safe and effective anti-fibrotic agents is critical for improving long-term surgical outcomes. In this study, we investigated the effect of inhibiting the rapamycin-insensitive mTORC1/4E-BP1 axis on the transforming growth factor-beta 1(TGF-ß1)-induced fibrotic responses in human Tenon's fibroblasts (HTFs), as well as in a rat model of glaucoma filtration surgery (GFS). Primary cultured HTFs were treated with 3 ng/mL TGF-ß1 for 24 h, followed by treatment with 10 µM CZ415 for additional 24 h. Rapamycin (10 µM) was utilized as a control for mTORC1/4E-BP1 signaling insensitivity. The expression levels of fibrosis-associated molecules were measured using quantitative real-time PCR, Western blotting, and immunofluorescence analysis. Cell migration was assessed through the scratch wound assay. Additionally, a rat model of GFS was employed to evaluate the anti-fibrotic effect of CZ415 in vivo. Our findings indicated that both rapamycin and CZ415 treatment significantly reduced the TGF-ß1-induced cell proliferation, migration, and the expression of pro-fibrotic factors in HTFs. CZ415 also more effectively inhibited TGF-ß1-mediated collagen synthesis in HTFs compared to rapamycin. Activation of mTORC1/4E-BP signaling following TGF-ß1 exposure was highly suppressed by CZ415 but was only modestly inhibited by rapamycin. Furthermore, CZ415 was found to decrease subconjunctival collagen deposition in rats post GFS. Our results suggest that rapamycin-insensitive mTORC1/4E-BP1 signaling plays a critical role in TGF-ß1-driven collagen synthesis in HTFs. This study demonstrated that inhibition of the mTORC1/4E-BP1 axis offers superior anti-fibrotic efficacy compared to rapamycin and represents a promising target for improving the success rate of both traditional and modern GFSs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fibroblastos , Fibrose , Alvo Mecanístico do Complexo 1 de Rapamicina , Sirolimo , Cápsula de Tenon , Fator de Crescimento Transformador beta1 , Animais , Fator de Crescimento Transformador beta1/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Humanos , Ratos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Sirolimo/farmacologia , Fibrose/metabolismo , Cápsula de Tenon/metabolismo , Cápsula de Tenon/efeitos dos fármacos , Células Cultivadas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Western Blotting , Ratos Sprague-Dawley , Proteínas de Ciclo Celular/metabolismo , Transdução de Sinais , Reação em Cadeia da Polimerase em Tempo Real , Masculino , Glaucoma/metabolismo , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Imunossupressores/farmacologia
18.
FASEB J ; 37(6): e22945, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37144630

RESUMO

As a prototypical member of the IL-17 family, interleukin-17A (IL-17A) has received increasing attentions for its potent proinflammatory role as well as potential to be a key therapeutic target in human autoimmune inflammatory diseases; however, its roles in other pathological scenarios like neuroinflammations are not fully elucidated yet but appear essentially correlating and promising. Glaucoma is the leading cause of irreversible blindness with complicated pathogenesis still to be understood, where neuroinflammation was reported to be critically involved in its both initiation and progression. Whether IL-17A takes part in the pathogenesis of glaucoma through interfering neuroinflammation due to its potent proinflammatory effect is still unknown. In the present study, we investigated the role of IL-17A in the pathological process of glaucoma neuropathy as well as its relationship with the predominant immune inflammation mediator microglia in retina, trying to elucidate the underlying mechanisms from the view of inflammation modulation. In our study, RNA sequencing was performed for the retinas of chronic ocular hypertension (COH) and control mice. Western blot, RT-PCR, immunofluorescence, and ELISA were used to evaluate the microglial activation and proinflammatory cytokines release at conditioned levels of IL-17A, along with assessment of optic nerve integrity including retinal ganglion cells (RGCs) counting, axonal neurofilament quantification, and flash visual-evoked potential (F-VEP) examination. And the possibly involved signaling pathways were screened out to go through further validation in scenarios with conditioned IL-17A. Subsequently, IL-17A was found to be significantly upregulated in COH retina. Furthermore, suppression of IL-17A effectively diminished the loss of RGCs, improved axonal quality, and F-VEP performance in COH mice. Mechanistically, IL-17A promoted microglial activation and proinflammatory cytokines release along with enhanced phenotypic conversion of activated microglia to M2-type in early stage and to M1-type in late stage in glaucomatous retinas. Microglia elimination decreased the proinflammatory factors secretion, enhanced the RGCs survival and axonal quality mediated by IL-17A. Furthermore, IL-17A-induced the overactivation of microglia in glaucomatous condition was alleviated after blocking the p38 MAPK pathway. Taken together, IL-17A is involved in the regulation of retinal immune response and RGCs cell death in experimental glaucoma by essentially promoting retinal microglial activation via p38 MAPK signaling pathway. IL-17A dynamically regulates the phenotypic conversion of retinal microglia in experimental glaucoma partly depending on the duration of elevated intraocular pressure. Suppression of IL-17A contributes to alleviate glaucoma neuropathy and exhibits promising potential as an innovative target for therapeutic strategy in glaucoma.


Assuntos
Glaucoma , Hipertensão Ocular , Camundongos , Humanos , Animais , Interleucina-17/metabolismo , Microglia/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Doenças Neuroinflamatórias , Glaucoma/metabolismo , Retina/metabolismo , Hipertensão Ocular/etiologia , Inflamação/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças
19.
FASEB J ; 37(4): e22873, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929360

RESUMO

Trabecular meshwork (TM) cell dysfunction is the leading cause of elevated intraocular pressure (IOP) and glaucoma. The long non-coding RNA (lncRNA) small nucleolar RNA host gene 11 (SNHG11) is associated with cell proliferation and apoptosis, but its biological functions and role in glaucoma pathogenesis remain unclear. In the present study, we investigated the role of SNHG11 in TM cells using immortalized human TM and glaucomatous human TM (GTM3 ) cells and an acute ocular hypertension mouse model. SNHG11 expression was depleted using siRNA targeting SNHG11. Transwell assays, quantitative real-time PCR analysis (qRT-PCR), western blotting, and CCK-8 assay were used to evaluate cell migration, apoptosis, autophagy, and proliferation. Wnt/ß-catenin pathway activity was inferred from qRT-PCR, western blotting, immunofluorescence, and luciferase reporter and TOPFlash reporter assays. The expression of Rho kinases (ROCKs) was detected using qRT-PCR and western blotting. SNHG11 was downregulated in GTM3 cells and mice with acute ocular hypertension. In TM cells, SNHG11 knockdown inhibited cell proliferation and migration, activated autophagy, and apoptosis, repressing the Wnt/ß-catenin signaling pathway, and activated Rho/ROCK. Wnt/ß-catenin signaling pathway activity increased in TM cells treated with ROCK inhibitor. SNHG11 regulated Wnt/ß-catenin signaling through Rho/ROCK by increasing GSK-3ß expression and ß-catenin phosphorylation at Ser33/37/Thr41 while decreasing ß-catenin phosphorylation at Ser675. We demonstrate that the lncRNA SNHG11 regulates Wnt/ß-catenin signaling through Rho/ROCK via ß-catenin phosphorylation at Ser675 or GSK-3ß-mediated phosphorylation at Ser33/37/Thr41, affecting cell proliferation, migration, apoptosis, and autophagy. Through its effects on Wnt/ß-catenin signaling, SNHG11 is implicated in glaucoma pathogenesis and is a potential therapeutic target.


Assuntos
Glaucoma , Hipertensão Ocular , RNA Longo não Codificante , Humanos , Animais , Camundongos , Via de Sinalização Wnt/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Malha Trabecular/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Proliferação de Células/genética , Glaucoma/genética , Glaucoma/metabolismo , Hipertensão Ocular/metabolismo , Linhagem Celular Tumoral
20.
FASEB J ; 37(1): e22710, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520045

RESUMO

Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and apoptotic retinal ganglion cell (RGC) death, and is the leading cause of irreversible blindness worldwide. Among the sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 is a highly expressed subtype in the central nervous system and has gained rapid attention as an important mediator of pathophysiological processes in the brain and the retina. Our recent study showed that mice treated orally with siponimod drug exerted neuroprotection via modulation of neuronal S1PR1 in experimental glaucoma. This study identified the molecular signaling pathway modulated by S1PR1 activation with siponimod treatment in RGCs in glaucomatous injury. We investigated the critical neuroprotective signaling pathway in vivo using mice deleted for S1PR1 in RGCs. Our results showed marked upregulation of the apoptotic pathway was associated with decreased Akt and Erk1/2 activation levels in the retina in glaucoma conditions. Activation of S1PR1 with siponimod treatment significantly increased neuroprotective Akt and Erk1/2 activation and attenuated the apoptotic signaling via suppression of c-Jun/Bim cascade and by increasing Bad phosphorylation. Conversely, deletion of S1PR1 in RGCs significantly increased the apoptotic cells in the ganglion cell layer in glaucoma and diminished the neuroprotective effects of siponimod treatment on Akt/Erk1/2 activation, c-Jun/Bim cascade, and Bad phosphorylation. Our data demonstrated that activation of S1PR1 in RGCs induces crucial neuroprotective signaling that suppresses the proapoptotic c-Jun/Bim cascade and increases antiapoptotic Bad phosphorylation. Our findings suggest that S1PR1 is a potential therapeutic target for neuroprotection of RGCs in glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Animais , Camundongos , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Glaucoma/genética , Glaucoma/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/fisiologia , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA