Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.851
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 20(5): e1012240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768240

RESUMO

Hepatitis E virus (HEV) is the leading cause of acute viral hepatitis worldwide. HEV associated pregnancy mortality has been reported as up to 30% in humans. Recent findings suggest HEV may elicit effects directly in the reproductive system with HEV protein found in the testis, viral RNA in semen, and viral replication occurring in placental cell types. Using a natural host model for HEV infection, pigs, we demonstrate infectious HEV within the mature spermatozoa and altered sperm viability from HEV infected pigs. HEV isolated from sperm remained infectious suggesting a potential transmission route via sexual partners. Our findings suggest that HEV should be explored as a possible sexually transmittable disease. Our findings propose that infection routes outside of oral and intravenous infection need to be considered for their potential to contribute to higher mortality in HEV infections when pregnancy is involved and in HEV disease in general.


Assuntos
Vírus da Hepatite E , Hepatite E , Cabeça do Espermatozoide , Masculino , Vírus da Hepatite E/fisiologia , Vírus da Hepatite E/patogenicidade , Animais , Hepatite E/virologia , Hepatite E/transmissão , Hepatite E/veterinária , Suínos , Cabeça do Espermatozoide/virologia , Feminino , Gravidez , Doenças dos Suínos/virologia
2.
J Immunol ; 213(4): 442-455, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905108

RESUMO

Hepatitis E virus (HEV) is a worldwide zoonotic and public health concern. The study of HEV biology is helpful for designing viral vaccines and drugs. Nanobodies have recently been considered appealing materials for viral biological research. In this study, a Bactrian camel was immunized with capsid proteins from different genotypes (1, 3, 4, and avian) of HEV. Then, a phage library (6.3 × 108 individual clones) was constructed using peripheral blood lymphocytes from the immunized camel, and 12 nanobodies against the truncated capsid protein of genotype 3 HEV (g3-p239) were screened. g3-p239-Nb55 can cross-react with different genotypes of HEV and block Kernow-C1/P6 HEV from infecting HepG2/C3A cells. To our knowledge, the epitope recognized by g3-p239-Nb55 was determined to be a novel conformational epitope located on the surface of viral particles and highly conserved among different mammalian HEV isolates. Next, to increase the affinity and half-life of the nanobody, it was displayed on the surface of ferritin, which can self-assemble into a 24-subunit nanocage, namely, fenobody-55. The affinities of fenobody-55 to g3-p239 were ∼20 times greater than those of g3-p239-Nb55. In addition, the half-life of fenobody-55 was nine times greater than that of g3-p239-Nb55. G3-p239-Nb55 and fenobody-55 can block p239 attachment and Kernow-C1/P6 infection of HepG2/C3A cells. Fenobody-55 can completely neutralize HEV infection in rabbits when it is preincubated with nonenveloped HEV particles. Our study reported a case in which a nanobody neutralized HEV infection by preincubation, identified a (to our knowledge) novel and conserved conformational epitope of HEV, and provided new material for researching HEV biology.


Assuntos
Anticorpos Neutralizantes , Proteínas do Capsídeo , Vírus da Hepatite E , Hepatite E , Anticorpos de Domínio Único , Vírus da Hepatite E/imunologia , Animais , Proteínas do Capsídeo/imunologia , Anticorpos de Domínio Único/imunologia , Humanos , Anticorpos Neutralizantes/imunologia , Hepatite E/imunologia , Camelus/imunologia , Epitopos/imunologia , Células Hep G2 , Reações Cruzadas/imunologia , Genótipo , Especificidade de Anticorpos/imunologia
3.
Proc Natl Acad Sci U S A ; 120(25): e2304445120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307479

RESUMO

Hepatitis E virus (HEV) infection has been shown to activate NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in macrophages, a key mechanism of causing pathological inflammation, but the mechanisms regulating this response remain poorly understood. Here, we report that the mature tRNAome dynamically responds to HEV infection in macrophages. This directs IL-1ß expression, the hallmark of NLRP3 inflammasome activation, at mRNA and protein levels. Conversely, pharmacological inhibition of inflammasome activation abrogates HEV-provoked tRNAome remodeling, revealing a reciprocal interaction between the mature tRNAome and the NLRP3 inflammasome response. Remodeling the tRNAome results in improved decoding of codons directing leucine- and proline synthesis, which are the major amino acid constituents of IL-1ß protein, whereas genetic or functional interference with tRNAome-mediated leucine decoding impairs inflammasome activation. Finally, we demonstrated that the mature tRNAome also actively responds to lipopolysaccharide (a key component of gram-negative bacteria)-triggered inflammasome activation, but the response dynamics and mode of actions are distinct from that induced by HEV infection. Our findings thus reveal the mature tRNAome as a previously unrecognized but essential mediator of host response to pathogens and represent a unique target for developing anti-inflammatory therapeutics.


Assuntos
Vírus da Hepatite E , Hepatite E , Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Leucina , Macrófagos
4.
Proc Natl Acad Sci U S A ; 120(52): e2307423120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109552

RESUMO

Hepatitis E virus (HEV) is a major cause of acute hepatitis worldwide. As the other positive-strand RNA viruses, it is believed to replicate its genome in a membrane-associated replication complex. However, current understanding of the host factors required for productive HEV infection is limited and the site as well as the composition of the HEV replication complex are still poorly characterized. To identify host factors required for HEV RNA replication, we performed a genome-wide CRISPR/Cas9 screen in permissive human cell lines harboring subgenomic HEV replicons allowing for positive and negative selection. Among the validated candidates, Ras-related early endosomal protein Rab5A was selected for further characterization. siRNA-mediated silencing of Rab5A and its effectors APPL1 and EEA1, but not of the late and recycling endosome components Rab7A and Rab11A, respectively, significantly reduced HEV RNA replication. Furthermore, pharmacological inhibition of Rab5A and of dynamin-2, required for the formation of early endosomes, resulted in a dose-dependent decrease of HEV RNA replication. Colocalization studies revealed close proximity of Rab5A, the HEV ORF1 protein, corresponding to the viral replicase, as well as HEV positive- and negative-strand RNA. In conclusion, we successfully exploited CRISPR/Cas9 and selectable subgenomic replicons to identify host factors of a noncytolytic virus. This approach revealed a role for Rab5A and early endosomes in HEV RNA replication, likely by serving as a scaffold for the establishment of functional replication complexes. Our findings yield insights into the HEV life cycle and the virus-host interactions required for productive infection.


Assuntos
Vírus da Hepatite E , Hepatite E , Humanos , Vírus da Hepatite E/genética , Sistemas CRISPR-Cas , Endossomos/genética , Endossomos/metabolismo , Replicação Viral/genética , RNA Viral/genética
5.
Lancet ; 403(10429): 813-823, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38387470

RESUMO

BACKGROUND: Hepatitis E virus (HEV) is a frequently overlooked causative agent of acute hepatitis. Evaluating the long-term durability of hepatitis E vaccine efficacy holds crucial importance. METHODS: This study was an extension to a randomised, double-blind, placebo-controlled, phase-3 clinical trial of the hepatitis E vaccine conducted in Dontai County, Jiangsu, China. Participants were recruited from 11 townships in Dongtai County. In the initial trial, a total of 112 604 healthy adults aged 16-65 years were enrolled, stratified according to age and sex, and randomly assigned in a 1:1 ratio to receive three doses of hepatitis E vaccine or placebo intramuscularly at month 0, month 1, and month 6. A sensitive hepatitis E surveillance system including 205 clinical sentinels, covering the entire study region, was established and maintained for 10 years after vaccination. The primary outcome was the per-protocol efficacy of hepatitis E virus vaccine to prevent confirmed hepatitis E occurring at least 30 days after administration of the third dose. Throughout the study, the participants, site investigators, and laboratory staff remained blinded to the treatment assignments. This study is registered with ClinicalTrials.gov (NCT01014845). FINDINGS: During the 10-year study period from Aug 22, 2007, to Oct 31, 2017, 90 people with hepatitis E were identified; 13 in the vaccine group (0·2 per 10 000 person-years) and 77 in the placebo group (1·4 per 10 000 person-years), corresponding to a vaccine efficacy of 83·1% (95% CI 69·4-91·4) in the modified intention-to-treat analysis and 86·6% (73·0 to 94·1) in the per-protocol analysis. In the subsets of participants assessed for immunogenicity persistence, of those who were seronegative at baseline and received three doses of hepatitis E vaccine, 254 (87·3%) of 291 vaccinees in Qindong at the 8·5-year mark and 1270 (73·0%) of 1740 vaccinees in Anfeng at the 7·5-year mark maintained detectable concentrations of antibodies. INTERPRETATION: Immunisation with this hepatitis E vaccine offers durable protection against hepatitis E for up to 10 years, with vaccine-induced antibodies against HEV persisting for at least 8·5 years. FUNDING: National Natural Science Foundation of China, Fujian Provincial Natural Science Foundation, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and the Fundamental Research Funds for the Central Universities.


Assuntos
Hepatite E , Vacinas contra Hepatite Viral , Adulto , Humanos , Anticorpos Antivirais , Hepatite E/prevenção & controle , Vacinação
6.
Gastroenterology ; 167(4): 750-763.e10, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38582270

RESUMO

BACKGROUND & AIMS: Hepatitis E virus (HEV), primarily genotype 1 (HEV-1), causes approximately 20.1 million infections, 44,000 deaths, and 3000 stillbirths annually. Current evidence indicates that HEV-1 is only transmitted in humans. Here, we evaluated whether Mongolian gerbils can serve as animal models for HEV-1 infection. METHODS: Mongolian gerbils were used for HEV-1 and hepatitis E virus genotype 3 infection experiments. HEV infection parameters, including detection of HEV RNA and HEV antigen, liver function assessment, and histopathology, were evaluated. RESULTS: We adapted a clinical isolate of HEV-1 for Mongolian gerbils by serial passaging in feces of aged male gerbils. The gerbil-adapted strain obtained at passage 3 induced a robust, acute HEV infection, characterized by stable fecal virus shedding, elevated liver enzymes, histopathologic changes in the liver, and seroconversion to anti-HEV. An infectious complementary DNA clone of the adapted virus was generated. HEV-1-infected pregnant gerbils showed a high rate of maternal mortality and vertical transmission. HEV RNA or antigens were detected in the liver, kidney, intestine, placenta, testis, and fetus liver. Liver and placental transcriptomic analyses indicated activation of host immunity. Tacrolimus prolonged HEV-1 infection, whereas ribavirin cleared infection. The protective efficacy of a licensed HEV vaccine was validated using this model. CONCLUSIONS: HEV-1 efficiently infected Mongolian gerbils. This HEV-1 infection model will be valuable for investigating hepatitis E immunopathogenesis and evaluating vaccines and antivirals against HEV.


Assuntos
Modelos Animais de Doenças , Genótipo , Gerbillinae , Vírus da Hepatite E , Hepatite E , Imunocompetência , Fígado , RNA Viral , Animais , Vírus da Hepatite E/genética , Vírus da Hepatite E/patogenicidade , Vírus da Hepatite E/imunologia , Hepatite E/virologia , Hepatite E/imunologia , Hepatite E/transmissão , Masculino , Feminino , RNA Viral/isolamento & purificação , RNA Viral/análise , Fígado/virologia , Fígado/patologia , Fezes/virologia , Gravidez , Transmissão Vertical de Doenças Infecciosas , Antivirais/uso terapêutico , Antivirais/farmacologia , Eliminação de Partículas Virais , Ribavirina/uso terapêutico , Ribavirina/farmacologia , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/imunologia
7.
J Virol ; 98(7): e0058024, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38856640

RESUMO

Hepatitis E virus (HEV) poses a global threat, which currently remains understudied in terms of host interactions. Epidermal growth factor receptor (EGFR) plays multifaceted roles in viral pathogenesis, impacting host-cell entry, viral replication, and host-defense modulation. On the one hand, EGFR signaling emerged as a major driver in innate immunity; on the other hand, a crosstalk between HEV and EGFR requires deeper analysis. We therefore aimed to dissect the receptor's involvement in the HEV life cycle. In persistently HEV-infected cells, the EGFR amount is decreased alongside with enhanced receptor internalization. As compared with the control ligand-induced EGFR, activation revealed an early receptor internalization and degradation in HEV-replicating cells, resulting in a notable EGFR signaling delay. Interestingly, inhibition or silencing of EGFR increased viral replication, extracellular and intracellular viral transcripts, and released infectious particles. The pro-viral impact of EGFR inhibition was attributed to (i) impaired expression of interferon-stimulated genes, (ii) activation of the autophagosomal system, (iii) virus-induced inhibition of lysosomal acidification, and (iv) a decrease of the cellular cholesterol level. IMPORTANCE: This study identifies epidermal growth factor receptor (EGFR) as a novel host factor affecting hepatitis E virus (HEV): EGFR downregulation promotes viral replication, release, and evasion from the innate immune response. The discovery that EGFR inhibition favors viral spread is particularly concerning for HEV patients undergoing EGFR inhibitor treatment.


Assuntos
Receptores ErbB , Vírus da Hepatite E , Hepatite E , Transdução de Sinais , Replicação Viral , Vírus da Hepatite E/fisiologia , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Humanos , Hepatite E/virologia , Hepatite E/metabolismo , Internalização do Vírus , Imunidade Inata , Interações Hospedeiro-Patógeno , Linhagem Celular
8.
J Virol ; 98(7): e0084624, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38899900

RESUMO

Chronic hepatitis E mostly occurs in organ transplant recipients and can lead to rapid liver fibrosis and cirrhosis. Previous studies found that the development of chronic hepatitis E virus (HEV) infection is linked to the type of immunosuppressant used. Animal models are crucial for the study of pathogenesis of chronic hepatitis E. We previously established a stable chronic HEV infection rabbit model using cyclosporine A (CsA), a calcineurin inhibitor (CNI)-based immunosuppressant. However, the immunosuppression strategy and timing may be optimized, and how different types of immunosuppressants affect the establishment of chronic HEV infection in this model is still unknown. Here, we showed that chronic HEV infection can be established in 100% of rabbits when CsA treatment was started at HEV challenge or even 4 weeks after. Tacrolimus or prednisolone treatment alone also contributed to chronic HEV infection, resulting in 100% and 77.8% chronicity rates, respectively, while mycophenolate mofetil (MMF) only led to a 28.6% chronicity rate. Chronic HEV infection was accompanied with a persistent activation of innate immune response evidenced by transcriptome analysis. The suppressed adaptive immune response evidenced by low expression of genes related to cytotoxicity (like perforin and FasL) and low anti-HEV seroconversion rates may play important roles in causing chronic HEV infection. By analyzing HEV antigen concentrations with different infection outcomes, we also found that HEV antigen levels could indicate chronic HEV infection development. This study optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits and highlighted the potential association between the development of chronic HEV infection and immunosuppressants.IMPORTANCEOrgan transplant recipients are at high risk of chronic hepatitis E and generally receive a CNI-based immunosuppression regimen containing CNI (tacrolimus or CsA), MMF, and/or corticosteroids. Previously, we established stable chronic HEV infection in a rabbit model by using CsA before HEV challenge. In this study, we further optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits. Chronic HEV infection can also be established when CsA treatment was started at the same time or even 4 weeks after HEV challenge, clearly indicating the risk of progression to chronic infection under these circumstances and the necessity of HEV screening for both the recipient and the donor preoperatively. CsA, tacrolimus, or prednisolone instead of MMF significantly contributed to chronic HEV infection. HEV antigen in acute infection phase indicates the development of chronic infection. Our results have important implications for understanding the potential association between chronic HEV infection and immunosuppressants.


Assuntos
Ciclosporina , Modelos Animais de Doenças , Vírus da Hepatite E , Hepatite E , Terapia de Imunossupressão , Imunossupressores , Tacrolimo , Animais , Coelhos , Hepatite E/imunologia , Hepatite E/virologia , Hepatite E/tratamento farmacológico , Vírus da Hepatite E/imunologia , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Prednisolona/uso terapêutico , Prednisolona/farmacologia , Masculino , Imunidade Inata/efeitos dos fármacos , Ácido Micofenólico/farmacologia , Hepatite Crônica/tratamento farmacológico , Hepatite Crônica/imunologia , Hepatite Crônica/virologia , Doença Crônica , Inibidores de Calcineurina/farmacologia , Inibidores de Calcineurina/uso terapêutico
9.
J Virol ; 98(4): e0164923, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38548704

RESUMO

Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide, responsible for approximately 20 million infections annually. Among the three open reading frames (ORFs) of the HEV genome, the ORF3 protein is involved in virus release. However, the host proteins involved in HEV release need to be clarified. In this study, a host protein, thioredoxin domain-containing protein 5 (TXNDC5), interacted with the non-palmitoylated ORF3 protein by co-immunoprecipitation analysis. We determined that the overexpression or knockdown of TXNDC5 positively regulated HEV release from the host cells. The 17FCL19 mutation of the ORF3 protein lost the ability to interact with TXNDC5. The releasing amounts of HEV with the ORF3 mutation (FCL17-19SSP) were decreased compared with wild-type HEV. The overexpression of TXNDC5 can stabilize and increase ORF3 protein amounts, but not the TXNDC5 mutant with amino acids 1-88 deletion. Meanwhile, we determined that the function of TXNDC5 on the stabilization of ORF3 protein is independent of the Trx-like domains. Knockdown of TXNDC5 could lead to the degradation of ORF3 protein by the endoplasmic reticulum (ER)-associated protein degradation-proteasome system. However, the ORF3 protein cannot be degraded in the knockout-TXNDC5 stable cells, suggesting that it may hijack other proteins for its stabilization. Subsequently, we found that the other members of protein disulfide isomerase (PDI), including PDIA1, PDIA3, PDIA4, and PDIA6, can increase ORF3 protein amounts, and PDIA3 and PDIA6 interact with ORF3 protein. Collectively, our study suggested that HEV ORF3 protein can utilize TXNDC5 for its stability in ER to facilitate viral release. IMPORTANCE: Hepatitis E virus (HEV) infection is the leading cause of acute viral hepatitis worldwide. After the synthesis and modification in the cells, the mature ORF3 protein is essential for HEV release. However, the host protein involved in this process has yet to be determined. Here, we reported a novel host protein, thioredoxin domain-containing protein 5 (TXNDC5), as a chaperone, contributing to HEV release by facilitating ORF3 protein stability in the endoplasmic reticulum through interacting with non-palmitoylated ORF3 protein. However, we also found that in the knockout-TXNDC5 stable cell lines, the HEV ORF3 protein may hijack other proteins for its stabilization. For the first time, our study demonstrated the involvement of TXNDC5 in viral particle release. These findings provide some new insights into the process of the HEV life cycle, the interaction between HEV and host factors, and a new direction for antiviral design.


Assuntos
Vírus da Hepatite E , Hepatite E , Hepatite Viral Humana , Humanos , Vírus da Hepatite E/genética , Fatores Imunológicos , Isomerases de Dissulfetos de Proteínas/genética , Tiorredoxinas/genética , Vírion/metabolismo
10.
J Virol ; 98(6): e0029524, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38712945

RESUMO

Hepatitis E virus is a single-strand, positive-sense RNA virus that can lead to chronic infection in immunocompromised patients. Virus-host recombinant variants (VHRVs) have been described in such patients. These variants integrate part of human genes into the polyproline-rich region that could introduce new post-translational modifications (PTMs), such as ubiquitination. The aim of this study was to characterize the replication capacity of different VHRVs, namely, RNF19A, ZNF787, KIF1B, EEF1A1, RNA18, RPS17, and RPL6. We used a plasmid encoding the Kernow strain, in which the fragment encoding the S17 insertion was deleted (Kernow p6 delS17) or replaced by fragments encoding the different insertions. The HEV RNA concentrations in the supernatants and the HepG2/C3A cell lysates were determined via RT-qPCR. The capsid protein ORF2 was immunostained. The effect of ribavirin was also assessed. The HEV RNA concentrations in the supernatants and the cell lysates were higher for the variants harboring the RNF19A, ZNF787, KIF1B, RPS17, and EEF1A1 insertions than for the Kernow p6 del S17, while it was not with RNA18 or RPL6 fragments. The number of ORF2 foci was higher for RNF19A, ZNF787, KIF1B, and RPS17 than for Kernow p6 del S17. VHRVs with replicative advantages were less sensitive to the antiviral effect of ribavirin. No difference in PTMs was found between VHRVs with a replicative advantage and those without. In conclusion, our study showed that insertions did not systematically confer a replicative advantage in vitro. Further studies are needed to determine the mechanisms underlying the differences in replicative capacity. IMPORTANCE: Hepatitis E virus (HEV) is a major cause of viral hepatitis. HEV can lead to chronic infection in immunocompromised patients. Ribavirin treatment is currently used to treat such chronic infections. Recently, seven virus-host recombinant viruses were characterized in immunocompromised patients. These viruses have incorporated a portion of a human gene fragment into their genome. We studied the consequences of these insertions on the replication capacity. We found that these inserted fragments could enhance virus replication for five of the seven recombinant variants. We also showed that the recombinant variants with replicative advantages were less sensitive to ribavirin in vitro. Finally, we found that the mechanisms leading to such a replicative advantage do not seem to rely on the post-translational modifications introduced by the human gene fragment that could have modified the function of the viral protein. The mechanisms involved in improving the replication of such recombinant viruses remain to be explored.


Assuntos
Vírus da Hepatite E , Interações entre Hospedeiro e Microrganismos , Recombinação Genética , Humanos , Antivirais/farmacologia , Células Hep G2 , Hepatite E/genética , Hepatite E/virologia , Vírus da Hepatite E/classificação , Vírus da Hepatite E/efeitos dos fármacos , Vírus da Hepatite E/genética , Vírus da Hepatite E/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Ribavirina/farmacologia , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Interações entre Hospedeiro e Microrganismos/genética , Ubiquitinação/genética , Plasmídeos/genética
11.
PLoS Pathog ; 19(9): e1011664, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37703304

RESUMO

Hepatitis E virus (HEV) causes self-limited acute hepatitis in immunocompetent individuals and can establish chronic infection in solid organ transplant recipients taking immunosuppressive drugs. A well characterized small animal model is needed to understand HEV pathogenesis. In this study, we established a robust model to study acute and persistent HEV infection using Mongolian gerbils (Meriones unguiculatus) with or without immunosuppression. Gerbils were implanted subcutaneously with continuous release tacrolimus pellet to induce immunosuppression. Gerbils with or without tacrolimus treatment were inoculated with HEV intraperitoneally. Viremia, fecal virus shedding, serum antibody and ALT levels, liver histopathological lesions, hepatocyte apoptosis, and liver macrophage distribution were assessed. Mild to moderate self-limited hepatitis and IgM and IgG antibody responses against HEV ORF2 were observed in immunocompetent gerbils. Levels of HEV-specific IgM responses were higher and lasted longer in immunocompetent gerbils with higher peak viremia. Persistent viremia and fecal virus shedding with either weak, or absent HEV antibody levels were seen in immunosuppressed gerbils. Following HEV infection, serum ALT levels were increased, with lower and delayed peaks observed in immunosuppressed compared to immunocompetent gerbils. In immunocompetent gerbils, foci of apoptotic hepatocytes were detected that were distributed with inflammatory infiltrates containing CD68+ macrophages. However, these foci were absent in immunosuppressed gerbils. The immunosuppressed gerbils showed no inflammation with no increase in CD68+ macrophages despite high virus replication in liver. Our findings suggest adaptive immune responses are necessary for inducing hepatocyte apoptosis, CD68+ macrophage recruitment, and inflammatory cell infiltration in response to HEV infection. Our studies show that Mongolian gerbils provide a promising model to study pathogenesis during acute and persistent HEV infection.


Assuntos
Vírus da Hepatite E , Hepatite E , Animais , Humanos , Vírus da Hepatite E/genética , Gerbillinae , Tacrolimo , Viremia , Genótipo
12.
PLoS Pathog ; 19(6): e1011434, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37276230

RESUMO

Hepatitis E virus (HEV) is one of the main pathogenic agents of acute hepatitis in the world. The mechanism of HEV replication, especially host factors governing HEV replication is still not clear. Here, using HEV ORF1 trans-complementation cell culture system and HEV replicon system, combining with stable isotope labelling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we aimed to identify the host factors regulating HEV replication. We identified a diversity of host factors associated with HEV ORF1 protein, which were putatively responsible for viral genomic RNA replication, in these two cell culture models. Of note, the protein arginine methyltransferase 5 (PRMT5)/WDR77 complex was identified in both cell culture models as the top hit. Furthermore, we demonstrated that PRMT5 and WDR77 can specifically inhibit HEV replication, but not other viruses such as HCV or SARS-CoV-2, and this inhibition is conserved among different HEV strains and genotypes. Mechanistically, PRMT5/WDR77 can catalyse methylation of ORF1 on its R458, impairing its replicase activity, and virus bearing R458K mutation in ORF1 relieves the restriction of PRMT5/WDR77 accordingly. Taken together, our study promotes more comprehensive understanding of viral infections but also provides therapeutic targets for intervention.


Assuntos
Vírus da Hepatite E , Hepatite E , Humanos , COVID-19 , Vírus da Hepatite E/genética , Proteína-Arginina N-Metiltransferases/genética , SARS-CoV-2 , Replicação Viral/fisiologia
13.
FASEB J ; 38(5): e23500, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38441537

RESUMO

Hepatitis E virus (HEV) persists in the male genital tract that associates with infertility. However, the presence of HEV in the female genital tract is unreported. Vaginal secretions, cervical smears, and cervix uteri were collected to explore the presence of HEV in the female genital tract. HEV RNA and/or antigens were detected in the vaginal secretions, cervical smears, and the cervix uteri of women. The infectivity of HEV excreted into vaginal secretions was further validated in vitro. In addition, HEV replicates in the female genital tract were identified in HEV-infected animal models by vaginal injection or vaginal mucosal infection to imitate sexual transmission. Serious genital tract damage and inflammatory responses with significantly elevated mucosal innate immunity were observed in women or animals with HEV vaginal infection. Results demonstrated HEV replicates in the female genital tract and causes serious histopathological damage and inflammatory responses.


Assuntos
Líquidos Corporais , Hepatite A , Vírus da Hepatite E , Hepatite E , Animais , Feminino , Masculino , Humanos , Vagina
14.
Cell Mol Life Sci ; 81(1): 335, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39117755

RESUMO

Although the Hepatitis E virus (HEV) is an emerging global health burden, little is known about its interaction with the host cell. HEV genome encodes three proteins including the ORF2 capsid protein that is produced in different forms, the ORF2i protein which is the structural component of viral particles, and the ORF2g/c proteins which are massively secreted but are not associated with infectious material. We recently demonstrated that the endocytic recycling compartment (ERC) is hijacked by HEV to serve as a viral factory. However, host determinants involved in the subcellular shuttling of viral proteins to viral factories are unknown. Here, we demonstrate that the AP-1 adaptor complex plays a pivotal role in the targeting of ORF2i protein to viral factories. This complex belongs to the family of adaptor proteins that are involved in vesicular transport between the trans-Golgi network and early/recycling endosomes. An interplay between the AP-1 complex and viral protein(s) has been described for several viral lifecycles. In the present study, we demonstrated that the ORF2i protein colocalizes and interacts with the AP-1 adaptor complex in HEV-producing or infected cells. We showed that silencing or drug-inhibition of the AP-1 complex prevents ORF2i protein localization in viral factories and reduces viral production in hepatocytes. Modeling of the ORF2i/AP-1 complex also revealed that the S domain of ORF2i likely interacts with the σ1 subunit of AP-1 complex. Hence, our study identified for the first time a host factor involved in addressing HEV proteins (i.e. ORF2i protein) to viral factories.


Assuntos
Complexo 1 de Proteínas Adaptadoras , Proteínas do Capsídeo , Vírus da Hepatite E , Vírus da Hepatite E/metabolismo , Vírus da Hepatite E/fisiologia , Vírus da Hepatite E/genética , Humanos , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Transporte Proteico , Proteínas Virais/metabolismo , Proteínas Virais/genética , Montagem de Vírus , Hepatite E/metabolismo , Hepatite E/virologia
15.
Proc Natl Acad Sci U S A ; 119(34): e2207503119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969750

RESUMO

Hepatitis E virus (HEV) infection in pregnant women has a high incidence of developing fulminant hepatic failure (FHF) with significant mortality. Multiple amino acid changes in genotype 1 HEV (HEV-1) are reportedly linked to FHF clinical cases, but experimental confirmation of the roles of these changes in FHF is lacking. By utilizing the HEV-1 indicator replicon and infectious clone, we generated 11 HEV-1 single mutants, each with an individual mutation, and investigated the effect of these mutations on HEV replication and infection in human liver cells. We demonstrated that most of the mutations actually impaired HEV-1 replication efficiency compared with the wild type (WT), likely due to altered physicochemical properties and structural conformations. However, two mutations, A317T and V1120I, significantly increased HEV-1 replication. Notably, these two mutations simultaneously occurred in 100% of 21 HEV-1 variants from patients with FHF in Bangladesh. We further created an HEV-1 A317T/V1120I double mutant and found that it greatly enhanced HEV replication, which may explain the rapid viral replication and severe disease. Furthermore, we tested the effect of these FHF-associated mutations on genotype 3 HEV (HEV-3) replication and found that all the mutants had a reduced level of replication ability and infectivity, which is not unexpected due to distinct infection patterns between HEV-1 and HEV-3. Additionally, we demonstrated that these FHF-associated mutations do not appear to alter their sensitivity to ribavirin (RBV), suggesting that ribavirin remains a viable option for antiviral therapy for patients with FHF. The results have important implications for understanding the mechanism of HEV-1-associated FHF.


Assuntos
Vírus da Hepatite E , Hepatite E , Falência Hepática Aguda , Feminino , Genótipo , Hepatite E/genética , Vírus da Hepatite E/genética , Humanos , Falência Hepática Aguda/virologia , Mutação , Gravidez , Ribavirina , Replicação Viral
16.
Proc Natl Acad Sci U S A ; 119(24): e2201862119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671427

RESUMO

Hepatitis E virus (HEV) is an important but understudied zoonotic virus causing both acute and chronic viral hepatitis. A proportion of HEV-infected individuals also developed neurological diseases such as Guillain-Barré syndrome, neuralgic amyotrophy, encephalitis, and myelitis, although the mechanism remains unknown. In this study, by using an in vitro blood-brain barrier (BBB) model, we first investigated whether HEV can cross the BBB and whether the quasi-enveloped HEV virions are more permissible to the BBB than the nonenveloped virions. We found that both quasi-enveloped and nonenveloped HEVs can similarly cross the BBB and that addition of proinflammatory cytokine tumor necrosis factor alpha (TNF-α) has no significant effect on the ability of HEV to cross the BBB in vitro. To explore the possible mechanism of HEV entry across the BBB, we tested the susceptibility of human brain microvascular endothelial cells lining the BBB to HEV infection and showed that brain microvascular endothelial cells support productive HEV infection. To further confirm the in vitro observation, we conducted an experimental HEV infection study in pigs and showed that both quasi-enveloped and nonenveloped HEVs invade the central nervous system (CNS) in pigs, as HEV RNA was detected in the brain and spinal cord of infected pigs. The HEV-infected pigs with detectable viral RNA in CNS tissues had histological lesions in brain and spinal cord and significantly higher levels of proinflammatory cytokines TNF-α and interleukin 18 than the HEV-infected pigs without detectable viral RNA in CNS tissues. The findings suggest a potential mechanism of HEV-associated neuroinvasion.


Assuntos
Barreira Hematoencefálica , Sistema Nervoso Central , Vírus da Hepatite E , Hepatite E , Animais , Barreira Hematoencefálica/virologia , Sistema Nervoso Central/virologia , Células Endoteliais/virologia , Hepatite E/virologia , Vírus da Hepatite E/patogenicidade , Humanos , RNA Viral/genética , Suínos , Fator de Necrose Tumoral alfa/metabolismo
17.
Gut ; 73(10): 1702-1711, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38621922

RESUMO

OBJECTIVES: In high-income countries hepatitis E virus (HEV) is an uncommonly diagnosed porcine-derived zoonoses. After identifying disproportionate chronic HEV infections in persons with cystic fibrosis (pwCF) postlung transplant, we sought to understand its epidemiology and potential drivers. DESIGN: All pwCF post-transplant attending our regional CF centre were screened for HEV. HEV prevalence was compared against non-transplanted pwCF and with all persons screened for suspected HEV infection from 2016 to 2022 in Alberta, Canada. Those with chronic HEV infection underwent genomic sequencing and phylogenetic analysis. Owing to their swine derivation, independently sourced pancreatic enzyme replacement therapy (PERT) capsules were screened for HEV. RESULTS: HEV seropositivity was similar between transplanted and non-transplanted pwCF (6/29 (21%) vs 16/83 (19%); p=0.89). Relative to all other Albertans investigated for HEV as a cause of hepatitis (n=115/1079, 10.7%), pwCF had a twofold higher seropositivity relative risk and this was four times higher than the Canadian average. Only three chronic HEV infection cases were identified in all of Alberta, all in CF lung transplant recipients (n=3/29, 10.3%). Phylogenetics confirmed cases were unrelated porcine-derived HEV genotype 3a. Ninety-one per cent of pwCF were taking PERT (median 8760 capsules/person/year). HEV RNA was detected by RT-qPCR in 44% (47/107) of PERT capsules, and sequences clustered with chronic HEV cases. CONCLUSION: PwCF had disproportionate rates of HEV seropositivity, regardless of transplant status. Chronic HEV infection was evident only in CF transplant recipients. HEV may represent a significant risk for pwCF, particularly post-transplant. Studies to assess HEV incidence and prevalence in pwCF, and potential role of PERT are required.


Assuntos
Fibrose Cística , Terapia de Reposição de Enzimas , Vírus da Hepatite E , Hepatite E , Transplante de Pulmão , Fibrose Cística/cirurgia , Fibrose Cística/complicações , Transplante de Pulmão/efeitos adversos , Humanos , Hepatite E/epidemiologia , Masculino , Feminino , Animais , Suínos , Adulto , Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , Alberta/epidemiologia , Filogenia , Adulto Jovem , Prevalência , Doença Crônica , Pessoa de Meia-Idade , Adolescente , Transplantados/estatística & dados numéricos , Genótipo
18.
Emerg Infect Dis ; 30(5): 934-940, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666600

RESUMO

To determine the kinetics of hepatitis E virus (HEV) in asymptomatic persons and to evaluate viral load doubling time and half-life, we retrospectively tested samples retained from 32 HEV RNA-positive asymptomatic blood donors in Germany. Close-meshed monitoring of viral load and seroconversion in intervals of ≈4 days provided more information about the kinetics of asymptomatic HEV infections. We determined that a typical median infection began with PCR-detectable viremia at 36 days and a maximum viral load of 2.0 × 104 IU/mL. Viremia doubled in 2.4 days and had a half-life of 1.6 days. HEV IgM started to rise on about day 33 and peaked on day 36; IgG started to rise on about day 32 and peaked on day 53. Although HEV IgG titers remained stable, IgM titers became undetectable in 40% of donors. Knowledge of the dynamics of HEV viremia is useful for assessing the risk for transfusion-transmitted hepatitis E.


Assuntos
Doadores de Sangue , Vírus da Hepatite E , Hepatite E , RNA Viral , Carga Viral , Viremia , Humanos , Hepatite E/epidemiologia , Hepatite E/virologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/imunologia , Masculino , Adulto , Imunoglobulina M/sangue , Feminino , Imunoglobulina G/sangue , Cinética , Pessoa de Meia-Idade , Infecções Assintomáticas/epidemiologia , Estudos Retrospectivos , Anticorpos Anti-Hepatite/sangue , Alemanha/epidemiologia , Adulto Jovem
19.
Am J Transplant ; 24(3): 491-497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072120

RESUMO

Immunocompromised patients are at risk of chronic hepatitis E (HEV) infection. Recurrent T cell and borderline rejections in a pediatric patient with high HEV copy numbers led us to study HEV infection within renal transplants. To investigate the frequency of renal HEV infection in transplanted patients, 15 samples from patients with contemporaneous diagnoses of HEV infection were identified at our center. Ten samples had sufficient residual paraffin tissue for immunofluorescence (IF) and RNA-fluorescence-in-situ-hybridization (RNA-FISH). The biopsy of the pediatric index patient was additionally sufficient for tissue polymerase chain reaction and electron microscopy. HEV RNA was detected in paraffin tissue of the index patient by tissue polymerase chain reaction. Subsequently, HEV infection was localized in tubular epithelial cells by IF, RNA-FISH, and electron microscopy. One additional biopsy from an adult was positive for HEV by RNA-FISH and IF. Focal IF positivity for HEV peptide was observed in 7 additional allografts. Ribavirin therapy was not successful in the pediatric index patient; after relapse, ribavirin is still administered. In the second patient, successful elimination of HEV was achieved after short-course ribavirin therapy. HEV infection is an important differential diagnosis for T cell rejection within transplanted kidneys. Immunostaining of HEV peptide does not necessarily prove acute infection. RNA-FISH seems to be a reliable method to localize HEV.


Assuntos
Vírus da Hepatite E , Hepatite E , Adulto , Humanos , Criança , Hepatite E/diagnóstico , Hepatite E/epidemiologia , Hepatite E/etiologia , Vírus da Hepatite E/genética , Ribavirina/efeitos adversos , Antivirais/uso terapêutico , Parafina/uso terapêutico , RNA Viral/genética , RNA Viral/análise , Rim , Peptídeos
20.
J Hepatol ; 80(4): 564-575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154741

RESUMO

BACKGROUND & AIMS: CD4 T cells shape the neutralizing antibody (nAb) response and facilitate viral clearance in various infections. Knowledge of their phenotype, specificity and dynamics in hepatitis E virus (HEV) infection is limited. HEV is enterically transmitted as a naked virus (nHEV) but acquires a host-derived quasi-envelope (eHEV) when budding from cells. While nHEV is composed of the open reading frame (ORF)-2-derived capsid, eHEV particles also contain ORF3-derived proteins. We aimed to longitudinally characterize the HEV-specific CD4 T cells targeting ORF1, 2 and 3 and antibodies against nHEV or eHEV in immunocompetent individuals with acute and resolved HEV infection. METHODS: HEV-specific CD4 T cells were analyzed by intracellular cytokine staining after stimulation with in silico-predicted ORF1- and ORF2-derived epitopes and overlapping peptides spanning the ORF3 region. Ex vivo multiparametric characterization of capsid-specific CD4 T cells was performed using customized MHC class II tetramers. Total and neutralizing antibodies targeting nHEV or eHEV particles were determined. RESULTS: HEV-specific CD4 T-cell frequencies and antibody titers are highest in individuals with acute infection and decline in a time-dependent process with an antigen hierarchy. HEV-specific CD4 T cells strongly target the ORF2-derived capsid and ORF3-specific CD4 T cells are hardly detectable. NAbs targeting nHEV are found in high titers while eHEV particles are less efficiently neutralized. Capsid-specific CD4 T cells undergo memory formation and stepwise contraction, accompanied by dynamic phenotypical and transcriptional changes over time. CONCLUSION: The viral capsid is the main target of HEV-specific CD4 T cells and antibodies in acute-resolving infection, correlating with efficient neutralization of nHEV. Capsid-specific immunity rapidly emerges followed by a stepwise contraction several years after infection. IMPACT AND IMPLICATIONS: The interplay of CD4 T cells and neutralizing antibody responses is critical in the host defense against viral infections, yet little is known about their characteristics in hepatitis E virus (HEV) infection. We conducted a longitudinal study of immunocompetent individuals with acute and resolved HEV infection to understand the characteristics of HEV-specific CD4 T cells and neutralizing antibodies targeting different viral proteins and particles. We found that HEV-specific CD4 T cells mainly target capsid-derived epitopes. This correlates with efficient neutralization of naked virions while quasi-enveloped particles are less susceptible to neutralization. As individuals with pre-existing liver disease and immunocompromised individuals are at risk for fulminant or chronic courses of HEV infection, these individuals might benefit from the development of vaccination strategies which require a detailed knowledge of the composition and longevity of HEV-specific CD4 T-cell and antibody immunity.


Assuntos
Vírus da Hepatite E , Hepatite E , Humanos , Linfócitos T CD4-Positivos , Capsídeo/metabolismo , Estudos Longitudinais , Vírus da Hepatite E/genética , Proteínas do Capsídeo/metabolismo , Epitopos , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA