Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.094
Filtrar
Mais filtros

Coleção Fiocruz
Intervalo de ano de publicação
1.
Cell ; 186(4): 764-785.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803604

RESUMO

The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.


Assuntos
Plexo Corióideo , Hidrocefalia , Humanos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/imunologia , Imunidade Inata , Síndrome da Liberação de Citocina/patologia
2.
Cell ; 186(26): 5719-5738.e28, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38056463

RESUMO

Tumor-associated hydrocephalus (TAH) is a common and lethal complication of brain metastases. Although other factors beyond mechanical obstructions have been suggested, the exact mechanisms are unknown. Using single-nucleus RNA sequencing and spatial transcriptomics, we find that a distinct population of mast cells locate in the choroid plexus and dramatically increase during TAH. Genetic fate tracing and intracranial mast-cell-specific tryptase knockout showed that choroid plexus mast cells (CPMCs) disrupt cilia of choroid plexus epithelia via the tryptase-PAR2-FoxJ1 pathway and consequently increase cerebrospinal fluid production. Mast cells are also found in the human choroid plexus. Levels of tryptase in cerebrospinal fluid are closely associated with clinical severity of TAH. BMS-262084, an inhibitor of tryptase, can cross the blood-brain barrier, inhibit TAH in vivo, and alleviate mast-cell-induced damage of epithelial cilia in a human pluripotent stem-cell-derived choroid plexus organoid model. Collectively, we uncover the function of CPMCs and provide an attractive therapy for TAH.


Assuntos
Neoplasias Encefálicas , Plexo Corióideo , Hidrocefalia , Mastócitos , Humanos , Neoplasias Encefálicas/secundário , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Mastócitos/metabolismo , Mastócitos/patologia , Triptases/líquido cefalorraquidiano , Metástase Neoplásica/patologia
3.
PLoS Biol ; 22(5): e3002596, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718086

RESUMO

Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.


Assuntos
Transtorno do Espectro Autista , Cílios , Epêndima , Camundongos Knockout , Fenótipo , Animais , Masculino , Camundongos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Cílios/metabolismo , Modelos Animais de Doenças , Epêndima/metabolismo , Hipocampo/metabolismo , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Hidrocefalia/fisiopatologia , Katanina/metabolismo , Katanina/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Sinapses/metabolismo , Transcriptoma/genética
4.
Proc Natl Acad Sci U S A ; 121(27): e2314702121, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38916997

RESUMO

Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.


Assuntos
Cílios , Hidrocefalia , Microtúbulos , Animais , Feminino , Humanos , Masculino , Camundongos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/metabolismo , Cílios/metabolismo , Cílios/patologia , Epêndima/metabolismo , Epêndima/patologia , Hidrocefalia/genética , Hidrocefalia/patologia , Hidrocefalia/metabolismo , Katanina/metabolismo , Katanina/genética , Microtúbulos/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Células Piramidais/patologia
5.
PLoS Biol ; 21(2): e3001993, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757939

RESUMO

The genetic basis of congenital hydrocephalus is only partially understood. A new study in PLOS Biology reports a potential gain-of-function pathological mechanism of congenital hydrocephalus in mouse embryonic stem cells that involves Wnt-ß-catenin signaling pathway regulation.


Assuntos
Mutação com Ganho de Função , Hidrocefalia , Animais , Camundongos , Hidrocefalia/genética , Diferenciação Celular/genética , Mutação/genética , Via de Sinalização Wnt/genética
6.
PLoS Biol ; 21(3): e3002008, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862758

RESUMO

Idiopathic scoliosis (IS) is the most common spinal deformity diagnosed in childhood or early adolescence, while the underlying pathogenesis of this serious condition remains largely unknown. Here, we report zebrafish ccdc57 mutants exhibiting scoliosis during late development, similar to that observed in human adolescent idiopathic scoliosis (AIS). Zebrafish ccdc57 mutants developed hydrocephalus due to cerebrospinal fluid (CSF) flow defects caused by uncoordinated cilia beating in ependymal cells. Mechanistically, Ccdc57 localizes to ciliary basal bodies and controls the planar polarity of ependymal cells through regulating the organization of microtubule networks and proper positioning of basal bodies. Interestingly, ependymal cell polarity defects were first observed in ccdc57 mutants at approximately 17 days postfertilization, the same time when scoliosis became apparent and prior to multiciliated ependymal cell maturation. We further showed that mutant spinal cord exhibited altered expression pattern of the Urotensin neuropeptides, in consistent with the curvature of the spine. Strikingly, human IS patients also displayed abnormal Urotensin signaling in paraspinal muscles. Altogether, our data suggest that ependymal polarity defects are one of the earliest sign of scoliosis in zebrafish and disclose the essential and conserved roles of Urotensin signaling during scoliosis progression.


Assuntos
Hidrocefalia , Escoliose , Urotensinas , Animais , Cílios/metabolismo , Epêndima/metabolismo , Epêndima/patologia , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Escoliose/genética , Escoliose/metabolismo , Escoliose/patologia , Urotensinas/metabolismo , Peixe-Zebra
7.
PLoS Biol ; 21(2): e3001947, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757932

RESUMO

Congenital hydrocephalus (CH) is a common neurological disorder affecting many newborns. Imbalanced neurogenesis is a major cause of CH. Multiple CH-associated mutations are within the RNA-binding domain of Trim71, a conserved, stem cell-specific RNA-binding protein. How these mutations alter stem cell fate is unclear. Here, we show that the CH-associated mutations R595H and R783H in Trim71 accelerate differentiation and enhance neural lineage commitment in mouse embryonic stem cells (mESCs), and reduce binding to mRNAs targeted by wild-type Trim71, consistent with previous reports. Unexpectedly, however, each mutant binds an ectopic and distinct repertoire of target mRNAs. R595H-Trim71, but not R783H-Trim71 nor wild-type Trim71, binds the mRNA encoding ß-catenin and represses its translation. Increasing ß-catenin by overexpression or treatment with a Wnt agonist specifically restores differentiation of R595H-Trim71 mESCs. These results suggest that Trim71 mutations give rise to unique gain-of-function pathological mechanisms in CH. Further, our studies suggest that disruption of the Wnt/ß-catenin signaling pathway can be used to stratify disease etiology and develop precision medicine approaches for CH.


Assuntos
Hidrocefalia , beta Catenina , Animais , Camundongos , beta Catenina/genética , Mutação com Ganho de Função , Diferenciação Celular/genética , Mutação/genética , Hidrocefalia/genética , Via de Sinalização Wnt/genética
8.
Proc Natl Acad Sci U S A ; 120(51): e2300681120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38100419

RESUMO

Idiopathic normal pressure hydrocephalus (iNPH) is an enigmatic neurological disorder that develops after age 60 and is characterized by gait difficulty, dementia, and incontinence. Recently, we reported that heterozygous CWH43 deletions may cause iNPH. Here, we identify mutations affecting nine additional genes (AK9, RXFP2, PRKD1, HAVCR1, OTOG, MYO7A, NOTCH1, SPG11, and MYH13) that are statistically enriched among iNPH patients. The encoded proteins are all highly expressed in choroid plexus and ependymal cells, and most have been associated with cilia. Damaging mutations in AK9, which encodes an adenylate kinase, were detected in 9.6% of iNPH patients. Mice homozygous for an iNPH-associated AK9 mutation displayed normal cilia structure and number, but decreased cilia motility and beat frequency, communicating hydrocephalus, and balance impairment. AK9+/- mice displayed normal brain development and behavior until early adulthood, but subsequently developed communicating hydrocephalus. Together, our findings suggest that heterozygous mutations that impair ventricular epithelial function may contribute to iNPH.


Assuntos
Hidrocefalia de Pressão Normal , Hidrocefalia , Humanos , Camundongos , Animais , Adulto , Pessoa de Meia-Idade , Hidrocefalia de Pressão Normal/genética , Hidrocefalia de Pressão Normal/complicações , Hidrocefalia/genética , Encéfalo , Plexo Corióideo , Mutação , Proteínas
9.
EMBO Rep ; 24(2): e55843, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36573342

RESUMO

Congenital hydrocephalus (CH) is a major cause of childhood morbidity. Mono-allelic mutations in Trim71, a conserved stem-cell-specific RNA-binding protein, cause CH; however, the molecular basis for pathogenesis mediated by these mutations remains unknown. Here, using mouse embryonic stem cells as a model, we reveal that the mouse R783H mutation (R796H in human) alters Trim71's mRNA substrate specificity and leads to accelerated stem-cell differentiation and neural lineage commitment. Mutant Trim71, but not wild-type Trim71, binds Lsd1 (Kdm1a) mRNA and represses its translation. Specific inhibition of this repression or a slight increase of Lsd1 in the mutant cells alleviates the defects in stem cell differentiation and neural lineage commitment. These results determine a functionally relevant target of the CH-causing Trim71 mutant that can potentially be a therapeutic target and provide molecular mechanistic insights into the pathogenesis of this disease.


Assuntos
Hidrocefalia , Proteínas com Motivo Tripartido , Animais , Humanos , Camundongos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Hidrocefalia/genética , Células-Tronco Embrionárias Murinas/metabolismo , Mutação , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Brain ; 147(4): 1553-1570, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38128548

RESUMO

Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery in children. Recent studies have implicated SMARCC1, a component of the BRG1-associated factor (BAF) chromatin remodelling complex, as a candidate congenital hydrocephalus gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, congenital hydrocephalus-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo. Here, we aimed to assess the prevalence of SMARCC1 variants in an expanded patient cohort, describe associated clinical and radiographic phenotypes, and assess the impact of Smarcc1 depletion in a novel Xenopus tropicalis model of congenital hydrocephalus. To do this, we performed a genetic association study using whole-exome sequencing from a cohort consisting of 2697 total ventriculomegalic trios, including patients with neurosurgically-treated congenital hydrocephalus, that total 8091 exomes collected over 7 years (2016-23). A comparison control cohort consisted of 1798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents were sourced from the Simons Simplex Collection. Enrichment and impact on protein structure were assessed in identified variants. Effects on the human fetal brain transcriptome were examined with RNA-sequencing and Smarcc1 knockdowns were generated in Xenopus and studied using optical coherence tomography imaging, in situ hybridization and immunofluorescence. SMARCC1 surpassed genome-wide significance thresholds, yielding six rare, protein-altering de novo variants localized to highly conserved residues in key functional domains. Patients exhibited hydrocephalus with aqueductal stenosis; corpus callosum abnormalities, developmental delay, and cardiac defects were also common. Xenopus knockdowns recapitulated both aqueductal stenosis and cardiac defects and were rescued by wild-type but not patient-specific variant SMARCC1. Hydrocephalic SMARCC1-variant human fetal brain and Smarcc1-variant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2. These results suggest de novo variants in SMARCC1 cause a novel human BAFopathy we term 'SMARCC1-associated developmental dysgenesis syndrome', characterized by variable presence of cerebral ventriculomegaly, aqueductal stenosis, developmental delay and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodelling complex for human brain morphogenesis and provide evidence for a 'neural stem cell' paradigm of congenital hydrocephalus pathogenesis. These results highlight utility of trio-based whole-exome sequencing for identifying pathogenic variants in sporadic congenital structural brain disorders and suggest whole-exome sequencing may be a valuable adjunct in clinical management of congenital hydrocephalus patients.


Assuntos
Transtorno do Espectro Autista , Aqueduto do Mesencéfalo/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X , Hidrocefalia , Criança , Humanos , Transtorno do Espectro Autista/genética , Fatores de Transcrição/genética , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/genética , Epigênese Genética , Proteínas do Olho/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
11.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991277

RESUMO

Characterized by enlarged brain ventricles, hydrocephalus is a common neurological disorder classically attributed to a primary defect in cerebrospinal fluid (CSF) homeostasis. Microcephaly ("small head") and hydrocephalus are typically viewed as two mutually exclusive phenomenon, since hydrocephalus is thought of as a fluid "plumbing" disorder leading to CSF accumulation, ventricular dilatation, and resultant macrocephaly. However, some cases of hydrocephalus can be associated with microcephaly. Recent work in the genomics of congenital hydrocephalus (CH) and an improved understanding of the tropism of certain viruses such as Zika and cytomegalovirus are beginning to shed light into the paradox "microcephalic hydrocephalus" by defining prenatal neural stem cells (NSC) as the spatiotemporal "scene of the crime." In some forms of CH and viral brain infections, impaired fetal NSC proliferation leads to decreased neurogenesis, cortical hypoplasia and impaired biomechanical interactions at the CSF-brain interface that collectively engender ventriculomegaly despite an overall and often striking decrease in head circumference. The coexistence of microcephaly and hydrocephalus suggests that these two phenotypes may overlap more than previously appreciated. Continued study of both conditions may be unexpectedly fertile ground for providing new insights into human NSC biology and our understanding of neurodevelopmental disorders.


Assuntos
Hidrocefalia , Microcefalia , Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Humanos , Hidrocefalia/complicações , Encéfalo , Infecção por Zika virus/complicações , Biologia
12.
Stroke ; 55(4): 1062-1074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436063

RESUMO

BACKGROUND: In preterm birth germinal matrix hemorrhages (GMHs) and the consequent posthemorrhagic hydrocephalus (PHH), the neuroepithelium/ependyma development is disrupted. This work is aimed to explore the possibilities of ependymal repair in GMH/PHH using a combination of neural stem cells, ependymal progenitors (EpPs), and mesenchymal stem cells. METHODS: GMH/PHH was induced in 4-day-old mice using collagenase, blood, or blood serum injections. PHH severity was characterized 2 weeks later using magnetic resonance, immunofluorescence, and protein expression quantification with mass spectrometry. Ependymal restoration and wall regeneration after stem cell treatments were tested in vivo and in an ex vivo experimental approach using ventricular walls from mice developing moderate and severe GMH/PHH. The effect of the GMH environment on EpP differentiation was tested in vitro. Two-tailed Student t or Wilcoxon-Mann-Whitney U test was used to find differences between the treated and nontreated groups. ANOVA and Kruskal-Wallis tests were used to compare >2 groups with post hoc Tukey and Dunn multiple comparison tests, respectively. RESULTS: PHH severity was correlated with the extension of GMH and ependymal disruption (means, 88.22% severe versus 19.4% moderate). GMH/PHH hindered the survival rates of the transplanted neural stem cells/EpPs. New multiciliated ependymal cells could be generated from transplanted neural stem cells and more efficiently from EpPs (15% mean increase). Blood and TNFα (tumor necrosis factor alpha) negatively affected ciliogenesis in cells committed to ependyma differentiation (expressing Foxj1 [forkhead box J1] transcription factor). Pretreatment with mesenchymal stem cells improved the survival rates of EpPs and ependymal differentiation while reducing the edematous (means, 18% to 0.5% decrease in severe edema) and inflammatory conditions in the explants. The effectiveness of this therapeutical strategy was corroborated in vivo (means, 29% to 0% in severe edema). CONCLUSIONS: In GMH/PHH, the ependyma can be restored and edema decreased from either neural stem cell or EpP transplantation in vitro and in vivo. Mesenchymal stem cell pretreatment improved the success of the ependymal restoration.


Assuntos
Doenças Fetais , Hidrocefalia , Células-Tronco Neurais , Nascimento Prematuro , Humanos , Feminino , Animais , Camundongos , Epêndima/patologia , Hidrocefalia/cirurgia , Hidrocefalia/metabolismo , Hemorragia Cerebral/terapia , Hemorragia Cerebral/metabolismo , Edema
13.
Annu Rev Neurosci ; 39: 409-35, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27145913

RESUMO

Studies of syndromic hydrocephalus have led to the identification of >100 causative genes. Even though this work has illuminated numerous pathways associated with hydrocephalus, it has also highlighted the fact that the genetics underlying this phenotype are more complex than anticipated originally. Mendelian forms of hydrocephalus account for a small fraction of the genetic burden, with clear evidence of background-dependent effects of alleles on penetrance and expressivity of driver mutations in key developmental and homeostatic pathways. Here, we synthesize the currently implicated genes and inheritance paradigms underlying hydrocephalus, grouping causal loci into functional modules that affect discrete, albeit partially overlapping, cellular processes. These in turn have the potential to both inform pathomechanism and assist in the rational molecular classification of a clinically heterogeneous phenotype. Finally, we discuss conceptual methods that can lead to enhanced gene identification and dissection of disease basis, knowledge that will potentially form a foundation for the design of future therapeutics.


Assuntos
Encéfalo/patologia , Predisposição Genética para Doença , Hidrocefalia/genética , Mutação/genética , Animais , Líquido Cefalorraquidiano/metabolismo , Humanos , Hidrocefalia/patologia , Fenótipo
14.
Magn Reson Med ; 92(2): 807-819, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38469904

RESUMO

PURPOSE: To develop and validate a noninvasive imaging technique for accurately assessing very slow CSF flow within shunt tubes in pediatric patients with hydrocephalus, aiming to identify obstructions that might impede CSF drainage. THEORY AND METHODS: A simulation of shunt flow enhancement of signal intensity (shunt-FENSI) signal is used to establish the relationship between signal change and flow rate. The quantification of flow enhancement of signal intensity data involves normalization, curve fitting, and calibration to match simulated data. Additionally, a phase sweep method is introduced to accommodate the impact of magnetic field inhomogeneity on the flow measurement. The method is tested in flow phantoms, healthy adults, intensive care unit patients with external ventricular drains (EVD), and shunt patients. EVDs enable shunt-flow measurements to be acquired with a ground truth measure of CSF drainage. RESULTS: The flow-rate-to-signal simulation establishes signal-flow relationships and takes into account the T1 of draining fluid. The phase sweep method accurately accounts for phase accumulation due to frequency offsets at the shunt. Results in phantom and healthy human participants reveal reliable quantification of flow rates using controlled flows and agreement with the flow simulation. EVD patients display reliable measures of flow rates. Shunt patient results demonstrate feasibility of the method and consistent flow rates for functional shunts. CONCLUSION: The results demonstrate the technique's applicability, accuracy, and potential for diagnosing and noninvasively monitoring hydrocephalus. Limitations of the current approach include a high sensitivity to motion and strict requirement of imaging slice prescription.


Assuntos
Derivações do Líquido Cefalorraquidiano , Hidrocefalia , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Masculino , Feminino , Reprodutibilidade dos Testes , Simulação por Computador , Criança , Líquido Cefalorraquidiano/diagnóstico por imagem , Líquido Cefalorraquidiano/fisiologia , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
15.
Clin Genet ; 105(4): 397-405, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38173219

RESUMO

CCDC88C gene, which encodes coiled-coil domain containing 88C, is essential for cell communication during neural development. Variants in the CCDC88C caused congenital hydrocephalus, some accompanied by seizures. In patients with epilepsy without acquired etiologies, we performed whole-exome sequencing (trio-based). Two de novo and two biallelic CCDC88C variants were identified in four cases with focal (partial) epilepsy. These variants did not present or had low frequencies in the gnomAD populations and were predicted to be damaging by multiple computational algorithms. Patients with de novo variants presented with adult-onset epilepsy, whereas patients with biallelic variants displayed infant-onset epilepsy. They all responded well to anti-seizure medications and were seizure-free. Further analysis showed that de novo variants were located at crucial domains, whereas one paired biallelic variants were located outside the crucial domains, and the other paired variant had a non-classical splicing and a variant located at crucial domain, suggesting a sub-molecular effect. CCDC88C variants associated with congenital hydrocephalus were all truncated, whereas epilepsy-associated variants were mainly missense, the proportion of which was significantly higher than that of congenital hydrocephalus-associated variants. CCDC88C is potentially associated with focal epilepsy with favorable outcome. The underlying mechanisms of phenotypic variation may correlation between genotype and phenotype.


Assuntos
Epilepsias Parciais , Epilepsia , Hidrocefalia , Lactente , Adulto , Humanos , Epilepsias Parciais/genética , Epilepsia/genética , Hidrocefalia/genética , Genótipo , Estudos de Associação Genética , Proteínas dos Microfilamentos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
16.
Hum Genomics ; 17(1): 16, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36859317

RESUMO

BACKGROUND: Congenital hydrocephalus is characterized by ventriculomegaly, defined as a dilatation of cerebral ventricles, and thought to be due to impaired cerebrospinal fluid (CSF) homeostasis. Primary congenital hydrocephalus is a subset of cases with prenatal onset and absence of another primary cause, e.g., brain hemorrhage. Published series report a Mendelian cause in only a minority of cases. In this study, we analyzed exome data of PCH patients in search of novel causal genes and addressed the possibility of an underlying oligogenic mode of inheritance for PCH. MATERIALS AND METHODS: We sequenced the exome in 28 unrelated probands with PCH, 12 of whom from families with at least two affected siblings and 9 of whom consanguineous, thereby increasing the contribution of genetic causes. Patient exome data were first analyzed for rare (MAF < 0.005) transmitted or de novo variants. Population stratification of unrelated PCH patients and controls was determined by principle component analysis, and outliers identified using Mahalanobis distance 5% as cutoff. Patient and control exome data for genes biologically related to cilia (SYScilia database) were analyzed by mutation burden test. RESULTS: In 18% of probands, we identify a causal (pathogenic or likely pathogenic) variant of a known hydrocephalus gene, including genes for postnatal, syndromic hydrocephalus, not previously reported in isolated PCH. In a further 11%, we identify mutations in novel candidate genes. Through mutation burden tests, we demonstrate a significant burden of genetic variants in genes coding for proteins of the primary cilium in PCH patients compared to controls. CONCLUSION: Our study confirms the low contribution of Mendelian mutations in PCH and reports PCH as a phenotypic presentation of some known genes known for syndromic, postnatal hydrocephalus. Furthermore, this study identifies novel Mendelian candidate genes, and provides evidence for oligogenic inheritance implicating primary cilia in PCH.


Assuntos
Hidrocefalia , Herança Multifatorial , Feminino , Gravidez , Humanos , Mutação , Consanguinidade , Bases de Dados Factuais
17.
FASEB J ; 37(9): e23138, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37584603

RESUMO

Motile cilia lining on the ependymal cells are crucial for cerebrospinal fluid (CSF) flow and its dysfunction is often associated with hydrocephalus. Unc51-like-kinase 4 (Ulk4) was previously linked to CSF flow and motile ciliogenesis in mice, as the hypomorph mutant of Ulk4 (Ulk4tm1a/tm1a ) developed hydrocephalic phenotype resulted from defective ciliogenesis and disturbed ciliary motility, while the underling mechanism is largely obscure. Here, we report that serine/threonine kinase 36 (STK36), a paralog of ULK4, directly interacts with ULK4 and this was demonstrated by yeast two-hybrid (Y2H) in yeast and coimmunoprecipitation (co-IP) assays in HEK293T cells, respectively. The interaction region was confined to their respective N-terminal kinase domain. The hypomorph mutant of Stk36 (Stk36tmE4-/- ) also developed progressive hydrocephalus postnatally and dysfunctional CSF flow, with multiple defects of motile cilia, including reduced ciliary number, disorganized ciliary orientation, defected axonemal structure and inconsistent base body (BB) orientation. Stk36tmE4-/- also disturbed the expression of Foxj1 transcription factor and a range of other ciliogenesis-related genes. All these morphological changes, motile cilia defects and transcriptional dysregulation in the Stk36tmE4-/- are practically copied from that in Ulk4tm1a/tm1a mice. Taken together, we conclude that both Stk36 and Ulk4 are crucial for CSF flow, they cooperate by direct binding with their kinase domain to regulate the Foxj1 transcription factor pathways for ciliogenesis and cilia function, not limited to CSF flow. The underlying molecular mechanism probably conserved in evolution and could be extended to other metazoans.


Assuntos
Hidrocefalia , Proteínas Quinases , Camundongos , Animais , Humanos , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Células HEK293 , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Hidrocefalia/genética , Fatores de Transcrição/metabolismo , Cílios/metabolismo
18.
Exp Physiol ; 109(6): 956-965, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643470

RESUMO

Traumatic brain injury (TBI) is a major cause of morbidity and mortality globally. We unveiled the diagnostic value of serum NLRP3, metalloproteinase-9 (MMP-9) and interferon-γ (IFN-γ) levels in post-craniotomy intracranial infections and hydrocephalus in patients with severe craniocerebral trauma to investigate the high risk factors for these in patients with TBI, and the serological factors predicting prognosis, which had a certain clinical predictive value. Study subjects underwent bone flap resection surgery and were categorized into the intracranial infection/hydrocephalus/control (without postoperative hydrocephalus or intracranial infection) groups, with their clinical data documented. Serum levels of NLRP3, MMP-9 and IFN-γ were determined using ELISA kits, with their diagnostic efficacy on intracranial infections and hydrocephalus evaluated by receiver operating characteristic curve analysis. The independent risk factors affecting postoperative intracranial infections and hydrocephalus were analysed by logistic multifactorial regression. The remission after postoperative symptomatic treatment was counted. The intracranial infection/control groups had significant differences in Glasgow Coma Scale (GCS) scores, opened injury, surgical time and cerebrospinal fluid leakage, whereas the hydrocephalus and control groups had marked differences in GCS scores, cerebrospinal fluid leakage and subdural effusion. Serum NLRP3, MMP-9 and IFN-γ levels were elevated in patients with post-craniotomy intracranial infections/hydrocephalus. The area under the curve values of independent serum NLRP3, MMP-9, IFN-γ and their combination for diagnosing postoperative intracranial infection were 0.822, 0.722, 0.734 and 0.925, respectively, and for diagnosing hydrocephalus were 0.865, 0.828, 0.782 and 0.957, respectively. Serum NLRP3, MMP-9 and IFN-γ levels and serum NLRP3 and MMP-9 levels were independent risk factors influencing postoperative intracranial infection and postoperative hydrocephalus, respectively. Patients with hydrocephalus had a high remission rate after postoperative symptomatic treatment. Serum NLRP3, MMP-9 and IFN-γ levels had high diagnostic efficacy in patients with postoperative intracranial infection and hydrocephalus, among which serum NLRP3 level played a major role.


Assuntos
Hidrocefalia , Interferon gama , Metaloproteinase 9 da Matriz , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Masculino , Metaloproteinase 9 da Matriz/sangue , Feminino , Pessoa de Meia-Idade , Interferon gama/sangue , Adulto , Hidrocefalia/cirurgia , Traumatismos Craniocerebrais/complicações , Traumatismos Craniocerebrais/sangue , Complicações Pós-Operatórias/sangue , Idoso , Fatores de Risco , Biomarcadores/sangue , Adulto Jovem
19.
Neurochem Res ; 49(5): 1123-1136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38337135

RESUMO

The brain's ventricles are filled with a colorless fluid known as cerebrospinal fluid (CSF). When there is an excessive accumulation of CSF in the ventricles, it can result in high intracranial pressure, ventricular enlargement, and compression of the surrounding brain tissue, leading to potential damage. This condition is referred to as hydrocephalus. Hydrocephalus is classified into two categories: congenital and acquired. Congenital hydrocephalus (CH) poses significant challenges for affected children and their families, particularly in resource-poor countries. Recognizing the psychological and economic impacts is crucial for developing interventions and support systems that can help alleviate the distress and burden faced by these families. As our understanding of CSF production and circulation improves, we are gaining clearer insights into the causes of CH. In this article, we will summarize the current knowledge regarding CSF circulation pathways and the underlying causes of CH. The main causes of CH include abnormalities in the FoxJ1 pathway of ventricular cilia, dysfunctions in the choroid plexus transporter Na+-K+-2Cl- contransporter isoform 1, developmental abnormalities in the cerebral cortex, and structural abnormalities within the brain. Understanding the causes of CH is indeed crucial for advancing research and developing effective treatment strategies. In this review, we will summarize the findings from existing studies on the causes of CH and propose potential research directions to further our understanding of this condition.


Assuntos
Hidrocefalia , Criança , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/patologia , Encéfalo/patologia , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Cabeça , Líquido Cefalorraquidiano
20.
Eur Radiol ; 34(3): 1534-1544, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37658900

RESUMO

OBJECTIVES: Posterior fossa ependymoma group A (EPN_PFA) and group B (EPN_PFB) can be distinguished by their DNA methylation and give rise to different prognoses. We compared the MRI characteristics of EPN_PFA and EPN_PFB at presentation. METHODS: Preoperative imaging of 68 patients with posterior fossa ependymoma from two centers was reviewed by three independent readers, blinded for histomolecular grouping. Location, tumor extension, tumor volume, hydrocephalus, calcifications, tissue component, enhancement or diffusion signal, and histopathological data (cellular density, calcifications, necrosis, mitoses, vascularization, and microvascular proliferation) were compared between the groups. Categorical data were compared between groups using Fisher's exact tests, and quantitative data using Mann-Whitney tests. We performed a Benjamini-Hochberg correction of the p values to account for multiple tests. RESULTS: Fifty-six patients were categorized as EPN_PFA and 12 as EPN_PFB, with median ages of 2 and 20 years, respectively (p = 0.0008). The median EPN_PFA tumoral volume was larger (57 vs 29 cm3, p = 0.003), with more pronounced hydrocephalus (p = 0.002). EPN_PFA showed an exclusive central position within the 4th ventricle in 61% of patients vs 92% for EPN_PFB (p = 0.01). Intratumor calcifications were found in 93% of EPN_PFA vs 40% of EPN_PFB (p = 0.001). Invasion of the posterior fossa foramina was mostly found for EPN_PFA, particularly the foramina of Luschka (p = 0.0008). EPN_PFA showed whole and homogeneous tumor enhancement in 5% vs 75% of EPN_PFB (p = 0.0008). All mainly cystic tumors were EPN_PFB (p = 0.002). The minimal and maximal relative ADC was slightly lower in EPN_PFA (p = 0.02 and p = 0.01, respectively). CONCLUSION: Morphological characteristics from imaging differ between posterior fossa ependymoma subtypes and may help to distinguish them preoperatively. CLINICAL RELEVANCE STATEMENT: This study provides a tool to differentiate between group A and group B ependymomas, which will ultimately allow the therapeutic strategy to be adapted in the early stages of patient management. KEY POINTS: • Posterior fossa ependymoma subtypes often have different imaging characteristics. • Posterior fossa ependymomas group A are commonly median or lateral tissular calcified masses, with incomplete enhancement, affecting young children and responsible for pronounced hydrocephalus and invasion of the posterior fossa foramina. • Posterior fossa ependymomas group B are commonly median non-calcified masses of adolescents and adults, predominantly cystic, and minimally invasive, with total and homogeneous enhancement.


Assuntos
Ependimoma , Hidrocefalia , Criança , Adulto , Adolescente , Humanos , Pré-Escolar , Adulto Jovem , Imageamento por Ressonância Magnética , Prognóstico , Ependimoma/diagnóstico por imagem , Ependimoma/genética , Ependimoma/patologia , Cabeça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA