Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.587
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Dev Biol ; 515: 112-120, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39048051

RESUMO

Hormonal imbalance during pregnancy is a risk factor for neuropsychiatric impairment in the offspring. It has been suggested that hypothyroidism leads to dysfunction of cortical GABAergic interneurons and inhibitory system development that in turn underlies impairment of the central nervous system. Here we investigated how gestational hypothyroidism affected offspring GABAergic system development as well as redox regulation parameters, because of previous links identified between the two. Experimental Gestational Hypothyroidism (EGH) was induced in CD-1 mice with 0.02% methimazole (MMI) in drinking water from embryonic day 9 (E9) until tissue collection at embryonic day 14 (E14) or E18. We examined GABAergic cell distribution and inhibitory system development gene expression as well as redox relevant gene expression and direct measures across all embryos regardless of sex. Intrauterine restriction of maternal thyroid hormones significantly impacted both of these outcomes in brain, as well as altering redox regulation in the placenta. GAD67+ neuronal migration was reduced, accompanied by a disruption in gene expression influencing GABAergic cell migration and cortical inhibitory neural system development. EGH also altered embryonic brain gene expression of Gpx1, Nfe2l2, Cat levels in the dorsal E14 brains. Additionally, EGH resulted in elevated TBARS, Gpx1 and Nfe2l2 in the ventral E18 brains. Furthermore, EGH downregulated placental Gpx1 gene expression at E14 and increased protein oxidation at E18. These findings support the hypothesis that sufficient maternal thyroid hormone supply to the fetus influences central nervous system development, including processes of GABAergic system development and redox equilibrium.


Assuntos
Encéfalo , Neurônios GABAérgicos , Glutationa Peroxidase GPX1 , Glutationa Peroxidase , Hipotireoidismo , Estresse Oxidativo , Animais , Feminino , Gravidez , Hipotireoidismo/metabolismo , Camundongos , Encéfalo/metabolismo , Encéfalo/embriologia , Neurônios GABAérgicos/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Metimazol , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Movimento Celular , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/genética , Masculino , Placenta/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
FASEB J ; 38(12): e23736, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38865202

RESUMO

Subclinical hypothyroidism (SCH) in pregnancy is the most common form of thyroid dysfunction in pregnancy, which can affect fetal nervous system development and increase the risk of neurodevelopmental disorders after birth. However, the mechanism of the effect of maternal subclinical hypothyroidism on fetal brain development and behavioral phenotypes is still unclear and requires further study. In this study, we constructed a mouse model of maternal subclinical hypothyroidism by exposing dams to drinking water containing 50 ppm propylthiouracil (PTU) during pregnancy and found that its offspring were accompanied by severe cognitive deficits by behavioral testing. Mechanistically, gestational SCH resulted in the upregulation of protein expression and activity of HDAC1/2/3 in the hippocampus of the offspring. ChIP analysis revealed that H3K9ac on the neurogranin (Ng) promoter was reduced in the hippocampus of the offspring of SCH, with a significant reduction in Ng protein, leading to reduced expression levels of synaptic plasticity markers PSD95 (a membrane-associated protein in the postsynaptic density) and SYN (synaptophysin, a specific marker for presynaptic terminals), and impaired synaptic plasticity. In addition, administration of MS-275 (an HDAC1/2/3-specific inhibitor) to SCH offspring alleviated impaired synaptic plasticity and cognitive dysfunction in offspring. Thus, our study suggests that maternal subclinical hypothyroidism may mediate offspring cognitive dysfunction through the HDAC1/2/3-H3K9ac-Ng pathway. Our study contributes to the understanding of the signaling mechanisms underlying maternal subclinical hypothyroidism-mediated cognitive impairment in the offspring.


Assuntos
Disfunção Cognitiva , Histona Desacetilase 1 , Histona Desacetilase 2 , Hipotireoidismo , Neurogranina , Efeitos Tardios da Exposição Pré-Natal , Animais , Neurogranina/metabolismo , Neurogranina/genética , Hipotireoidismo/metabolismo , Feminino , Gravidez , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Regulação para Baixo , Hipocampo/metabolismo , Masculino , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Camundongos Endogâmicos C57BL , Plasticidade Neuronal
3.
J Physiol ; 602(19): 4865-4887, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39277824

RESUMO

In mammals, the central circadian oscillator is located in the suprachiasmatic nucleus (SCN). Hypothalamus-pituitary-thyroid axis components exhibit circadian oscillation, regulated by both central clock innervation and intrinsic circadian clocks in the anterior pituitary and thyroid glands. Thyroid disorders alter the rhythmicity of peripheral clocks in a tissue-dependent response; however, whether these effects are influenced by alterations in the master clock remains unknown. This study aimed to characterize the effects of hypothyroidism on the rhythmicity of SCN, body temperature (BT) and metabolism, and the possible mechanisms involved in this signalling. C57BL/6J adult male mice were divided into Control and Hypothyroid groups. Profiles of spontaneous locomotor activity (SLA), BT, oxygen consumption ( V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) and respiratory quotient (RQ) were determined under free-running conditions. Clock gene expression, and neuronal activity of the SCN and medial preoptic nucleus (MPOM) area were investigated in light-dark (LD) conditions. Triiodothyronine (T3) transcriptional regulation of Bmal1 promoter activity was evaluated in GH3-transfected cells. Hypothyroidism delayed the rhythmicity of SLA and BT, and altered the expression of core clock components in the SCN. The activity of SCN neurons and their outputs were also affected, as evidenced by the loss of circadian rhythmicity in V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ and RQ and alterations in the neuronal activity pattern of MPOM. In GH3 cells, T3 increased Bmal1 promoter activity in a time-dependent manner. Thyroid hormone may act as a temporal cue for the central circadian clock, and the uncoupling of central and peripheral clocks might contribute to a wide range of metabolic and thermoregulatory impairments observed in hypothyroidism. KEY POINTS: Hypothyroidism alters clock gene expression in the suprachiasmatic nucleus (SCN). Thyroid hypofunction alters the phase of spontaneous locomotor activity and body temperature rhythms. Thyroid hormone deficiency alters the daily pattern of SCN and medial preoptic nucleus neuronal activities. Hypothyroidism alterations are extended to daily oscillations of oxygen consumption and metabolism, which might contribute to the development of metabolic syndrome. Triiodothyronine increases Bmal1 promoter activity acting as temporal cue for the central circadian clock.


Assuntos
Fatores de Transcrição ARNTL , Hipotireoidismo , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático , Tri-Iodotironina , Animais , Masculino , Hipotireoidismo/fisiopatologia , Hipotireoidismo/metabolismo , Hipotireoidismo/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Camundongos , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia , Ritmo Circadiano/fisiologia , Temperatura Corporal/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica
4.
J Nutr ; 154(4): 1209-1218, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38342405

RESUMO

BACKGROUND: Although iodine modulates bone metabolism in the treatment of thyroid disease, the effect of iodine intake on bone metabolism remains less known. OBJECTIVE: This study evaluated the effect of excess iodine intake in rats on bone reconstruction in the 6th and 12th month of intervention. METHOD: Rats were treated with different doses of iodinated water: the normal group (NI, 6.15 µg/d), 5-fold high iodine group (5HI, 30.75 µg/d), 10-fold high iodine group (10HI, 61.5 µg/d), 50-fold high iodine group (50HI, 307.5 µg/d), and 100-fold high iodine group (100HI, 615 µg/d). Thyroid hormone concentrations were determined by a chemiluminescent immunoassay. Morphometry and microstructure of bone trabecula were observed by hematoxylin and eosin staining and microcomputed tomography, respectively. Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) staining were performed to evaluate the activity of osteoblasts and osteoclasts, respectively. RESULTS: The 24-h urine iodine concentration increased with iodine intake. The rats in the HI groups had higher serum thyroid-stimulating hormone and decreased serum free thyroxine concentrations in the 12th month than the NI group (all P < 0.05). The percentage of the trabecular bone area and osteoblast perimeter in the 100HI group were significantly lower than those in the NI group (P < 0.05). Increased structure model index was observed in the 50HI and 100HI groups compared with the NI group in the 6th month and increased trabecular separation in the 12th month (all P < 0.05). ALP and TRAP staining revealed osteoblastic bone formation was reduced, and the number of TRAP+ multinucleated cells decreased with increasing iodine intake. CONCLUSIONS: Excess iodine intake may increase the risk of hypothyroidism in rats. Chronic excess iodine intake can lead to abnormal changes in skeletal structure, resulting in reduced activity of osteoblasts and osteoclasts, which inhibits the process of bone reconstruction and may lead to osteoporosis.


Assuntos
Hipotireoidismo , Iodo , Osteoporose , Ratos , Animais , Tiroxina , Microtomografia por Raio-X , Hipotireoidismo/metabolismo , Osteoporose/prevenção & controle , Fosfatase Alcalina
5.
FASEB J ; 37(4): e22865, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934391

RESUMO

Hypothyroidism exerts deleterious effects on immunity, but the precise role of the hypothalamic-pituitary-thyroid (HPT) axis in immunoregulatory and tolerogenic programs is barely understood. Here, we investigated the mechanisms underlying hypothyroid-related immunosuppression by examining the regulatory role of components of the HPT axis. We first analyzed lymphocyte activity in mice overexpressing the TRH gene (Tg-Trh). T cells from Tg-Trh showed increased proliferation than wild-type (WT) euthyroid mice in response to polyclonal activation. The release of Th1 pro-inflammatory cytokines was also increased in Tg-Trh and TSH levels correlated with T-cell proliferation. To gain further mechanistic insights into hypothyroidism-related immunosuppression, we evaluated T-cell subpopulations in lymphoid tissues of hypothyroid and control mice. No differences were observed in CD3/CD19 or CD4/CD8 ratios between these strains. However, the frequency of regulatory T cells (Tregs) was significantly increased in hypothyroid mice, and not in Tg-Trh mice. Accordingly, in vitro Tregs differentiation was more pronounced in naïve T cells isolated from hypothyroid mice. Since Tregs overexpress galectin-1 (Gal-1) and mice lacking this lectin (Lgals1-/- ) show reduced Treg function, we investigated the involvement of this immunoregulatory lectin in the control of Tregs in settings of hypothyroidism. Increased T lymphocyte reactivity and reduced frequency of Tregs were found in hypothyroid Lgals1-/- mice when compared to hypothyroid WT animals. This effect was rescued by the addition of recombinant Gal-1. Finally, increased expression of Gal-1 was found in Tregs purified from hypothyroid WT mice compared with their euthyroid counterpart. Thus, a substantial increase in the frequency and activity of Gal-1-expressing Tregs underlies immunosuppression associated with hypothyroid conditions, with critical implications in immunopathology, metabolic disorders, and cancer.


Assuntos
Hipotireoidismo , Tireotropina , Camundongos , Animais , Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/farmacologia , Linfócitos T Reguladores/metabolismo , Galectina 1/genética , Hipotireoidismo/metabolismo , Terapia de Imunossupressão
6.
J Endocrinol Invest ; 47(10): 2521-2537, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38907823

RESUMO

BACKGROUND AND PURPOSE: Subclinical hypothyroidism (SCH) has been identified to be associated with implantation failure, in which the dysfunction of trophoblast cells is involved. In this study, the transcriptomics of aborted placenta from SCH rats were analyzed. Jupiter microtubule-associated homolog 2 (JPT2) was downregulated in the aborted placenta. This study aims to investigate its role in SCH-associated miscarriage. METHODS: Spontaneous abortion was observed in SCH rats generated by thyroidectomy combined with levothyroxine administration. The transcriptomics analysis was performed using aborted placenta. Afterward, the effects of JPT2 on trophoblast cells were explored using gain-and loss-of-function experiments. RESULTS: Transcriptomics analysis showed 1286 downregulated genes and 2300 upregulated genes in the aborted placenta, and JPT2 was significantly downregulated in the aborted placenta from SCH rats. Afterward, gain-and loss-of-function experiments exhibited that overexpression of JPT2 promoted the proliferation, migration, invasion, spheroid formation of HTR-8/SVneo trophoblast cells and their attachment to endometrial stromal cells, while these biological behaviors were suppressed by JPT2 knockdown. Furthermore, JPT2 accelerated the transcription of leptin receptor (LEPR), and activated signal transducer and activator of transcription 3 (STAT3) signal in a transcription factor AP-2γ-dependent manner. In addition, silencing of LEPR abolished the role of JPT2. CONCLUSION: Our results revealed that JPT2, which was downregulated in the aborted placenta from SCH rats, promoted proliferation, migration, invasion, spheroid formation, and attachment of trophoblast cells via regulating LEPR/STAT3 axis as a transcription co-factor. It is indicated that low expression of JPT2 may contribute to the abortion in individuals with SCH.


Assuntos
Aborto Espontâneo , Hipotireoidismo , Fator de Transcrição STAT3 , Feminino , Animais , Hipotireoidismo/metabolismo , Hipotireoidismo/genética , Hipotireoidismo/patologia , Ratos , Gravidez , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Aborto Espontâneo/metabolismo , Aborto Espontâneo/genética , Aborto Espontâneo/etiologia , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Trofoblastos/metabolismo , Trofoblastos/patologia , Placenta/metabolismo , Ratos Sprague-Dawley , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Humanos , Proliferação de Células , Transdução de Sinais
7.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125812

RESUMO

Minipuberty is a term describing transient postnatal activation of the hypothalamic-pituitary-gonadal axis, likely playing an important role in the postnatal growth of female genital organs and breasts. Unlike infant boys, there are no data concerning the impact of gestational hypothyroidism on the course of minipuberty in infant girls. Therefore, the aim of the current study was to investigate the reproductive axis and genital organs in daughters of women with thyroid hypofunction during pregnancy. The study population included three matched groups of infant girls: offspring of women with thyroid hypofunction non-substituted or inadequately treated during gestation (group 1), descendants of women adequately substituted throughout pregnancy (group 2), and daughters of healthy women (group 3). Salivary concentrations of estradiol, progesterone, 17-hydroxyprogesterone, and androgens (testosterone, androstenedione, and dehydroepiandrosterone sulfate) and urine levels of gonadotropins were measured monthly from month 1 to month 6, once every two months between postnatal months 6 and 12, and once every three months between postnatal months 12 and 18. During each visit, we also determined ovarian volume, uterine length, and breast diameter. Concentrations of FSH, LH, and estradiol were lowest in group 1, and this group was also characterized by the shortest detection period for gonadotropins and estradiol. These differences were paralleled by differences in ovarian volume, uterine length, and breast diameter. There were no differences between groups 2 and 3 in levels of both hormones and in the size of the measured structures. The obtained results seem to indicate that non-substituted or inadequately substituted hypothyroidism during pregnancy may impair the course of minipuberty in the female offspring.


Assuntos
Hipotireoidismo , Humanos , Feminino , Hipotireoidismo/metabolismo , Gravidez , Adulto , Complicações na Gravidez/metabolismo , Puberdade , Ovário/metabolismo , Adolescente , Lactente , Efeitos Tardios da Exposição Pré-Natal/metabolismo
8.
Int J Mol Sci ; 25(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39409121

RESUMO

In mammals, the maintenance of energy homeostasis relies on complex mechanisms requiring tight synchronization between peripheral organs and the brain. Thyroid hormones (THs), through their pleiotropic actions, play a central role in these regulations. Hypothyroidism, which is characterized by low circulating TH levels, slows down the metabolism, which leads to a reduction in energy expenditure as well as in lipid and glucose metabolism. The objective of this study was to evaluate whether the metabolic deregulations induced by hypothyroidism could be avoided through regulatory mechanisms involved in metabolic flexibility. To this end, the response to induced hypothyroidism was compared in males from two mouse strains, the wild-derived WSB/EiJ mouse strain characterized by a diet-induced obesity (DIO) resistance due to its high metabolic flexibility phenotype and C57BL/6J mice, which are prone to DIO. The results show that propylthiouracil (PTU)-induced hypothyroidism led to metabolic deregulations, particularly a reduction in hepatic lipid synthesis in both strains. Furthermore, in contrast to the C57BL/6J mice, the WSB/EiJ mice were resistant to the metabolic dysregulations induced by hypothyroidism, mainly through enhanced lipid metabolism in their adipose tissue. Indeed, WSB/EiJ mice compensated for the decrease in hepatic lipid synthesis by mobilizing lipid reserves from white adipose tissue. Gene expression analysis revealed that hypothyroidism stimulated the hypothalamic orexigenic circuit in both strains, but there was unchanged melanocortin 4 receptor (Mc4r) and leptin receptor (LepR) expression in the hypothyroid WSB/EiJ mice strain, which reflects their adaptability to maintain their body weight, in contrast to C57BL/6J mice. Thus, this study showed that WSB/EiJ male mice displayed a resistance to the metabolic dysregulations induced by hypothyroidism through compensatory mechanisms. This highlights the importance of metabolic flexibility in the ability to adapt to disturbed circulating TH levels.


Assuntos
Tecido Adiposo Branco , Hipotireoidismo , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Animais , Hipotireoidismo/metabolismo , Masculino , Tecido Adiposo Branco/metabolismo , Camundongos , Fígado/metabolismo , Obesidade/metabolismo , Obesidade/etiologia , Hormônios Tireóideos/metabolismo , Regulação para Baixo , Propiltiouracila , Metabolismo Energético
9.
Int J Mol Sci ; 25(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39337448

RESUMO

Myxedema is a potentially life-threatening condition typically observed in severe hypothyroidism. However, localized or diffuse myxedema is also observed in hyperthyroidism. The exact cause and mechanism of this paradoxical situation is not clear. We report here the analysis of body fluid distribution by bioelectrical impedance analysis (BIA) in 103 thyroid patients, subdivided according to their functional status. All BIA parameters measured in subclinical thyroid dysfunctions did not significantly differ from those observed in euthyroid controls. On the contrary, they were clearly altered in the two extreme, opposite conditions of thyroid dysfunctions, namely overt hyperthyroidism and severe hypothyroidism, indicating the occurrence of a typical hormetic condition. Surprisingly, differences in BIA parameters related to fluid body composition were even more evident in hyperthyroidism than in hypothyroidism. A hormetic response to thyroid hormone (TH)s was previously reported to explain the paradoxical, biphasic, time- and dose-dependent effects on other conditions. Our results indicate that myxedema, observed in both hypothyroid and hyperthyroid conditions, represents another example of a hormetic-type response to THs. BIA offers no additional valuable information in evaluating fluid body composition in subclinical thyroid dysfunctions, but it represents a valuable method to analyze and monitor body fluid composition and distribution in overt and severe thyroid dysfunctions.


Assuntos
Hipertireoidismo , Hipotireoidismo , Mixedema , Humanos , Hipotireoidismo/complicações , Hipotireoidismo/metabolismo , Hipertireoidismo/complicações , Hipertireoidismo/metabolismo , Hipertireoidismo/fisiopatologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Impedância Elétrica , Hormese , Idoso , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/sangue , Composição Corporal
10.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892021

RESUMO

Thyroxine (T4) is a drug extensively utilized for the treatment of hypothyroidism. However, the oral absorption of T4 presents certain limitations. This research investigates the efficacy of CO2 nanobubbles in water as a potential oral carrier for T4 administration to C57BL/6 hypothyroid mice. Following 18 h of fasting, the formulation was administered to the mice, demonstrating that the combination of CO2 nanobubbles and T4 enhanced the drug's absorption in blood serum by approximately 40%. To comprehend this observation at a molecular level, we explored the interaction mechanism through which T4 engages with the CO2 nanobubbles, employing molecular simulations, semi-empirical quantum mechanics, and PMF calculations. Our simulations revealed a high affinity of T4 for the water-gas interface, driven by additive interactions between the hydrophobic region of T4 and the gas phase and electrostatic interactions of the polar groups of T4 with water at the water-gas interface. Concurrently, we observed that at the water-gas interface, the cluster of T4 formed in the water region disassembles, contributing to the drug's bioavailability. Furthermore, we examined how the gas within the nanobubbles aids in facilitating the drug's translocation through cell membranes. This research contributes to a deeper understanding of the role of CO2 nanobubbles in drug absorption and subsequent release into the bloodstream. The findings suggest that utilizing CO2 nanobubbles could enhance T4 bioavailability and cell permeability, leading to more efficient transport into cells. Additional research opens the possibility of employing lower concentrations of this class of drugs, thereby potentially reducing the associated side effects due to poor absorption.


Assuntos
Dióxido de Carbono , Modelos Animais de Doenças , Hipotireoidismo , Tiroxina , Água , Animais , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Camundongos , Dióxido de Carbono/química , Água/química , Camundongos Endogâmicos C57BL , Administração Oral , Nanopartículas/química , Portadores de Fármacos/química
11.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39337343

RESUMO

Sodium imbalance is a common electrolyte disturbance in COVID-19, often linked to disruptions in hormonal regulation. This review explores the relationship between sodium dysregulation and endocrine disturbances, particularly focusing on primary and secondary hypothyroidism, hypocortisolism, and the renin-angiotensin-aldosterone system (RAAS). Hypocortisolism in COVID-19, due to adrenal insufficiency or secondary to pituitary dysfunction, can lead to hyponatremia through inadequate cortisol levels, which impair renal free water excretion and enhance antidiuretic hormone (ADH) secretion. Similarly, hypothyroidism is associated with decreased renal blood flow and the glomerular filtration rate (GFR), which also increases ADH activity, leading to water retention and dilutional hyponatremia. Furthermore, COVID-19 can disrupt RAAS (primarily through its interaction with the angiotensin-converting enzyme 2 (ACE2) receptor), diminishing aldosterone secretion and further contributing to sodium loss and hyponatremia. These hormonal disruptions suggest that sodium imbalance in COVID-19 is multifactorial and warrants further investigation into the complex interplay between COVID-19, endocrine function, and sodium homeostasis. Future research should focus on understanding these mechanisms to develop management algorithms that address both sodium imbalance and underlying hormonal disturbances in order to improve prognosis and outcomes in COVID-19 patients.


Assuntos
COVID-19 , Hiponatremia , Sistema Renina-Angiotensina , SARS-CoV-2 , Humanos , COVID-19/complicações , COVID-19/metabolismo , Hiponatremia/etiologia , Hiponatremia/metabolismo , Doenças do Sistema Endócrino/etiologia , Doenças do Sistema Endócrino/metabolismo , Sódio/metabolismo , Hipotireoidismo/metabolismo , Hipotireoidismo/complicações
12.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338793

RESUMO

Hypothyroidism compromises the testicular redox status and is associated with reduced sperm quality and infertility in men. In this regard, studies have demonstrated the antioxidant potential of kisspeptin in reproductive and metabolic diseases. In this study, we evaluate the effects of kisspeptin-10 (Kp10) on the testicular redox, as well as mediators of the unfolded protein response (UPR) in adult rats with hypothyroidism. Adult male Wistar rats were randomly separated into the Control (n = 15), Hypo (n = 13) and Hypo + Kp10 (n = 14) groups, and hypothyroidism was induced with 6-propyl-2-thiouracil (PTU) for three months. In the last month, half of the hypothyroid animals received Kp10. Testis samples were collected for enzymatic, immunohistochemical and/or gene evaluation of mediators of oxidative stress (TBARs, lipid hydroperoxides (LOOH), ROS, peroxynitrite, SOD, CAT and GPX), endoplasmic reticulum stress (GRP78, ATF6, PERK, CHOP, HO-1 and sXBP1) and antiapoptocytes (BCL-2). Hypothyroidism increased apoptosis index, TBARS and LOOH concentrations, and reduced testicular gene expression of Sod1, Sod2 and Gpx1, as well as the expression of Grp78, Atf6, Ho1 and Chop. Treatment with Kp10, in turn, reduced testicular apoptosis and the production of peroxynitrite, while increased SOD1 and GPX ½ expression, and enzymatic activity of CAT, but did not affect the lower expression of UPR mediators caused by hypothyroidism. This study demonstrated that hypothyroidism causes oxidative stress and dysregulated the UPR pathway in rat testes and that, although Kp10 does not influence the low expression of UPR mediators, it improves the testicular redox status, configuring it as an important antioxidant factor in situations of thyroid dysfunction.


Assuntos
Antioxidantes , Hipotireoidismo , Humanos , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Testículo/metabolismo , Kisspeptinas/metabolismo , Ratos Wistar , Superóxido Dismutase-1/genética , Chaperona BiP do Retículo Endoplasmático , Ácido Peroxinitroso/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Sêmen/metabolismo , Oxirredução , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Estresse Oxidativo , Resposta a Proteínas não Dobradas
13.
AAPS PharmSciTech ; 25(6): 180, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107558

RESUMO

In recent years, there has been a significant increase in the prevalence of thyroid diseases, particularly hypothyroidism. In this study, we investigated the impact and mechanisms of Chemical permeation enhancement(CPE) on transdermal permeation of levothyroxine sodium (L-T4) patches.We found that the combination of oleic acid (OA) and Azone (NZ) yielded the best transdermal permeation effect for L-T4.Subsequently, we also investigated the relevant propermeability mechanism.The results demonstrate that the combined application of OA and NZ significantly enhances the transdermal permeation of L-T4 compared to individual applications,it is attributed to two mechanisms: firstly, OA improves drug release by increasing the flowability of the pressure-sensitive adhesive (PSA) matrix; secondly, both OA and NZ act on the stratum corneum, especially facilitating L-T4 permeation through the hair follicle pathway. No skin irritation or cytotoxicity is observed with these final patches, which exhibit a remarkable therapeutic effect on hypothyroidism. this study contributes to the development of transdermal formulations of L-T4.


Assuntos
Administração Cutânea , Ácido Oleico , Absorção Cutânea , Tiroxina , Ácido Oleico/química , Tiroxina/administração & dosagem , Tiroxina/farmacologia , Tiroxina/farmacocinética , Animais , Absorção Cutânea/efeitos dos fármacos , Adesivo Transdérmico , Pele/metabolismo , Pele/efeitos dos fármacos , Liberação Controlada de Fármacos , Camundongos , Permeabilidade , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Humanos , Química Farmacêutica/métodos , Masculino
14.
J Biol Chem ; 298(7): 102066, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618019

RESUMO

Congenital hypothyroidism with biallelic thyroglobulin (Tg protein, encoded by the TG gene) mutation is an endoplasmic reticulum (ER) storage disease. Many patients (and animal models) grow an enlarged thyroid (goiter), yet some do not. In adulthood, hypothyroid TGcog/cog mice (bearing a Tg-L2263P mutation) exhibit a large goiter, whereas adult WIC rats bearing the TGrdw/rdw mutation (Tg-G2298R) exhibit a hypoplastic thyroid. Homozygous TG mutation has been linked to thyroid cell death, and cytotoxicity of the Tg-G2298R protein was previously thought to explain the lack of goiter in WIC-TGrdw/rdw rats. However, recent studies revealed that TGcog/cog mice also exhibit widespread ER stress-mediated thyrocyte death, yet under continuous feedback stimulation, thyroid cells proliferate in excess of their demise. Here, to examine the relative proteotoxicity of the Tg-G2298R protein, we have used CRISPR-CRISPR-associated protein 9 technology to generate homozygous TGrdw/rdw knock-in mice in a strain background identical to that of TGcog/cog mice. TGrdw/rdw mice exhibit similar phenotypes of defective Tg protein folding, thyroid histological abnormalities, hypothyroidism, and growth retardation. TGrdw/rdw mice do not show evidence of greater ER stress response or stress-mediated cell death than TGcog/cog mice, and both mouse models exhibit sustained thyrocyte proliferation, with comparable goiter growth. In contrast, in WIC-TGrdw/rdw rats, as a function of aging, the thyrocyte proliferation rate declines precipitously. We conclude that the mutant Tg-G2298R protein is not intrinsically more proteotoxic than Tg-L2263P; rather, aging-dependent difference in maintenance of cell proliferation is the limiting factor, which accounts for the absence of goiter in adult WIC-TGrdw/rdw rats.


Assuntos
Bócio , Hipotireoidismo , Tireoglobulina , Glândula Tireoide , Animais , Proliferação de Células , Bócio/congênito , Bócio/genética , Bócio/metabolismo , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Camundongos , Ratos , Tireoglobulina/genética , Glândula Tireoide/fisiopatologia
15.
Am J Physiol Heart Circ Physiol ; 325(4): H702-H719, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539452

RESUMO

Maternal hypothyroidism (MH) could adversely affect the cardiac disease responses of the progeny. This study tested the hypothesis that MH reduces early postnatal cardiomyocyte (CM) proliferation so that the adult heart of MH progeny has a smaller number of larger cardiac myocytes, which imparts adverse cardiac disease responses following injury. Thyroidectomy (TX) was used to establish MH. The progeny from mice that underwent sham or TX surgery were termed Ctrl (control) or MH (maternal hypothyroidism) progeny, respectively. MH progeny had similar heart weight (HW) to body weight (BW) ratios and larger CM size consistent with fewer CMs at postnatal day 60 (P60) compared with Ctrl (control) progeny. MH progeny had lower numbers of EdU+, Ki67+, and phosphorylated histone H3 (PH3)+ CMs, which suggests they had a decreased CM proliferation in the postnatal timeframe. RNA-seq data showed that genes related to DNA replication were downregulated in P5 MH hearts, including bone morphogenetic protein 10 (Bmp10). Both in vivo and in vitro studies showed Bmp10 treatment increased CM proliferation. After transverse aortic constriction (TAC), the MH progeny had more severe cardiac pathological remodeling compared with the Ctrl progeny. Thyroid hormone (T4) treatment for MH mothers preserved their progeny's postnatal CM proliferation capacity and prevented excessive pathological remodeling after TAC. Our results suggest that CM proliferation during early postnatal development was significantly reduced in MH progeny, resulting in fewer CMs with hypertrophy in adulthood. These changes were associated with more severe cardiac disease responses after pressure overload.NEW & NOTEWORTHY Our study shows that compared with Ctrl (control) progeny, the adult progeny of mothers who have MH (MH progeny) had fewer CMs. This reduction of CM numbers was associated with decreased postnatal CM proliferation. Gene expression studies showed a reduced expression of Bmp10 in MH progeny. Bmp10 has been linked to myocyte proliferation. In vivo and in vitro studies showed that Bmp10 treatment of MH progeny and their myocytes could increase CM proliferation. Differences in CM number and size in adult hearts of MH progeny were linked to more severe cardiac structural and functional remodeling after pressure overload. T4 (synthetic thyroxine) treatment of MH mothers during their pregnancy, prevented the reduction in CM number in their progeny and the adverse response to disease stress.


Assuntos
Cardiopatias , Hipotireoidismo , Gravidez , Feminino , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiopatias/patologia , Hipertrofia/metabolismo , Hipertrofia/patologia , Hipotireoidismo/complicações , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células , Cardiomegalia/metabolismo
16.
Biol Reprod ; 108(5): 731-743, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36811850

RESUMO

To understand the effect of fetal thyroid gland disruption on development in swine, we evaluated thyroid hormone levels, growth and developmental characteristics, and gene expression associated with thyroid hormone metabolism in late gestation fetuses exposed to methimazole (MMI). Pregnant gilts were given either oral MMI or equivalent sham from gestation day 85-106 (n = 4/group), followed by intensive phenotyping of all fetuses (n = 120). Samples of liver (LVR), kidney (KID), fetal placenta (PLC), and the corresponding maternal endometrium (END) were collected from a subset of fetuses (n = 32). Fetuses exposed to MMI in utero were confirmed hypothyroid, with a significant increase in thyroid gland size, goitrous thyroid histology, and dramatically suppressed thyroid hormone in serum. In dams, no differences in temporal measurements of average daily gain, thyroid hormone, or rectal temperatures relative to controls suggests that MMI had little effect on maternal physiology. However, fetuses from MMI-treated gilts exhibited significant increases in body mass, girth, and vital organ weights, but no differences in crown-rump length or bone measurements suggesting non-allometric growth. The PLC and END showed a compensatory decrease in expression of inactivating deiodinase (DIO3). Similar compensatory gene expression was observed in fetal KID and LVR with a downregulation of all deiodinases (DIO1, DIO2, DIO3). Minor alterations in the expression of thyroid hormone transporters (SLC16A2 and SLC16A10) were observed in PLC, KID, and LVR. Collectively, MMI crosses the PLC of the late gestation pig, resulting in congenital hypothyroidism, alterations in fetal growth, and compensatory responses within the maternal fetal interface.


Assuntos
Hipotireoidismo , Tiroxina , Gravidez , Animais , Suínos , Feminino , Tiroxina/metabolismo , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/metabolismo , Hormônios Tireóideos/metabolismo , Feto/metabolismo
17.
Cell Mol Neurobiol ; 43(7): 3405-3416, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540395

RESUMO

Hypothyroidism (HPT) HPT could be a risk factor for the development and progression of Alzheimer's disease (AD). In addition, progressive neurodegeneration in AD may affect the metabolism of thyroid hormones (THs) in the brain causing local brain HPT. Hence, the present review aimed to clarify the potential association between HPT and AD. HPT promotes the progression of AD by inducing the production of amyloid beta (Aß) and tau protein phosphorylation with the development of synaptic plasticity and memory dysfunction. Besides, the metabolism of THs is dysregulated in AD due to the accumulation of Aß and tau protein phosphorylation leading to local brain HPT. Additionally, HPT can affect AD neuropathology through various mechanistic pathways including dysregulation of transthyretin, oxidative stress, ER stress, autophagy dysfunction mitochondrial dysfunction, and inhibition of brain-derived neurotrophic factor. Taken together there is a potential link between HPT and AD, as HPT adversely impacts AD neuropathology and the reverse is also true.


Assuntos
Doença de Alzheimer , Hipotireoidismo , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Hipotireoidismo/complicações , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia
18.
FASEB J ; 36(2): e22141, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34981562

RESUMO

In peripheral tissues, triiodothyronine (T3) production and consequent thyroid hormone actions are mainly regulated by iodothyronine deiodinases (DIOs) classified into 3 types: D1, D2, and D3. We aimed to investigate the effects of peripheral DIOs on thyroid hormone economy independent of the hypothalamus-pituitary-thyroid axis. We cloned coding sequences of human DIOs with FLAG-tag and HiBiT-tag sequences into a pcDNA3.1 vector. To obtain full-length proteins, we modified these vectors by cloning the selenocysteine insertion sequence of each DIO (SECIS vectors). Western blot analyses and HiBiT lytic assay using HEK293T cells revealed that SECIS vectors expressed full-length proteins with substantial activity. Subsequently, in vivo transfections of pLIVE-based SECIS vectors into male C57BL/6J mice were performed by hydrodynamic gene delivery to generate mice overexpressing DIOs predominantly in the liver (D1, D2, and D3 mice). After 7 days from transfections, mice were analyzed to clarify phenotypes. To summarize, serum thyroid hormone levels did not change in D1 mice but D2 mice had higher serum free T3 levels. D3 mice developed hypothyroidism with higher serum reverse T3 (rT3) levels. Transfections with levothyroxine administration suggested that thyroid hormone action was upregulated in D2 mice. Our DIO-overexpressing mice provided insights on the physiological properties of upregulated DIOs: D2 augments local thyroid hormone action and recruits T3 into the circulation: D3 decreases circulating T3 and T4 levels with elevated rT3, leading to consumptive hypothyroidism. As D3 mice are expected to be a novel hypothyroidism model, they can contribute to progress in the field of thyroid hormone economy and action.


Assuntos
Iodeto Peroxidase/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Hipotireoidismo/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Glândula Tireoide/metabolismo , Tri-Iodotironina/metabolismo
19.
J Periodontal Res ; 58(3): 668-678, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807238

RESUMO

BACKGROUND AND OBJECTIVE: Periodontal ligament stem cells (PDLSCs) are derived from the periodontal ligament and have the characteristics of pluripotent differentiation, including osteogenesis, and are one of the important seed cells in oral tissue engineering. Thyrotropin (TSH) has been shown to regulate bone metabolism independently of thyroid hormone, including the fate of osteoblasts and osteoclasts, but whether it affects osteogenic differentiation of PDLSCs is unknown. MATERIALS AND METHODS: PDLSCs were isolated and cultured from human periodontal ligament and grown in osteogenic medium (containing sodium ß-glycerophosphate, ascorbic acid, and dexamethasone). Recombinant human TSH was added to the culture medium. Osteogenic differentiation of PDLSCs was assessed after 14 days by staining with alkaline phosphatase and alizarin red and by detection of osteogenic differentiation genes. Differentially expressed genes (DEGs) in PDLSCs under TSH were detected by high-throughput sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzed the biological functions and signaling pathways involved in DEGs. RESULTS: We found that osteogenic differentiation of PDLSCs was significantly inhibited in the presence of TSH: including decreased calcium nodule formation, decreased alkaline phosphatase levels, and decreased collagen synthesis. Using high-throughput sequencing, we found changes in the expression of some osteogenesis-related genes, which may be the reason that TSH inhibits osteogenic differentiation of PDLSCs. CONCLUSION: Unless TSH is ≥10 mU/L, patients with subclinical hypothyroidism usually do not undergo thyroxine supplementation therapy. However, in this work, we found that elevated TSH inhibited the osteogenic differentiation of PDLSCs. Therefore, correction of TSH levels in patients with subclinical hypothyroidism may be beneficial to improve orthodontic, implant, and periodontitis outcomes in these patients.


Assuntos
Hipotireoidismo , Osteogênese , Humanos , Osteogênese/fisiologia , Tireotropina/metabolismo , Ligamento Periodontal , Fosfatase Alcalina/metabolismo , Células-Tronco , Diferenciação Celular/fisiologia , Hipotireoidismo/metabolismo , Células Cultivadas , Proliferação de Células
20.
Mol Biol Rep ; 50(12): 10637-10650, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884783

RESUMO

BACKGROUND: Thyroid-stimulating hormone (TSH) is an independent risk factor of and closely associated with metabolic disorders. In the present study, we explored the potential mechanism and adverse effects of TSH on insulin resistance in the liver of subclinical hypothyroidism models in vivo. METHODS: The mean glucose infusion rate (GIR), free fatty acids (FFAs), the homeostatic model assessment for insulin resistance (HOMA-IR), fasting plasma insulin (FINS), the TLR4 signal pathway and its intracellular negative regulator-toll-interacting protein (Tollip), and the modulators of insulin signaling were evaluated. RESULTS: Compared to the normal control group (NC group), the subclinical hypothyroidism rat group (SCH group) showed decreases in GIR and increases in FFAs, FINS, and HOMA-IR. The levels of TLR4 and of its downstream molecules like p-NF-κB, p-IRAK-1, IL-6 and TNF-α were evidently higher in the SCH group than in the NC group. Conversely, the level of Tollip was significantly lower in the SCH group than in the NC group. Compared to the NC group, the levels of phosphorylated IRS-1-Tyr and GLUT2 were decreased in the SCH group. Macrophage infiltration was higher in the SCH group than in the NC group. CONCLUSION: TSH may participate in aggravating inflammation by increasing macrophage infiltration; furthermore, it may activate the TLR4-associated inflammatory signaling pathway, thus interfering with insulin signals in liver tissues. Targeting TSH may have therapeutic benefits against metabolic disorders.


Assuntos
Hipotireoidismo , Resistência à Insulina , Animais , Ratos , Hipotireoidismo/metabolismo , Insulina , Fígado/metabolismo , Tireotropina , Receptor 4 Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA