Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Cell ; 182(3): 641-654.e20, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615085

RESUMO

Targeting glycolysis has been considered therapeutically intractable owing to its essential housekeeping role. However, the context-dependent requirement for individual glycolytic steps has not been fully explored. We show that CRISPR-mediated targeting of glycolysis in T cells in mice results in global loss of Th17 cells, whereas deficiency of the glycolytic enzyme glucose phosphate isomerase (Gpi1) selectively eliminates inflammatory encephalitogenic and colitogenic Th17 cells, without substantially affecting homeostatic microbiota-specific Th17 cells. In homeostatic Th17 cells, partial blockade of glycolysis upon Gpi1 inactivation was compensated by pentose phosphate pathway flux and increased mitochondrial respiration. In contrast, inflammatory Th17 cells experience a hypoxic microenvironment known to limit mitochondrial respiration, which is incompatible with loss of Gpi1. Our study suggests that inhibiting glycolysis by targeting Gpi1 could be an effective therapeutic strategy with minimum toxicity for Th17-mediated autoimmune diseases, and, more generally, that metabolic redundancies can be exploited for selective targeting of disease processes.


Assuntos
Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Glucose-6-Fosfato Isomerase/metabolismo , Glicólise/genética , Fosforilação Oxidativa , Via de Pentose Fosfato/fisiologia , Células Th17/metabolismo , Animais , Hipóxia Celular/genética , Hipóxia Celular/imunologia , Quimera/genética , Cromatografia Gasosa , Cromatografia Líquida , Infecções por Clostridium/imunologia , Citocinas/deficiência , Citocinas/genética , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Glucose-6-Fosfato Isomerase/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Glicólise/imunologia , Homeostase/genética , Homeostase/imunologia , Inflamação/genética , Inflamação/imunologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mucosa/imunologia , Mucosa/metabolismo , Mucosa/microbiologia , Via de Pentose Fosfato/genética , Via de Pentose Fosfato/imunologia , RNA-Seq , Análise de Célula Única , Células Th17/imunologia , Células Th17/patologia
2.
Nat Immunol ; 15(4): 393-401, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24608041

RESUMO

The microRNA miR-210 is a signature of hypoxia. We found robust increase in the abundance of miR-210 (>100-fold) in activated T cells, especially in the TH17 lineage of helper T cells. Hypoxia acted in synergy with stimulation via the T cell antigen receptor (TCR) and coreceptor CD28 to accelerate and increase Mir210 expression. Mir210 was directly regulated by HIF-1α, a key transcriptional regulator of TH17 polarization. Unexpectedly, we identified Hif1a as a target of miR-210, which suggested negative feedback by miR-210 in inhibiting HIF-1α expression. Deletion of Mir210 promoted TH17 differentiation under conditions of limited oxygen. In experimental colitis, miR-210 reduced the abundance of Hif1a transcripts and the proportion of cells that produced inflammatory cytokines and controlled disease severity. Our study identifies miR-210 as an important regulator of T cell differentiation in hypoxia, which can limit immunopathology.


Assuntos
Colite Ulcerativa/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/metabolismo , Subpopulações de Linfócitos T/imunologia , Células Th17/imunologia , Animais , Antígenos CD4/metabolismo , Diferenciação Celular/genética , Hipóxia Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/genética , Interferência de RNA/imunologia , Subpopulações de Linfócitos T/citologia , Células Th17/citologia
3.
Nat Immunol ; 14(11): 1173-82, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24076634

RESUMO

Cytolytic activity by CD8(+) cytotoxic T lymphocytes (CTLs) is a powerful strategy for the elimination of intracellular pathogens and tumor cells. The destructive capacity of CTLs is progressively dampened during chronic infection, yet the environmental cues and molecular pathways that influence immunological 'exhaustion' remain unclear. Here we found that CTL immunity was regulated by the central transcriptional response to hypoxia, which is controlled in part by hypoxia-inducible factors (HIFs) and the von Hippel-Lindau tumor suppressor VHL. Loss of VHL, the main negative regulator of HIFs, led to lethal CTL-mediated immunopathology during chronic infection, and VHL-deficient CTLs displayed enhanced control of persistent viral infection and neoplastic growth. We found that HIFs and oxygen influenced the expression of pivotal transcription, effector and costimulatory-inhibitory molecules of CTLs, which was relevant to strategies that promote the clearance of viruses and tumors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Melanoma Experimental/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T Citotóxicos/imunologia , Proteína Supressora de Tumor Von Hippel-Lindau/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Melanoma Experimental/mortalidade , Melanoma Experimental/patologia , Melanoma Experimental/virologia , Camundongos , Camundongos Knockout , Oxigênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/virologia , Análise de Sobrevida , Linfócitos T Citotóxicos/patologia , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor Von Hippel-Lindau/genética
4.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34108245

RESUMO

Patients with severe COVID-19 infection exhibit a low level of oxygen in affected tissue and blood. To understand the pathophysiology of COVID-19 infection, it is therefore necessary to understand cell function during hypoxia. We investigated aspects of human monocyte activation under hypoxic conditions. HMGB1 is an alarmin released by stressed cells. Under normoxic conditions, HMGB1 activates interferon regulatory factor (IRF)5 and nuclear factor-κB in monocytes, leading to expression of type I interferon (IFN) and inflammatory cytokines including tumor necrosis factor α, and interleukin 1ß, respectively. When hypoxic monocytes are activated by HMGB1, they produce proinflammatory cytokines but fail to produce type I IFN. Hypoxia-inducible factor-1α, induced by hypoxia, functions as a direct transcriptional repressor of IRF5 and IRF3. As hypoxia is a stressor that induces secretion of HMGB1 by epithelial cells, hypoxia establishes a microenvironment that favors monocyte production of inflammatory cytokines but not IFN. These findings have implications for the pathogenesis of COVID-19.


Assuntos
Hipóxia Celular/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Monócitos/imunologia , COVID-19/imunologia , Células Cultivadas , Citocinas/imunologia , Humanos , Fatores Reguladores de Interferon/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interleucina-1beta/metabolismo , Monócitos/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Oxigênio/metabolismo , SARS-CoV-2/imunologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Immunity ; 41(4): 518-28, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25367569

RESUMO

The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.


Assuntos
Imunidade Adaptativa , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Imunidade Inata , Inflamação/imunologia , Adaptação Fisiológica , Animais , Infecções Bacterianas/imunologia , Diferenciação Celular/imunologia , Hipóxia Celular/imunologia , Humanos , Inflamação/genética , Camundongos , Neoplasias/imunologia , Oxigênio/metabolismo , Linfócitos T/imunologia , Viroses/imunologia
6.
Nature ; 545(7652): 98-102, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445461

RESUMO

The relative contribution of the effector molecules produced by T cells to tumour rejection is unclear, but interferon-γ (IFNγ) is critical in most of the analysed models. Although IFNγ can impede tumour growth by acting directly on cancer cells, it must also act on the tumour stroma for effective rejection of large, established tumours. However, which stroma cells respond to IFNγ and by which mechanism IFNγ contributes to tumour rejection through stromal targeting have remained unknown. Here we use a model of IFNγ induction and an IFNγ-GFP fusion protein in large, vascularized tumours growing in mice that express the IFNγ receptor exclusively in defined cell types. Responsiveness to IFNγ by myeloid cells and other haematopoietic cells, including T cells or fibroblasts, was not sufficient for IFNγ-induced tumour regression, whereas responsiveness of endothelial cells to IFNγ was necessary and sufficient. Intravital microscopy revealed IFNγ-induced regression of the tumour vasculature, resulting in arrest of blood flow and subsequent collapse of tumours, similar to non-haemorrhagic necrosis in ischaemia and unlike haemorrhagic necrosis induced by tumour necrosis factor. The early events of IFNγ-induced tumour ischaemia resemble non-apoptotic blood vessel regression during development, wound healing or IFNγ-mediated, pregnancy-induced remodelling of uterine arteries. A better mechanistic understanding of how solid tumours are rejected may aid the design of more effective protocols for adoptive T-cell therapy.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Hipóxia Celular/imunologia , Interferon gama/imunologia , Isquemia/imunologia , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Remodelação Vascular , Animais , Vasos Sanguíneos/imunologia , Vasos Sanguíneos/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Feminino , Interferon gama/biossíntese , Microscopia Intravital , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Necrose , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Interferon/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo , Especificidade por Substrato , Cicatrização , Receptor de Interferon gama
7.
J Immunol ; 204(4): 1056-1068, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31900336

RESUMO

Hypoxia is a condition that together with low pH, high amounts of reactive oxygen species (ROS), and increased adenosine levels characterize tumor microenvironment. Mast cells (MCs) are part of tumor microenvironment, but the effect of hypoxia on the production of MC-derived cytokines has not been fully described. Using the hypoxia marker pimonidazole in vivo, we found that MCs were largely located in the low-oxygen areas within B16-F1 mice melanoma tumors. In vitro, hypoxia promoted ROS production, a ROS-dependent increase of intracellular calcium, and the production of MCP 1 (CCL-2) in murine bone marrow-derived MCs. Hypoxia-induced CCL-2 production was sensitive to the antioxidant trolox and to nifedipine, a blocker of L-type voltage-dependent Ca2+ channels (LVDCCs). Simultaneously with CCL-2 production, hypoxia caused the ROS-dependent glutathionylation and membrane translocation of the α1c subunit of Cav1.2 LVDCCs. Relationship between ROS production, calcium rise, and CCL-2 synthesis was also observed when cells were treated with H2O2 In vivo, high CCL-2 production was detected on hypoxic zones of melanoma tumors (where tryptase-positive MCs were also found). Pimonidazole and CCL-2 positive staining diminished when B16-F1 cell-inoculated animals were treated with trolox, nifedipine, or the adenosine receptor 2A antagonist KW6002. Our results show that MCs are located preferentially in hypoxic zones of melanoma tumors, hypoxia-induced CCL-2 production in MCs requires calcium rise mediated by glutathionylation and membrane translocation of LVDCCs, and this mechanism of CCL-2 synthesis seems to operate in other cells inside melanoma tumors, with the participation of the adenosine receptor 2A.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Quimiocina CCL2/metabolismo , Mastócitos/imunologia , Melanoma Experimental/imunologia , Microambiente Tumoral/imunologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Antioxidantes/farmacologia , Biópsia , Bloqueadores dos Canais de Cálcio/farmacologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/imunologia , Linhagem Celular Tumoral/transplante , Quimiocina CCL2/imunologia , Peróxido de Hidrogênio/farmacologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Melanoma Experimental/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Receptor A2A de Adenosina/metabolismo , Microambiente Tumoral/efeitos dos fármacos
8.
Proc Natl Acad Sci U S A ; 116(18): 8975-8984, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30988188

RESUMO

T cell help in humoral immunity includes interactions of B cells with activated extrafollicular CD4+ and follicular T helper (Tfh) cells. Each can promote antibody responses but Tfh cells play critical roles during germinal center (GC) reactions. After restimulation of their antigen receptor (TCR) by B cells, helper T cells act on B cells via CD40 ligand and secreted cytokines that guide Ig class switching. Hypoxia is a normal feature of GC, raising questions about molecular mechanisms governing the relationship between hypoxia response mechanisms and T cell help to antibody responses. Hypoxia-inducible factors (HIF) are prominent among mechanisms that mediate cellular responses to limited oxygen but also are induced by lymphocyte activation. We now show that loss of HIF-1α or of both HIF-1α and HIF-2α in CD4+ T cells compromised essential functions in help during antibody responses. HIF-1α depletion from CD4+ T cells reduced frequencies of antigen-specific GC B cells, Tfh cells, and overall antigen-specific Ab after immunization with sheep red blood cells. Compound deficiency of HIF-1α and HIF-2α led to humoral defects after hapten-carrier immunization. Further, HIF promoted CD40L expression while restraining the FoxP3-positive CD4+ cells in the CXCR5+ follicular regulatory population. Glycolysis increases T helper cytokine expression, and HIF promoted glycolysis in T helper cells via TCR or cytokine stimulation, as well as their production of cytokines that direct antibody class switching. Indeed, IFN-γ elaboration by HIF-deficient in vivo-generated Tfh cells was impaired. Collectively, the results indicate that HIF transcription factors are vital components of the mechanisms of help during humoral responses.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Formação de Anticorpos , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Hipóxia Celular/imunologia , Hipóxia Celular/fisiologia , Citocinas/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Humanos , Hipóxia/metabolismo , Imunidade Humoral , Imunização , Ativação Linfocitária/imunologia , Ativação Linfocitária/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores CXCR5/metabolismo , Ovinos , Linfócitos T Auxiliares-Indutores/imunologia
9.
Mol Pharm ; 18(8): 2935-2946, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34191525

RESUMO

The adoptive transfer of natural killer (NK) cells, which can recognize and obliterate cancer cells, provides a practical alternative to current treatment modalities to improve cancer patients' survival. However, translating NK cell therapies to treat solid tumors has proven challenging due to the tumor microenvironment (TME). Hypoxia in the TME induces immunosuppression that inhibits the cytotoxic function of NK cells. Thus, reversing hypoxia-induced immunosuppression is critical for effective adoptive NK cell immunotherapy. In this study, we use manganese dioxide nanoparticles (MnO2 NPs) to catalyze the degradation of tumor-produced hydrogen peroxide, thereby generating oxygen. For improved biocompatibility and modulation of oxygen production, the MnO2 NPs were encapsulated into poly(lactic-co-glycolic) to produce particles that are 116 nm in size and with a ζ-potential of +17 mV (PLGA-MnO2 NPs). The PLGA-MnO2 NPs showed first-order oxygen production and sustained high oxygen tension compared to equivalent amounts of bare MnO2 NPs in the presence of H2O2. The PLGA-MnO2 NPs were biocompatible, reduced hypoxia after penetration into the core of cancer spheroids, and decreased hypoxia-induced factor 1 α expression. Reducing hypoxia in the spheroid resulted in a decrease in the potent immunosuppressors, adenosine, and lactate, which was confirmed by electrospray ionization mass spectroscopy (ESI-MS). ESI-MS also showed a change in the metabolism of the amino acids aspartate, glutamine, and glutamate after hypoxia reduction in the cancer cells. Notably, the spheroids' microenvironment changes enhanced NK cells' cytotoxicity, which obliterated the spheroids. These results demonstrate that reducing hypoxia-induced immunosuppression in tumors is a potent strategy to increase the potency of cytotoxic immune cells in the TME. The developed NPs are promising new tools to improve adoptive NK cell therapy.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Hipóxia Celular/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Compostos de Manganês/farmacologia , Nanopartículas Metálicas/química , Nanocápsulas/química , Óxidos/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Esferoides Celulares/imunologia , Adenosina/metabolismo , Transferência Adotiva/métodos , Neoplasias da Mama/patologia , Hipóxia Celular/imunologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Ácido Láctico/metabolismo , Células MCF-7 , Compostos de Manganês/química , Óxidos/química , Tamanho da Partícula , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
10.
EMBO Rep ; 20(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30872317

RESUMO

Inflamed and infected tissue sites are characterised by oxygen and nutrient deprivation. The cellular adaptations to insufficient oxygenation, hypoxia, are mainly regulated by a family of transcription factors known as hypoxia-inducible factors (HIFs). The protein members of the HIF signalling pathway are critical regulators of both the innate and adaptive immune responses, and there is an increasing body of evidence to suggest that the elicited changes occur through cellular metabolic reprogramming. Here, we review the literature on innate immunometabolism to date and discuss the role of hypoxia in innate cell metabolic reprogramming, and how this determines immune responses.


Assuntos
Inflamação/metabolismo , Células Mieloides/metabolismo , Imunidade Adaptativa/imunologia , Animais , Hipóxia Celular/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunidade Inata/imunologia , Inflamação/imunologia , Células Mieloides/imunologia , Oxigênio/metabolismo , Transdução de Sinais/imunologia
11.
J Cell Physiol ; 235(11): 8058-8070, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31944299

RESUMO

Hypoxia occurs in physiological and pathological conditions. T cells experience hypoxia in pathological and physiological conditions as well as in lymphoid organs. Indeed, hypoxia-inducible factor 1α (HIF-1α) affects T cell survival and functions. Rai, an Shc family protein member, exerts pro-survival effects in hypoxic neuroblastoma cells. Since Rai is also expressed in T cells, we here investigated its role in hypoxic T cells. In this work, hypoxia differently affected cell survival, proapoptotic, and metabolic programs in T cells, depending upon Rai expression. By using Jurkat cells stably expressing Rai and splenocytes from Rai-/- mice, we demonstrated that Rai promotes T cell survival and affects cell metabolism under hypoxia. Upon exposure to hypoxia, Jurkat T cells expressing Rai show (a) higher HIF-1α protein levels; (b) a decreased cell death and increased Akt/extracellular-signal-regulated kinase phosphorylation; (c) a decreased expression of proapoptotic markers, including caspase activities and poly(ADP-ribose) polymerase cleavage; (d) an increased glucose and lactate metabolism; (e) an increased activation of nuclear factor-kB pathway. The opposite effects were observed in hypoxic splenocytes from Rai-/- mice. Thus, Rai plays an important role in hypoxic signaling and may be relevant in the protection of T cells against hypoxia.


Assuntos
Hipóxia Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neuroblastoma/genética , Linfócitos T/metabolismo , Transativadores/genética , Animais , Apoptose/genética , Caspases/genética , Hipóxia Celular/imunologia , Sobrevivência Celular/genética , Glucose/metabolismo , Humanos , Células Jurkat , Ácido Láctico/metabolismo , Camundongos , Camundongos Knockout , Neuroblastoma/imunologia , Neuroblastoma/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Linfócitos T/imunologia , Linfócitos T/patologia
12.
Clin Exp Immunol ; 201(1): 40-57, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255193

RESUMO

Hypoxia within the tumor microenvironment (TME) is a key factor contributing to immunosuppression in tumors, co-relating with poor treatment outcome and decreased overall survival in advanced oral cancer (OC) patients. Vδ2 is a dominant subset of gamma delta T cells (γδT cells) present in the peripheral blood which exhibits potent anti-tumor cytotoxicity and is evolving as a key player of anti-cancer cellular therapy. However, the fate of γδT cells in hypoxic oral tumors remains elusive. In the present study, we compared the effect of hypoxia (1% O2 ) and normoxia (21% O2 ) on the expansion, proliferation, activation status, cytokine secretion and cytotoxicity of γδT cells isolated from OC patients and healthy individuals. Hypoxia-exposed γδT cells exhibited reduced cytotoxicity against oral tumor cells. Our data demonstrated that hypoxia reduces the calcium efflux and the expression of degranulation marker CD107a in γδT cells, which explains the decreased anti-tumor cytotoxicity of γδT cells observed under hypoxia. Hypoxia-exposed γδT cells differentiated to γδT17 [γδ T cells that produce interleukin (IL)-17] cells, which corroborated our observations of increased γδT17 cells observed in the oral tumors. Co-culture of γδT cells with CD8 T cells in the presence of hypoxia showed that programmed cell death ligand 1 (PD-L1)high γδT cells brought about apoptosis of programmed cell death 1 (PD-1)high CD8 T cells which could be significantly reversed upon blocking PD-1. Thus, future immunotherapeutic treatment modality for oral cancer may use a combined approach of blocking the PD-1/PD-L1 signaling and targeting hypoxia-inducible factor 1α, which may help in reversing hypoxia-induced immunosuppression.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Imunidade Celular , Neoplasias Bucais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Th17/imunologia , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/patologia , Hipóxia Celular/imunologia , Técnicas de Cocultura , Feminino , Humanos , Masculino , Neoplasias Bucais/patologia , Células Th17/patologia
13.
J Pathol ; 247(5): 589-605, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30680732

RESUMO

Lung malignancies are the leading cause of cancer-related mortality. By virtue of its unique physiological function, the lung microenvironment is highly dynamic and constantly subjected to mechanical, chemical and pathogenic stimuli. Thus, the airways rely on highly organized innate defense mechanisms to rapidly protect against pathogens and maintain pulmonary homeostasis. However, in the context of lung malignancy, these defenses often provide collateral inflammatory insults that can foster tumor progression. This review summarizes the interactions between cancer cells, recruited immune cells and tissue-resident cell subpopulations, such as airway epithelial cells and alveolar macrophages, during homeostasis and disease. Furthermore, we examine the role of the lung immune landscape in response to current therapeutic interventions for cancer. Given the prevalence of lung malignancies, we propose that consideration of lung physiology as a whole is necessary to understand and treat these lethal diseases. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Progressão da Doença , Imunidade Inata/imunologia , Neoplasias Pulmonares/imunologia , Imunidade Adaptativa/imunologia , Hipóxia Celular/imunologia , Humanos , Pulmão/imunologia , Células Mieloides/imunologia , Lesões Pré-Cancerosas/imunologia , Microambiente Tumoral/imunologia
14.
Can J Physiol Pharmacol ; 98(9): 596-603, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32119570

RESUMO

Diabetes increases the risk and severity of cognitive impairment, especially after ischemic stroke. It is also known that the activation of the endothelin (ET) system is associated with cognitive impairment and microglia around the periinfarct area produce ET-1. However, little is known about the effect of ET-1 on microglial polarization, especially under diabetic conditions. We hypothesized that (i) ET-1 activates microglia to the proinflammatory M-1-like phenotype and (ii) hypoxia/ lipopolysaccharide (LPS) activates the microglial ET system and promotes microglial activation towards the M-1 phenotype in diabetic conditions. Microglial cells (C8B4) cultured under normal-glucose (25 mmol/L) conditions and diabetes-mimicking high-glucose (50 mmol/L) conditions for 48 h were stimulated with ET-1, cobalt chloride (200 µmol/L), or LPS (100 ng/mL) for 24 h. PPET-1, ET receptor subtypes, and M1/M2 marker gene mRNA expression were measured by RT-PCR. Secreted ET-1 was measured by ELISA. A high dose of ET-1 (1 µmol/L) increases the mRNA levels of ET receptors and activates the microglia towards the M1 phenotype. Hypoxia or LPS activates the ET system in microglial cells and shifts the microglia towards the M1 phenotype in diabetic conditions. These in vitro observations warrant further investigation into the role of ET-1-mediated activation of proinflammatory microglia in post-stroke cognitive impairment in diabetes.


Assuntos
Disfunção Cognitiva/imunologia , Complicações do Diabetes/imunologia , Endotelina-1/metabolismo , AVC Isquêmico/imunologia , Microglia/imunologia , Animais , Glicemia/metabolismo , Hipóxia Celular/imunologia , Linhagem Celular , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Meios de Cultura/metabolismo , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Lipopolissacarídeos/metabolismo , Camundongos , Microglia/patologia , Transdução de Sinais/imunologia
15.
Am J Respir Crit Care Med ; 200(2): 235-246, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849228

RESUMO

Rationale: Acute respiratory distress syndrome is defined by the presence of systemic hypoxia and consequent on disordered neutrophilic inflammation. Local mechanisms limiting the duration and magnitude of this neutrophilic response remain poorly understood. Objectives: To test the hypothesis that during acute lung inflammation tissue production of proresolution type 2 cytokines (IL-4 and IL-13) dampens the proinflammatory effects of hypoxia through suppression of HIF-1α (hypoxia-inducible factor-1α)-mediated neutrophil adaptation, resulting in resolution of lung injury. Methods: Neutrophil activation of IL4Ra (IL-4 receptor α) signaling pathways was explored ex vivo in human acute respiratory distress syndrome patient samples, in vitro after the culture of human peripheral blood neutrophils with recombinant IL-4 under conditions of hypoxia, and in vivo through the study of IL4Ra-deficient neutrophils in competitive chimera models and wild-type mice treated with IL-4. Measurements and Main Results: IL-4 was elevated in human BAL from patients with acute respiratory distress syndrome, and its receptor was identified on patient blood neutrophils. Treatment of human neutrophils with IL-4 suppressed HIF-1α-dependent hypoxic survival and limited proinflammatory transcriptional responses. Increased neutrophil apoptosis in hypoxia, also observed with IL-13, required active STAT signaling, and was dependent on expression of the oxygen-sensing prolyl hydroxylase PHD2. In vivo, IL-4Ra-deficient neutrophils had a survival advantage within a hypoxic inflamed niche; in contrast, inflamed lung treatment with IL-4 accelerated resolution through increased neutrophil apoptosis. Conclusions: We describe an important interaction whereby IL4Rα-dependent type 2 cytokine signaling can directly inhibit hypoxic neutrophil survival in tissues and promote resolution of neutrophil-mediated acute lung injury.


Assuntos
Lesão Pulmonar Aguda/imunologia , Subunidade alfa de Receptor de Interleucina-4/imunologia , Interleucina-4/imunologia , Neutrófilos/imunologia , Receptores de Superfície Celular/imunologia , Síndrome do Desconforto Respiratório/imunologia , Lesão Pulmonar Aguda/metabolismo , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Subunidade alfa de Receptor de Interleucina-4/genética , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores de Superfície Celular/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
16.
Kidney Int ; 95(2): 388-404, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30551896

RESUMO

Hypoxia promotes tubulointerstitial inflammation in the kidney. Although hypoxia inducible factor-1α (HIF-1α) is a master regulator of the response to hypoxia, the exact mechanisms through which HIF-1α modulates the induction of tubulointerstitial inflammation are still largely unclear. We demonstrated tubulointerstitial inflammation and increased tubular HIF-1α expression in murine models of ischemia/reperfusion injury and unilateral ureteral obstruction. Increased expression of HIF-1α in tubular epithelial cells was associated with selective shedding of microRNA-23a (miRNA-23a)-enriched exosomes in vivo and systemic inhibition of miRNA-23a prior to ischemia/reperfusion injury attenuated tubulointerstitial inflammation. In vitro, uptake of miRNA-23a-enriched exosomes by macrophages triggered their reprogramming into a pro-inflammatory state via suppression of the ubiquitin editor A20. To confirm the effect of miRNA-23a-containing exosomes on tubulointerstitial inflammation, we exposed tubular epithelial cells to hypoxic conditions to promote the release of miRNA-23a-containing exosomes. Injection of these miRNA-23a-enriched exosomes into uninjured renal parenchyma resulted in increased inflammatory infiltration in vivo. Taken together, our studies demonstrate that the HIF-1α-dependent release of miRNA-23a-enriched exosomes from hypoxic tubular epithelial cells activates macrophages to promote tubulointerstitial inflammation. Blockade of exosome-mediated miRNA-23a transfer between tubular epithelial cells and macrophages may serve as a novel therapeutic approach to ameliorate tubulointerstitial inflammation.


Assuntos
Células Epiteliais/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/imunologia , MicroRNAs/metabolismo , Nefrite Intersticial/imunologia , Animais , Comunicação Celular/imunologia , Hipóxia Celular/genética , Hipóxia Celular/imunologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Exossomos/imunologia , Exossomos/metabolismo , Regulação da Expressão Gênica/imunologia , Humanos , Túbulos Renais/citologia , Túbulos Renais/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Nefrite Intersticial/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
17.
Neuroimmunomodulation ; 26(5): 217-233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31665717

RESUMO

OBJECTIVES: Cortical neuron-released exosomes have been demonstrated to block inflammasome activation in the central nervous system. This study aimed to investigate whether cortical neuron-released exosomal microRNA-181c-3p (miR-181c-3p) affected ischemic brain injury (IBI). METHODS: An IBI rat model was established by middle cerebral artery occlusion (MCAO). Astrocytes collected from rats were exposed to exosomes derived from cortical neurons to investigate the effect of exosomes on chemokine (C-X-C motif) ligand 1 (CXCL1) expression and inflammatory response. Then, ectopic expression was induced in astrocytes treated with oxygen and glucose deprivation (OGD). RESULTS: CXCL1 was identified to be an upregulated gene in IBI by microarray-based gene expression profiling. Additionally, upregulation of CXCL1 and promoted inflammatory response was also found in MCAO rats. miR-181c-3p was downregulated in OGD-treated cortical neurons and exosomes derived from OGD-treated cortical neurons. Exosomes derived from OGD-treated cortical neurons decreased the expression of CXCL1 and inflammatory factors in astrocytes, and exosomes delivered miR-181c-3p to decrease CXCL1 expression in astrocytes. CXCL1 was a target gene of miR-181c-3p. Delivery with miR-181c-3p mimic and siRNA against CXCL1 (si-CXCL1) was shown to inhibit inflammation in astrocytes by downregulating CXCL1. CONCLUSION: Collectively, exosomal miR-181c-3p derived from cortical neurons exerts protective effects on neuroinflammation in astrocytes via downregulation of CXCL1 in an IBI rat model.


Assuntos
Astrócitos/metabolismo , Quimiocina CXCL1/metabolismo , Exossomos/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/imunologia , Isquemia Encefálica/metabolismo , Hipóxia Celular/imunologia , Córtex Cerebral/citologia , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Modelos Animais de Doenças , Regulação para Baixo , Exossomos/imunologia , Glucose/deficiência , Glucose/metabolismo , Técnicas In Vitro , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/imunologia , Inflamação/genética , Inflamação/imunologia , Masculino , MicroRNAs/genética , MicroRNAs/imunologia , Ratos , Transcriptoma , Regulação para Cima
18.
Semin Immunol ; 27(3): 149-60, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25911383

RESUMO

The concept that chemokines, cytokines and pro-inflammatory mediators act in a co-ordinated fashion to drive the initiation of the inflammatory reaction is well understood. The significance of such networks acting during the resolution of inflammation however is poorly appreciated. In recent years, specific pro-resolving mediators were discovered which activate resolution pathways to return tissues to homeostasis. These mediators are diverse in nature, and include specialized lipid mediators (lipoxins, resolvins, protectins and maresins) proteins (annexin A1, galectins) and peptides, gaseous mediators including hydrogen sulphide, a purine (adenosine), as well as neuromodulator release under the control of the vagus nerve. Functionally, they can act to limit further leukocyte recruitment, induce neutrophil apoptosis and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to the lymphatics and help initiate tissue repair mechanisms and healing. Within this review we highlight the essential cellular aspects required for successful tissue resolution, briefly discuss the pro-resolution mediators that drive these processes and consider potential challenges faced by researchers in the quest to discover how inflammation resolves and why chronic inflammation persists.


Assuntos
Anti-Inflamatórios/uso terapêutico , Mediadores da Inflamação/imunologia , Inflamação/tratamento farmacológico , Macrófagos/imunologia , Neutrófilos/imunologia , Apoptose/imunologia , Hipóxia Celular/imunologia , Citocinas/imunologia , Humanos , Inflamação/imunologia , Ativação de Macrófagos/imunologia
19.
Semin Immunol ; 27(3): 177-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25818531

RESUMO

Inflammatory diseases in mucosal organs as diverse as the lung, liver and intestine inevitably require the intimate interactions between neutrophils and epithelia. The physiologic consequences of such interactions often determine endpoint organ function, and for this reason, much recent interest has developed in identifying mechanisms and novel targets to promote the resolution of mucosal inflammation. Physiologically-relevant in vitro and in vivo model systems have aided in discovery of novel pathways to define basic inflammatory mechanisms and approaches to defining the concepts of inflammatory resolution. Here, we will review the recent literature regarding the contribution of neutrophils to inflammatory resolution, with an emphasis on the role of the tissue microenvironment, endogenous pathways for promoting resolution and the molecular determinants of neutrophil-epithelial cell interactions during ongoing inflammation. These recent studies highlight the dynamic nature of pro-resolving pathways and lend insight into the complexity of treating mucosal inflammation.


Assuntos
Células Epiteliais/imunologia , Homeostase/imunologia , Inflamação/imunologia , Mucosa/imunologia , Neutrófilos/imunologia , Comunicação Celular/imunologia , Hipóxia Celular/imunologia , Movimento Celular/imunologia , Microambiente Celular/imunologia , Humanos , Mucosa/citologia , Mucosa/patologia , Consumo de Oxigênio/imunologia , Consumo de Oxigênio/fisiologia , Nucleosídeos de Purina/metabolismo
20.
Biochem Biophys Res Commun ; 495(3): 2282-2288, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29258824

RESUMO

The potential role of hypoxia in mediating the receptor for advanced glycation end products (RAGE) expression deserves to be confirmed. And the role of RAGE in hypoxia-induced chemotaxis and inflammation is still unclear. In present study, THP-1 cells were pretreated with siRNA to block HIF1α, NF-κ B, or RAGE, followed by exposed to hypoxia (combined with H2O2 or SNP), and then RAGE expression, nuclear translocation of HIF1α and NF-κ B, release of TNF-α and IL-1ß, as well as expression of MCP-1 and CCR2 were measured. The results revealed that RAGE mRNA and protein in THP-1 cells were significantly increased after exposed into hypoxia atmosphere, especially into the solution containing SNP or H2O2. Moreover, SNP or H2O2 exposure could further amplify hypoxia-induced nuclear translocation of HIF-1α and NF-κ B. Knockdown HIF-1α or NF-κ B by siRNAs could reduce hypoxia- and oxidative stress-induced RAGE hyper-expression. And pretreatment THP-1 cells with RAGE siRNA or NF-κ B siRNA could reduce hypoxia- and oxidative stress-induced expression of MCP-1 and CCR2, and release of TNF-α and IL-1ß. Thus, hypoxia not only increases RAGE expression in THP-1 cells by promoting nuclear translocation of NF-κ B and HIF1α, but also regulates chemotaxis and pro-inflammatory cytokines release, which may be partially mediated through upregulation of RAGE expression.


Assuntos
Antígenos de Neoplasias/imunologia , Hipóxia Celular/imunologia , Núcleo Celular/imunologia , Quimiotaxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Mediadores da Inflamação/imunologia , Proteínas Quinases Ativadas por Mitógeno/imunologia , NF-kappa B/imunologia , Transporte Ativo do Núcleo Celular/imunologia , Humanos , Células THP-1 , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA