Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.029
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 56(2): 307-319.e8, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36736320

RESUMO

Gaucher disease (GD) is the most common lysosomal storage disease caused by recessive mutations in the degrading enzyme of ß-glucosylceramide (ß-GlcCer). However, it remains unclear how ß-GlcCer causes severe neuronopathic symptoms, which are not fully treated by current therapies. We herein found that ß-GlcCer accumulating in GD activated microglia through macrophage-inducible C-type lectin (Mincle) to induce phagocytosis of living neurons, which exacerbated Gaucher symptoms. This process was augmented by tumor necrosis factor (TNF) secreted from activated microglia that sensitized neurons for phagocytosis. This characteristic pathology was also observed in human neuronopathic GD. Blockade of these pathways in mice with a combination of FDA-approved drugs, minocycline (microglia activation inhibitor) and etanercept (TNF blocker), effectively protected neurons and ameliorated neuronopathic symptoms. In this study, we propose that limiting unrestrained microglia activation using drug repurposing provides a quickly applicable therapeutic option for fatal neuronopathic GD.


Assuntos
Doença de Gaucher , Camundongos , Animais , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Glucosilceramidase/uso terapêutico , Glucosilceramidas/metabolismo , Glucosilceramidas/uso terapêutico , Microglia/metabolismo , Neurônios/metabolismo , Fagocitose
2.
Cell ; 146(1): 37-52, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21700325

RESUMO

Parkinson's disease (PD), an adult neurodegenerative disorder, has been clinically linked to the lysosomal storage disorder Gaucher disease (GD), but the mechanistic connection is not known. Here, we show that functional loss of GD-linked glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises lysosomal protein degradation, causes accumulation of α-synuclein (α-syn), and results in neurotoxicity through aggregation-dependent mechanisms. Glucosylceramide (GlcCer), the GCase substrate, directly influenced amyloid formation of purified α-syn by stabilizing soluble oligomeric intermediates. We further demonstrate that α-syn inhibits the lysosomal activity of normal GCase in neurons and idiopathic PD brain, suggesting that GCase depletion contributes to the pathogenesis of sporadic synucleinopathies. These findings suggest that the bidirectional effect of α-syn and GCase forms a positive feedback loop that may lead to a self-propagating disease. Therefore, improved targeting of GCase to lysosomes may represent a specific therapeutic approach for PD and other synucleinopathies.


Assuntos
Doença de Gaucher/metabolismo , Glucosilceramidase/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Retroalimentação Fisiológica , Doença de Gaucher/patologia , Glucosilceramidas/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Neurônios/metabolismo
3.
PLoS Pathog ; 19(3): e1011232, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36920967

RESUMO

Due to climate changes, there has been a large expansion of emerging tick-borne zoonotic viruses, including Heartland bandavirus (HRTV) and Dabie bandavirus (DBV). As etiologic agents of hemorrhagic fever with high fatality, HRTV and DBV have been recognized as dangerous viral pathogens that likely cause future wide epidemics. Despite serious health concerns, the mechanisms underlying viral infection are largely unknown. HRTV and DBV Gn and Gc are viral surface glycoproteins required for early entry events during infection. Glycosphingolipids, including galactosylceramide (GalCer), glucosylceramide (GlcCer) and lactosylceramide (LacCer), are a class of membrane lipids that play essential roles in membrane structure and viral lifecycle. Here, our genome-wide CRISPR/Cas9 knockout screen identifies that glycosphingolipid biosynthesis pathway is essential for HRTV and DBV infection. The deficiency of UDP-glucose ceramide glucosyltransferase (UGCG) that produces GlcCer resulted in the loss of infectivity of recombinant viruses pseudotyped with HRTV or DBV Gn/Gc glycoproteins. Conversely, exogenous supplement of GlcCer, but not GalCer or LacCer, recovered viral entry of UGCG-deficient cells in a dose-dependent manner. Biophysical analyses showed that GlcCer targeted the lipid-head-group binding pocket of Gc to form a stable protein-lipid complex, which allowed the insertion of Gc protein into host lysosomal membrane lipid bilayers for viral fusion. Mutagenesis showed that D841 residue at the Gc lipid binding pocket was critical for GlcCer interaction and thereby, viral entry. These findings reveal detailed mechanism of GlcCer glycosphingolipid in HRTV and DBV Gc-mediated membrane fusion and provide a potential therapeutic target for tickborne virus infection.


Assuntos
Glucosilceramidas , Vírus de RNA , Glucosilceramidas/metabolismo , Fusão de Membrana , Glicoproteínas/química , Lactosilceramidas , Vírus de RNA/metabolismo
4.
Cell Mol Life Sci ; 81(1): 71, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300320

RESUMO

Hexosylceramides (HexCer) are implicated in the infection process of various pathogens. However, the molecular and cellular functions of HexCer in infectious cycles are poorly understood. Investigating the enveloped virus Uukuniemi (UUKV), a bunyavirus of the Phenuiviridae family, we performed a lipidomic analysis with mass spectrometry and determined the lipidome of both infected cells and derived virions. We found that UUKV alters the processing of HexCer to glycosphingolipids (GSL) in infected cells. The infection resulted in the overexpression of glucosylceramide (GlcCer) synthase (UGCG) and the specific accumulation of GlcCer and its subsequent incorporation into viral progeny. UUKV and several pathogenic bunyaviruses relied on GlcCer in the viral envelope for binding to various host cell types. Overall, our results indicate that GlcCer is a structural determinant of virions crucial for bunyavirus infectivity. This study also highlights the importance of glycolipids on virions in facilitating interactions with host cell receptors and infectious entry of enveloped viruses.


Assuntos
Orthobunyavirus , Glucosilceramidas , Ligação Viral , Lipidômica , Espectrometria de Massas
5.
J Lipid Res ; 65(3): 100508, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280458

RESUMO

Lipid transport is an essential cellular process with importance to human health, disease development, and therapeutic strategies. Type IV P-type ATPases (P4-ATPases) have been identified as membrane lipid flippases by utilizing nitrobenzoxadiazole (NBD)-labeled lipids as substrates. Among the 14 human type IV P-type ATPases, ATP10D was shown to flip NBD-glucosylceramide (GlcCer) across the plasma membrane. Here, we found that conversion of incorporated GlcCer (d18:1/12:0) to other sphingolipids is accelerated in cells exogenously expressing ATP10D but not its ATPase-deficient mutant. These findings suggest that 1) ATP10D flips unmodified GlcCer as well as NBD-GlcCer at the plasma membrane and 2) ATP10D can translocate extracellular GlcCer, which is subsequently converted to other metabolites. Notably, exogenous expression of ATP10D led to the reduction in cellular hexosylceramide levels. Moreover, the expression of GlcCer flippases, including ATP10D, also reduced cellular hexosylceramide levels in fibroblasts derived from patients with Gaucher disease, which is a lysosomal storage disorder with excess GlcCer accumulation. Our study highlights the contribution of ATP10D to the regulation of cellular GlcCer levels and maintaining lipid homeostasis.


Assuntos
Glucosilceramidas , ATPases do Tipo-P , Humanos , Glucosilceramidas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Adenosina Trifosfatases/metabolismo , Homeostase , ATPases do Tipo-P/metabolismo
6.
Mol Pharmacol ; 105(3): 121-130, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38182433

RESUMO

Multiple sclerosis is an inflammatory and degenerative disease characterized by different clinical courses including relapsing multiple sclerosis (RMS) and primary progressive multiple sclerosis (PPMS). A hallmark of patients with multiple sclerosis (pwMS) includes a putative autoimmune response, which results in demyelination and neuroaxonal damage in the central nervous system. Sphingolipids in cerebrospinal fluid (CSF) have been proposed as potential biomarkers reflective of disease activity in pwMS. Hence, sensitive methods to accurately quantify sphingolipids in CSF are needed. In this study, we report the development of a sensitive high-throughput multiplexed liquid chromatography coupled to a tandem mass spectrometry method to perform quantitation on 14 species of sphingolipids in human CSF. We applied this method to measure CSF sphingolipids in healthy controls (n = 10), PPMS (n = 27), and RMS (n = 17) patients before and after ocrelizumab treatment. The median CSF levels of the 14 sphingolipids measured herein was higher in PPMS (17.2 ng/mL) and RMS (17.6 ng/mL) when compared with the healthy controls (13.8 ng/mL). Levels of sphingolipids were decreased by 8.6% at week 52 after treatment with ocrelizumab in RMS patients but not in PPMS patients. Specifically, C16 glucosylceramide (-26%; P = 0.004) and C18 ceramides (-13%; P = 0.042) decreased from baseline in RMS patients. Additionally, in PPMS patients C16 glucosylceramide levels correlated with CSF neurofilament heavy levels at baseline (Rho =0.532; P = 0.004) and after treatment (Rho =0.424; P = 0.028). Collectively, these results indicate that CSF sphingolipid levels are altered in pwMS and treatment with ocrelizumab results in significant shifts in the sphingolipid profile that may reflect a reduction in disease activity supporting further investigation into sphingolipids as tools to monitor disease state. SIGNIFICANCE STATEMENT: This study describes the development of a new method to measure 14 sphingolipid species in CSF. These results demonstrate that sphingolipids levels are elevated in CSF from pwMS compared to healthy controls. Distinct sphingolipid signatures were observed between patients with different clinical disease courses, and these lipid signatures changed after treatment with ocrelizumab, especially in RMS patients. This method enables further investigation into the role of sphingolipids as candidate biomarkers in pwMS and other central nervous system disorders.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esfingolipídeos , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida , Glucosilceramidas , Espectrometria de Massas em Tandem , Biomarcadores/líquido cefalorraquidiano
7.
Cell Struct Funct ; 49(1): 1-10, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38072450

RESUMO

Gaucher disease (GD) is a recessively inherited lysosomal storage disorder characterized by a deficiency of lysosomal glucocerebrosidase (GBA1). This deficiency results in the accumulation of its substrate, glucosylceramide (GlcCer), within lysosomes. Here, we investigated lysosomal abnormalities in fibroblasts derived from patients with GD. It is noteworthy that the cellular distribution of lysosomes and lysosomal proteolytic activity remained largely unaffected in GD fibroblasts. However, we found that lysosomal membranes of GD fibroblasts were susceptible to damage when exposed to a lysosomotropic agent. Moreover, the susceptibility of lysosomal membranes to a lysosomotropic agent could be partly restored by exogenous expression of wild-type GBA1. Here, we report that the lysosomal membrane integrity is altered in GD fibroblasts, but lysosomal distribution and proteolytic activity is not significantly altered.Key words: glucosylceramide, lysosome, Gaucher disease, lysosomotropic agent.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Fibroblastos/metabolismo , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo
8.
J Biol Chem ; 299(9): 105162, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586586

RESUMO

Sphingomyelin synthase (SMS)-related protein (SMSr) is a phosphatidylethanolamine phospholipase C (PE-PLC) that is conserved and ubiquitous in mammals. However, its biological function is still not clear. We previously observed that SMS1 deficiency-mediated glucosylceramide accumulation caused nonalcoholic fatty liver diseases (NAFLD), including nonalcoholic steatohepatitis (NASH) and liver fibrosis. Here, first, we evaluated high-fat diet/fructose-induced NAFLD in Smsr KO and WT mice. Second, we evaluated whether SMSr deficiency can reverse SMS1 deficiency-mediated NAFLD, using Sms1/Sms2 double and Sms1/Sms2/Smsr triple KO mice. We found that SMSr/PE-PLC deficiency attenuated high-fat diet/fructose-induced fatty liver and NASH, and attenuated glucosylceramide accumulation-induced NASH, fibrosis, and tumor formation. Further, we found that SMSr/PE-PLC deficiency reduced the expression of many inflammatory cytokines and fibrosis-related factors, and PE supplementation in vitro or in vivo mimicked the condition of SMSr/PE-PLC deficiency. Furthermore, we demonstrated that SMSr/PE-PLC deficiency or PE supplementation effectively prevented membrane-bound ß-catenin transfer to the nucleus, thereby preventing tumor-related gene expression. Finally, we observed that patients with NASH had higher SMSr protein levels in the liver, lower plasma PE levels, and lower plasma PE/phosphatidylcholine ratios, and that human plasma PE levels are negatively associated with tumor necrosis factor-α and transforming growth factor ß1 levels. In conclusion, SMSr/PE-PLC deficiency causes PE accumulation, which can attenuate fatty liver, NASH, and fibrosis. These results suggest that SMSr/PE-PLC inhibition therapy may mitigate NAFLD.


Assuntos
Neoplasias , Hepatopatia Gordurosa não Alcoólica , Transferases (Outros Grupos de Fosfato Substituídos) , Animais , Humanos , Camundongos , Frutose/efeitos adversos , Glucosilceramidas/metabolismo , Fígado/metabolismo , Cirrose Hepática/patologia , Neoplasias/genética , Neoplasias/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidiletanolaminas/sangue , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Camundongos Knockout , Masculino , Feminino , Dieta Hiperlipídica/efeitos adversos
9.
Glycobiology ; 34(6)2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38690785

RESUMO

Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants.


Assuntos
Arabidopsis , Celulose , Glucosilceramidas , Glucosiltransferases , Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Celulose/metabolismo , Celulose/biossíntese , Glucosilceramidas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/análogos & derivados , Parede Celular/metabolismo
10.
Anal Chem ; 96(31): 12875-12882, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39047057

RESUMO

Mutations in GBA1, encoding glucocerebrosidase beta 1 (GCase), are the most common genetic risk factor for Parkinson's disease (PD). GCase dysfunction leads to an accumulation of glucosylceramide (GluCer) substrates in different organs and fluids. Despite the challenges in quantifying GluCer isoforms in biological samples, their potential clinical interest as PD biomarkers justifies the development of robust assays. An extensively evaluated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for quantifying 14 GluCer and galactosylceramide (GalCer) isoforms in human cerebrospinal fluid (CSF) samples is presented. Sample pretreatment, HPLC, and MS/MS parameters were optimized. Evaluation was performed according to the recommendations of the Clinical and Laboratory Standards Institute and European Medicines Agency guidelines. Four 7-point calibration curves were generated, with a linearity interval from 2.5 to 200 nM (R2 ≥ 0.995). The limit of quantification was set at 5 nM. Between-run precision and accuracy were up to 12.5 and 9%, respectively. After method validation, we measured the levels of GluCer and GalCer isoforms in CSF human samples, including 6 healthy controls (HC), 22 idiopathic GBA1 wild-type PD (iPD) patients, and 5 GBA1-associated PD (PD-GBA) patients. GluCer/GalCer median ratios were found to be higher in the CSF of PD-GBA patients, particularly in severe GBA1 mutations, than those in iPD and HC. The observed trends in GluCer/GalCer ratios among groups provide novel information for the comprehensive analysis of sphingolipids as potential biomarkers of PD.


Assuntos
Galactosilceramidas , Glucosilceramidas , Doença de Parkinson , Espectrometria de Massas em Tandem , Humanos , Doença de Parkinson/líquido cefalorraquidiano , Glucosilceramidas/líquido cefalorraquidiano , Galactosilceramidas/líquido cefalorraquidiano , Cromatografia Líquida de Alta Pressão , Biomarcadores/líquido cefalorraquidiano , Glucosilceramidase/líquido cefalorraquidiano , Glucosilceramidase/genética
11.
Mol Genet Metab ; 141(1): 108113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113551

RESUMO

Nizubaglustat is a novel, orally available, brain penetrant, potent, and selective dual inhibitor of ceramide glucosyltranferase and non-lysosomal neutral glucosylceramidase (NLGase), which is currently under development for the treatment of subjects with neurological manifestations in primary and secondary gangliosidoses. The objectives of this first-in-human study were to evaluate the safety and tolerability, pharmacokinetics, and pharmacodynamics (PD) of single oral doses of nizubaglustat after single (1, 3, and 9 mg) and multiple oral doses (9 mg once per day (QD) over 14 days) in healthy adults. Nizubaglustat was rapidly absorbed and systemic exposure was dose-proportional. Steady-state was achieved after three days of QD multiple dosing with minimal accumulation. Renal clearance accounted for around 15% of nizubaglustat elimination. Following multiple dosing, plasma concentrations of glucosylceramide (GlcCer), lactosylceramide (LacCer), and monosialodihexosylganglioside (GM3) decreased to a nadir at Day 10. PD target engagement of GCS inhibition was shown by a median decrease from baseline of plasma concentrations of GlcCer, LacCer, and GM3 ganglioside by 70%, 50%, and 48%, respectively. NLGase inhibition was also manifested by increased concentrations of GlcCer in cerebrospinal fluid from Day 1 to Day 14. Nizubaglustat was safe and well-tolerated at all doses tested. Consistent with the high selectivity, and the absence of intestinal disaccharidases inhibition, no cases of diarrhea were reported. No decreased appetite or weight loss was noted. Only treatment-emergent adverse events with preferred terms belonging to the system organ class skin and subcutaneous disorders of mild intensity were reported as drug-related in the nizubaglustat arm, in line with the pharmacological mechanism targeting glucosylceramide metabolism. Taken together, these data support QD dosing of nizubaglustat and its ongoing development in patients with primary and secondary forms of gangliosidoses.


Assuntos
Gangliosidoses , Glucosilceramidase , Adulto , Humanos , Glucosilceramidas , Glucosiltransferases , Hidrolases , Relação Dose-Resposta a Droga , Método Duplo-Cego , Administração Oral
12.
FASEB J ; 37(12): e23257, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37902616

RESUMO

Cardiomyopathy is a major complication of thalassemia, yet the precise underlying molecular mechanisms remain unclear. We examined whether altered lipid metabolism is an early driving factor in the development of cardiomyopathy using the Th3/+ mouse model of thalassemia. At age 20 weeks, male and female Th3/+ mice manifested anemia and iron overload; however, only males displayed metabolic defects and altered cardiac function. Untargeted lipidomics indicated that the circulating levels of 35 lipid species were significantly altered in Th3/+ mice compared to wild-type controls: triglycerides (TGs) with saturated fatty acids (FAs; TG42:0 and TG44:0) were elevated, while TGs with unsaturated FAs (TG(18:2_20:5_18:2 and TG54:8)) were reduced. Similarly, phosphatidylcholines (PCs) with long chain FAs (palmitic (16:0) or oleic (18:1)) were increased, while PCs with polyunsaturated FAs decreased. Circulating PC(16:0_14:0), GlcCer(d18:1/24:0) correlated significantly with iron overload and cardiac hypertrophy. 16S rRNA gene profiling revealed alterations in the intestinal microbiota of Th3/+ mice. Differentially abundant bacterial genera correlated with PC(39:6), PC(18:1_22:6), GlcCer(d18:1/24:1) and CE(14:0). These results provide new knowledge on perturbations in lipid metabolism and the gut microbiota of Th3/+ mice and identify specific factors which may represent early biomarkers or therapeutic targets to prevent development of cardiomyopathy in ß-thalassemia.


Assuntos
Cardiomiopatias , Microbioma Gastrointestinal , Cardiopatias , Sobrecarga de Ferro , Talassemia , Feminino , Masculino , Animais , Camundongos , Metabolismo dos Lipídeos , RNA Ribossômico 16S , Talassemia/complicações , Modelos Animais de Doenças , Glucosilceramidas , Sobrecarga de Ferro/complicações , Triglicerídeos
13.
Arterioscler Thromb Vasc Biol ; 43(7): 1251-1261, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37128925

RESUMO

BACKGROUND: Sphingomyelin (SM) and cholesterol are 2 key lipid partners on cell membranes and on lipoproteins. Many studies have indicated the influence of cholesterol on SM metabolism. This study examined the influence of SM biosynthesis on cholesterol metabolism. METHODS: Inducible global Sms1 KO (knockout)/global Sms2 KO mice were prepared to evaluate the effect of whole-body SM biosynthesis deficiency on lipoprotein metabolism. Tissue cholesterol, SM, ceramide, and glucosylceramide levels were measured. Triglyceride production rate and LDL (low-density lipoprotein) catabolism were measured. Lipid rafts were isolated and LDL receptor mass and function were evaluated. Also, the effects of exogenous sphingolipids on hepatocytes were investigated. RESULTS: We found that total SMS (SM synthase) depletion significantly reduced plasma SM levels. Also, the total deficiency significantly induced plasma cholesterol, apoB (apolipoprotein B), and apoE (apolipoprotein E) levels. Importantly, total SMS deficiency, but not SMS2 deficiency, dramatically decreased LDL receptors in the liver and attenuated LDL uptake through the receptor. Further, we found that total SMS deficiency greatly reduced LDL receptors in the lipid rafts, which contained significantly lower SM and significantly higher glucosylceramide, as well as cholesterol. Furthermore, we treated primary hepatocytes and Huh7 cells (a human hepatoma cell line) with SM, ceramide, or glucosylceramide, and we found that only SM could upregulate LDL receptor levels in a dose-dependent fashion. CONCLUSIONS: Whole-body SM biosynthesis plays an important role in LDL cholesterol catabolism. The total SMS deficiency, but not SMS2 deficiency, reduces LDL uptake and causes LDL cholesterol accumulation in the circulation. Given the fact that serum SM level is a risk factor for cardiovascular diseases, inhibiting SMS2 but not SMS1 should be the desirable approach.


Assuntos
Glucosilceramidas , Esfingomielinas , Camundongos , Humanos , Animais , LDL-Colesterol , Ceramidas/metabolismo , Colesterol/metabolismo , Receptores de LDL , Apolipoproteínas , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
14.
J Immunol ; 209(2): 391-400, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35768151

RESUMO

Neutrophil extracellular traps (NETs) are implicated in host defense and inflammatory pathologies alike. A wide range of pathogen- and host-derived factors are known to induce NETs, yet the knowledge about specific receptor-ligand interactions in this response is limited. We previously reported that macrophage-inducible C-type lectin (Mincle) regulates NET formation. In this article, we identify glycosphingolipid ß-glucosylceramide (ß-GlcCer) as a specific NET-inducing ligand of Mincle. We found that purified ß-GlcCer induced NETs in mouse primary neutrophils in vitro and in vivo, and this effect was abrogated in Mincle deficiency. Cell-free ß-GlcCer accumulated in the lungs of pneumonic mice, which correlated with pulmonary NET formation in wild-type, but not in Mincle-/-, mice infected intranasally with Klebsiella pneumoniae Although leukocyte infiltration by ß-GlcCer administration in vivo did not require Mincle, NETs induced by this sphingolipid were important for bacterial clearance during Klebsiella infection. Mechanistically, ß-GlcCer did not activate reactive oxygen species formation in neutrophils but required autophagy and glycolysis for NET formation, because ATG4 inhibitor NSC185058, as well as glycolysis inhibitor 2-deoxy-d-glucose, abrogated ß-GlcCer-induced NETs. Forced autophagy activation by tamoxifen could overcome the inhibitory effect of glycolysis blockage on ß-GlcCer-mediated NET formation, suggesting that autophagy activation is sufficient to induce NETs in response to this metabolite in the absence of glycolysis. Finally, ß-GlcCer accumulated in the plasma of patients with systemic inflammatory response syndrome, and its levels correlated with the extent of systemic NET formation in these patients. Overall, our results posit ß-GlcCer as a potent NET-inducing ligand of Mincle with diagnostic and therapeutic potential in inflammatory disease settings.


Assuntos
Armadilhas Extracelulares , Infecções por Klebsiella , Animais , Armadilhas Extracelulares/metabolismo , Glucosilceramidas , Glicolipídeos , Inflamação/metabolismo , Infecções por Klebsiella/metabolismo , Ligantes , Camundongos , Neutrófilos/metabolismo
15.
J Immunol ; 209(10): 1837-1850, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36426950

RESUMO

In humans and mice, offspring of allergic mothers are predisposed to development of allergy. In mice, allergic mothers have elevated ß-glucosylceramides (ßGlcCers) that are transported to the fetus via the placenta and to offspring via milk. The elevated ßGlcCers increase the number of fetal liver CD11c+CD11b+ dendritic cells (DCs) and offspring allergen-induced lung eosinophilia. These effects are modifiable by maternal dietary supplementation with the plant-derived lipids α-tocopherol and γ-tocopherol. It is not known whether ßGlcCers and tocopherols directly regulate development of DCs. In this study, we demonstrated that ßGlcCers increased development of GM-CSF-stimulated mouse bone marrow-derived DCs (BMDCs) in vitro without altering expression of costimulatory molecules. This increase in BMDC numbers was blocked by α-tocopherol and potentiated by γ-tocopherol. Furthermore, ßGlcCers increased protein kinase Cα (PKCα) and PKCδ activation in BMDCs that was blocked by α-tocopherol. In contrast, γ-tocopherol increased BMDC PKCα and PKCδ activation and enhanced the ßGlcCer-induced increase in PKCδ activation in a DC subset. Ag processing per DC was minimally enhanced in ßGlcCer-treated BMDCs and not altered ex vivo in lung DCs from pups of allergic mothers. Pups of allergic mothers had an increased proportion of CD11b+CD11c+ subsets of DCs, contributing to enhanced stimulation of T cell proliferation ex vivo. Thus, ßGlcCer, which is both necessary and sufficient for development of allergic predisposition in offspring of allergic mothers, directly increased development and PKC activation in BMDCs. Furthermore, this was modifiable by dietary tocopherols. This may inform design of future studies for the prevention or intervention in asthma and allergic disease.


Assuntos
Asma , Hipersensibilidade , Humanos , Feminino , Gravidez , Animais , Camundongos , Tocoferóis , gama-Tocoferol , Glucosilceramidas , alfa-Tocoferol/farmacologia , Proteína Quinase C-alfa , Antígeno CD11c , Células Dendríticas
16.
Brain ; 146(2): 461-474, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36256599

RESUMO

Gaucher disease type 3 is a chronic neuronopathic disorder with wide-ranging effects, including hepatosplenomegaly, anaemia, thrombocytopenia, skeletal disease and diverse neurological manifestations. Biallelic mutations in GBA1 reduce lysosomal acid ß-glucosidase activity, and its substrates, glucosylceramide and glucosylsphingosine, accumulate. Enzyme replacement therapy and substrate reduction therapy ameliorate systemic features of Gaucher disease, but no therapies are approved for neurological manifestations. Venglustat is an investigational, brain-penetrant, glucosylceramide synthase inhibitor with potential to improve the disease by rebalancing influx of glucosylceramide with impaired lysosomal recycling. The Phase 2, open-label LEAP trial (NCT02843035) evaluated orally administered venglustat 15 mg once-daily in combination with maintenance dose of imiglucerase enzyme replacement therapy during 1 year of treatment in 11 adults with Gaucher disease type 3. Primary endpoints were venglustat safety and tolerability and change in concentration of glucosylceramide and glucosylsphingosine in CSF from baseline to Weeks 26 and 52. Secondary endpoints included change in plasma concentrations of glucosylceramide and glucosylsphingosine, venglustat pharmacokinetics in plasma and CSF, neurologic function, infiltrative lung disease and systemic disease parameters. Exploratory endpoints included changes in brain volume assessed with volumetric MRI using tensor-based morphometry, and resting functional MRI analysis of regional brain activity and connectivity between resting state networks. Mean (SD) plasma venglustat AUC0-24 on Day 1 was 851 (282) ng•h/ml; Cmax of 58.1 (26.4) ng/ml was achieved at a median tmax 2.00 h. After once-daily venglustat, plasma concentrations (4 h post-dose) were higher compared with Day 1, indicating ∼2-fold accumulation. One participant (Patient 9) had low-to-undetectable venglustat exposure at Weeks 26 and 52. Based on mean plasma and CSF venglustat concentrations (excluding Patient 9), steady state appeared to be reached on or before Week 4. Mean (SD) venglustat concentration at Week 52 was 114 (65.8) ng/ml in plasma and 6.14 (3.44) ng/ml in CSF. After 1 year of treatment, median (inter-quartile range) glucosylceramide decreased 78% (72, 84) in plasma and 81% (77, 83) in CSF; median (inter-quartile range) glucosylsphingosine decreased 56% (41, 60) in plasma and 70% (46, 76) in CSF. Ataxia improved slightly in nine patients: mean (SD, range) total modified Scale for Assessment and Rating of Ataxia score decreased from 2.68 [1.54 (0.0 to 5.5)] at baseline to 1.55 [1.88 (0.0 to 5.0)] at Week 52 [mean change: -1.14 (95% CI: -2.06 to -0.21)]. Whole brain volume increased slightly in patients with venglustat exposure and biomarker reduction in CSF (306.7 ± 4253.3 mm3) and declined markedly in Patient 9 (-13894.8 mm3). Functional MRI indicated stronger connectivity at Weeks 26 and 52 relative to baseline between a broadly distributed set of brain regions in patients with venglustat exposure and biomarker reduction but not Patient 9, although neurocognition, assessed by Vineland II, deteriorated in all domains over time, which illustrates disease progression despite the intervention. There were no deaths, serious adverse events or discontinuations. In adults with Gaucher disease type 3 receiving imiglucerase, addition of once-daily venglustat showed acceptable safety and tolerability and preliminary evidence of clinical stability with intriguing but intrinsically inconsistent signals in selected biomarkers, which need to be validated and confirmed in future research.


Assuntos
Doença de Gaucher , Doenças do Sistema Nervoso , Humanos , Adulto , Glucosilceramidase/uso terapêutico , Glucosilceramidase/genética , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidas/uso terapêutico , Doença Crônica , Biomarcadores , Doenças do Sistema Nervoso/tratamento farmacológico , Ataxia
17.
PLoS Genet ; 17(2): e1008859, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539341

RESUMO

Abnormal protein aggregation within neurons is a key pathologic feature of Parkinson's disease (PD). The spread of brain protein aggregates is associated with clinical disease progression, but how this occurs remains unclear. Mutations in glucosidase, beta acid 1 (GBA), which encodes glucocerebrosidase (GCase), are the most penetrant common genetic risk factor for PD and dementia with Lewy bodies and associate with faster disease progression. To explore how GBA mutations influence pathogenesis, we previously created a Drosophila model of GBA deficiency (Gba1b) that manifests neurodegeneration and accelerated protein aggregation. Proteomic analysis of Gba1b mutants revealed dysregulation of proteins involved in extracellular vesicle (EV) biology, and we found altered protein composition of EVs from Gba1b mutants. Accordingly, we hypothesized that GBA may influence pathogenic protein aggregate spread via EVs. We found that accumulation of ubiquitinated proteins and Ref(2)P, Drosophila homologue of mammalian p62, were reduced in muscle and brain tissue of Gba1b flies by ectopic expression of wildtype GCase in muscle. Neuronal GCase expression also rescued protein aggregation both cell-autonomously in brain and non-cell-autonomously in muscle. Muscle-specific GBA expression reduced the elevated levels of EV-intrinsic proteins and Ref(2)P found in EVs from Gba1b flies. Perturbing EV biogenesis through neutral sphingomyelinase (nSMase), an enzyme important for EV release and ceramide metabolism, enhanced protein aggregation when knocked down in muscle, but did not modify Gba1b mutant protein aggregation when knocked down in neurons. Lipidomic analysis of nSMase knockdown on ceramide and glucosylceramide levels suggested that Gba1b mutant protein aggregation may depend on relative depletion of specific ceramide species often enriched in EVs. Finally, we identified ectopically expressed GCase within isolated EVs. Together, our findings suggest that GCase deficiency promotes accelerated protein aggregate spread between cells and tissues via dysregulated EVs, and EV-mediated trafficking of GCase may partially account for the reduction in aggregate spread.


Assuntos
Drosophila melanogaster/metabolismo , Vesículas Extracelulares/metabolismo , Glucosilceramidase/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo , Animais , Transporte Biológico , Encéfalo/metabolismo , Ceramidas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes , Glucosilceramidase/deficiência , Glucosilceramidase/genética , Glucosilceramidas/metabolismo , Lipidômica , Músculos/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/genética , Proteoma/genética , Proteoma/metabolismo , Interferência de RNA
18.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928016

RESUMO

While much has been learned about sphingolipids, originally named for their sphinx-like enigmatic properties, there are still many unanswered questions about the possible effect(s) of the composition of ceramide on the synthesis and/or behavior of a glycosphingolipid (GSL). Over time, studies of their ceramide component, the sphingoid base containing the lipid moiety of GSLs, were frequently distinct from those performed to ascertain the roles of the carbohydrate moieties. Due to the number of classes of GSLs that can be derived from ceramide, this review focuses on the possible role(s) of ceramide in the synthesis/function of just one GSL class, derived from glucosylceramide (Glc-Cer), namely sialylated ganglio derivatives, initially characterized and named gangliosides (GGs) due to their presence in ganglion cells. While much is known about their synthesis and function, much is still being learned. For example, it is only within the last 15-20 years or so that the mechanism by which the fatty acyl component of ceramide affected its transport to different sites in the Golgi, where it is used for the synthesis of Glu- or galactosyl-Cer (Gal-Cer) and more complex GSLs, was defined. Still to be fully addressed are questions such as (1) whether ceramide composition affects the transport of partially glycosylated GSLs to sites where their carbohydrate chain can be elongated or affects the activity of glycosyl transferases catalyzing that elongation; (2) what controls the differences seen in the ceramide composition of GGs that have identical carbohydrate compositions but vary in that of their ceramide and vice versa; (3) how alterations in ceramide composition affect the function of membrane GGs; and (4) how this knowledge might be applied to the development of therapies for treating diseases that correlate with abnormal expression of GGs. The availability of an updatable data bank of complete structures for individual classes of GSLs found in normal tissues as well as those associated with disease would facilitate research in this area.


Assuntos
Ceramidas , Gangliosídeos , Glicoesfingolipídeos , Ceramidas/química , Ceramidas/metabolismo , Humanos , Animais , Gangliosídeos/química , Gangliosídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Glicoesfingolipídeos/química , Esfingolipídeos/metabolismo , Esfingolipídeos/química , Glucosilceramidas/metabolismo , Glucosilceramidas/química
19.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257371

RESUMO

Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the ß-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on ß-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.


Assuntos
Gangliosídeo G(M1) , Doença de Gaucher , Humanos , Fibroblastos , beta-Galactosidase/genética , Corantes , Citometria de Fluxo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidas
20.
J Lipid Res ; 64(7): 100394, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245562

RESUMO

The addition of excess glucose to the diet drives a coordinated response of lipid metabolism pathways to tune the membrane composition to the altered diet. Here, we have employed targeted lipidomic approaches to quantify the specific changes in the phospholipid and sphingolipid populations that occur in elevated glucose conditions. The lipids within wild-type Caenorhabditis elegans are strikingly stable with no significant changes identified in our global mass spectrometry-based analysis. Previous work has identified ELO-5, an elongase that is critical for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs), as essential for surviving elevated glucose conditions. Therefore, we performed targeted lipidomics on elo-5 RNAi-fed animals and identified several significant changes in these animals in lipid species that contain mmBCFAs as well as in species that do not contain mmBCFAs. Of particular note, we identified a specific glucosylceramide (GlcCer 17:1;O2/22:0;O) that is also significantly upregulated with glucose in wild-type animals. Furthermore, compromising the production of the glucosylceramide pool with elo-3 or cgt-3 RNAi leads to premature death in glucose-fed animals. Taken together, our lipid analysis has expanded the mechanistic understanding of metabolic rewiring with glucose feeding and has identified a new role for the GlcCer 17:1;O2/22:0;O.


Assuntos
Proteínas de Caenorhabditis elegans , Glucosilceramidas , Animais , Glucosilceramidas/metabolismo , Lipidômica , Glucose/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA