Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2217957120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590409

RESUMO

To ensure optimal growth, plants actively regulate their growth and development based on environmental changes. Among these, salt stress significantly influences growth and yield. In this study, we demonstrate that the growth of root hairs of salt-stressed Arabidopsis thaliana seedlings is regulated by the SALT OVERLY SENSITIVE 2 (SOS2)-GUANOSINE NUCLEOTIDE DIPHOSPHATE DISSOCIATION INHIBITOR 1 (RhoGDI1)-Rho GTPASE OF PLANTS 2 (ROP2) module. We show here that the kinase SOS2 is activated by salt stress and subsequently phosphorylates RhoGDI1, a root hair regulator, thereby decreasing its stability. This change in RhoGDI1 abundance resulted in a fine-tuning of polar localization of ROP2 and root hair initiation followed by polar growth, demonstrating how SOS2-regulated root hair development is critical for plant growth under salt stress. Our results reveal how a tissue-specific response to salt stress balances the relationship of salt resistance and basic growth.


Assuntos
Arabidopsis , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Fosforilação , Guanosina Difosfato , Estresse Salino
2.
Proc Natl Acad Sci U S A ; 120(27): e2211041120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364105

RESUMO

The molecular events governing skeletal muscle glucose uptake have pharmacological potential for managing insulin resistance in conditions such as obesity, diabetes, and cancer. With no current pharmacological treatments to target skeletal muscle insulin sensitivity, there is an unmet need to identify the molecular mechanisms that control insulin sensitivity in skeletal muscle. Here, the Rho guanine dissociation inhibitor α (RhoGDIα) is identified as a point of control in the regulation of insulin sensitivity. In skeletal muscle cells, RhoGDIα interacted with, and thereby inhibited, the Rho GTPase Rac1. In response to insulin, RhoGDIα was phosphorylated at S101 and Rac1 dissociated from RhoGDIα to facilitate skeletal muscle GLUT4 translocation. Accordingly, siRNA-mediated RhoGDIα depletion increased Rac1 activity and elevated GLUT4 translocation. Consistent with RhoGDIα's inhibitory effect, rAAV-mediated RhoGDIα overexpression in mouse muscle decreased insulin-stimulated glucose uptake and was detrimental to whole-body glucose tolerance. Aligning with RhoGDIα's negative role in insulin sensitivity, RhoGDIα protein content was elevated in skeletal muscle from insulin-resistant patients with type 2 diabetes. These data identify RhoGDIα as a clinically relevant controller of skeletal muscle insulin sensitivity and whole-body glucose homeostasis, mechanistically by modulating Rac1 activity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
3.
Biophys J ; 123(1): 57-67, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37978802

RESUMO

Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) play a crucial role in the regulation of Rho family GTPases. They act as negative regulators that prevent the activation of Rho GTPases by forming complexes with the inactive GDP-bound state of GTPase. Release of Rho GTPase from the RhoGDI-bound complex is necessary for Rho GTPase activation. Biochemical studies provide evidence of a "phosphorylation code," where phosphorylation of some specific residues of RhoGDI selectively releases its GTPase partner (RhoA, Rac1, Cdc42, etc.). This work attempts to understand the molecular mechanism behind this specific phosphorylation-induced reduction in binding affinity. Using several microseconds long atomistic molecular dynamics simulations of the wild-type and phosphorylated states of the RhoA-RhoGDI complex, we propose a molecular-interaction-based mechanistic model for the dissociation of the complex. Phosphorylation induces major structural changes, particularly in the positively charged polybasic region (PBR) of RhoA and the negatively charged N-terminal region of RhoGDI that contribute most to the binding affinity. Molecular mechanics Poisson-Boltzmann surface area binding energy calculations show a significant weakening of interaction on phosphorylation at the RhoA-specific site of RhoGDI. In contrast, phosphorylation at a Rac1-specific site does not affect the overall binding affinity significantly, which confirms the presence of a phosphorylation code. RhoA-specific phosphorylation leads to a reduction in the number of contacts between the PBR of RhoA and the N-terminal region of RhoGDI, which manifests a reduction of the binding affinity. Using hydrogen bond occupancy analysis and energetic perturbation network, we propose a mechanistic model for the allosteric response, i.e., long-range signal propagation from the site of phosphorylation to the PBR and buried geranylgeranyl group in the form of rearrangement and rewiring of hydrogen bonds and salt bridges. Our results highlight the crucial role of specific electrostatic interactions in manifestation of the phosphorylation code.


Assuntos
Inibidores de Dissociação do Nucleotídeo Guanina , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/metabolismo , Fosforilação , Inibidores de Dissociação do Nucleotídeo Guanina/química , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Ligação Proteica , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
4.
J Cell Sci ; 135(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36111497

RESUMO

Attainment of proper cell shape and the regulation of cell migration are essential processes in the development of an organism. The mixed lineage leukemia (MLL or KMT2A) protein, a histone 3 lysine 4 (H3K4) methyltransferase, plays a critical role in cell-fate decisions during skeletal development and haematopoiesis in higher vertebrates. Rho GTPases - RhoA, Rac1 and CDC42 - are small G proteins that regulate various key cellular processes, such as actin cytoskeleton formation, the maintenance of cell shape and cell migration. Here, we report that MLL regulates the homeostasis of these small Rho GTPases. Loss of MLL resulted in an abnormal cell shape and a disrupted actin cytoskeleton, which lead to diminished cell spreading and migration. MLL depletion affected the stability and activity of Rho GTPases in a SET domain-dependent manner, but these Rho GTPases were not direct transcriptional targets of MLL. Instead, MLL regulated the transcript levels of their chaperone protein RhoGDI1 (also known as ARHGDIA). Using MDA-MB-231, a triple-negative breast cancer cell line with high RhoGDI1 expression, we show that MLL depletion or inhibition by small molecules reduces tumour progression in nude mice. Our studies highlight the central regulatory role of MLL in Rho/Rac/CDC42 signalling pathways. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas rho de Ligação ao GTP , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Camundongos , Animais , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/genética , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Camundongos Nus , Histonas/metabolismo , Lisina , Transdução de Sinais/fisiologia , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Movimento Celular/fisiologia , Citoesqueleto de Actina/metabolismo , Metiltransferases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo
5.
J Comput Aided Mol Des ; 37(7): 301-312, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286854

RESUMO

Cell division control protein 42 homolog (Cdc42), which controls a variety of cellular functions including rearrangements of the cell cytoskeleton, cell differentiation and proliferation, is a potential cancer therapeutic target. As an endogenous negative regulator of Cdc42, the Rho GDP dissociation inhibitor 1 (RhoGDI1) can prevent the GDP/GTP exchange of Cdc42 to maintain Cdc42 into an inactive state. To investigate the inhibition mechanism of Cdc42 through RhoGDI1 at the atomic level, we performed molecular dynamics (MD) simulations. Without RhoGDI1, Cdc42 has more flexible conformations, especially in switch regions which are vital for binding GDP/GTP and regulators. In the presence of RhoGDI1, it not only can change the intramolecular interactions of Cdc42 but also can maintain the switch regions into a closed conformation through extensive interactions with Cdc42. These results which are consistent with findings of biochemical and mutational studies provide deep structural insights into the inhibition mechanisms of Cdc42 by RhoGDI1. These findings are beneficial for the development of novel therapies targeting Cdc42-related cancers.


Assuntos
Simulação de Dinâmica Molecular , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Proteína cdc42 de Ligação ao GTP , Diferenciação Celular , Guanosina Trifosfato
6.
Nat Rev Mol Cell Biol ; 12(8): 493-504, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21779026

RESUMO

The 'invisible hand' is a term originally coined by Adam Smith in The Theory of Moral Sentiments to describe the forces of self-interest, competition and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle.


Assuntos
Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Evolução Molecular , Inibidores de Dissociação do Nucleotídeo Guanina/química , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Humanos , Microdomínios da Membrana/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos , Neoplasias/metabolismo , Fosforilação , Filogenia , Domínios e Motivos de Interação entre Proteínas , Proteínas rho de Ligação ao GTP/química , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
7.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi ; 41(11): 801-807, 2023 Nov 20.
Artigo em Zh | MEDLINE | ID: mdl-38073205

RESUMO

Objective: To explore the mechanism of osteoclast stimulatory transmembrane protein (OC-STAMP) overexpression on epithelial-mesenchymal transition (EMT) . Methods: In April 2021, mice alveolar type Ⅱ epithelial cells MLE-12 were divided into five groups: overexpression control group (NC group), Ocstamp overexpression group (over-Ocstamp group), Fasudil intervention group (over-Ocstamp+Fasudil group), silence control group (si-NC group), Ocstamp silence group (si-Ocstamp group). The protein expressions of OC-STAMP, epithelial marker protein-E-cadherin (E-cad), interstitial marker protein-α-smooth muscle actin (α-SMA), Ras homolog gene family member A (RhoA), Rho GDP dissociation inhibitor α (Rho GDIα), Rho-associated protein kinase (ROCK), phosphate myosin phosphatase (p-MYPT) were examined by Western blotting and Immunocytochemical staining. The filamentous actin (F-actin) was detected by Phalloidin method. t test was used to compare the relative expression of each protein between the two groups. Results: Western blotting and Immunocytochemical staining showed that compared with the NC group, the expression level of E-cad was down-regulated, while the expression levels of α-SMA, Rho GDIα, RhoA, ROCK, p-MYPT were increased, and F-actin expression was enhanced in the over-Ocstamp group. The differences were statistically significant (P<0.05). There were no significant differences in E-cad and α-SMA protein expression in si-Ocstamp group compared with si-NC group (P>0.05). Compared with over-Ocstamp group, the expression level of E-cad protein in over-Ocstamp+Fasudil group was up-regulated, the expression levels of α-SMA, Rho GDIα, RhoA, ROCK and p-MYPT protein were decreased, and F-actin expression was weakened, with statistical significance (P<0.05) . Conclusion: OC-STAMP overexpression in alveolar type Ⅱ epithelial cells may induce actin cytoskeleton remodeling through activation of Rho GDIα/RhoA/ROCK signaling pathway, thus promoting EMT.


Assuntos
Actinas , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Camundongos , Animais , Actinas/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Transição Epitelial-Mesenquimal , Quinases Associadas a rho/metabolismo , Citoesqueleto de Actina/metabolismo , Células Epiteliais/metabolismo
8.
Gen Physiol Biophys ; 41(6): 511-521, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36454112

RESUMO

This study serves to investigate the effects of the Smad pathway on TGFß1-mediated RhoGDI expression and its binding to RhoGTPases in myofibroblast transdifferentiation. Myofibroblast transdifferentiation was induced by TGFß1 in vitro. Cells were pretreated with different siRNAs or inhibitors. Myofibroblast transdifferentiation was detected by immunohistochemistry. Immunofluorescence was used to observe the nuclear translocation of Smad4, and PSR (Picrositius Red) staining was used to measure collagen concentration. TGFß1 induced the phosphorylation of Smad2/3 and the nuclear translocation of Smad4 in human aortic adventitial fibroblasts (HAAFs). Furthermore, TGFß1 increased the expression of RhoGDI and its binding to RhoGTPases. Nevertheless, inhibition of Smad2/3 phosphorylation decreased TGFß1-induced RhoGDI1/2 expressions and RhoGDI2-RhoGTPases interactions. These data suggested that the inhibition of Smad phosphorylation attenuates myofibroblast transdifferentiation by inhibiting TGFß1-induced RhoGDI1/2 expressions and RhoGDI-RhoGTPases signaling.


Assuntos
Transdiferenciação Celular , Miofibroblastos , Humanos , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Transdução de Sinais
9.
Angew Chem Int Ed Engl ; 61(18): e202115193, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35170181

RESUMO

For the discovery of novel chemical matter generally endowed with bioactivity, strategies may be particularly efficient that combine previous insight about biological relevance, e.g., natural product (NP) structure, with methods that enable efficient coverage of chemical space, such as fragment-based design. We describe the de novo combination of different 5-membered NP-derived N-heteroatom fragments to structurally unprecedented "pseudo-natural products" in an efficient complexity-generating and enantioselective one-pot synthesis sequence. The pseudo-NPs inherit characteristic elements of NP structure but occupy areas of chemical space not covered by NP-derived chemotypes, and may have novel biological targets. Investigation of the pseudo-NPs in unbiased phenotypic assays and target identification led to the discovery of the first small-molecule ligand of the RHO GDP-dissociation inhibitor 1 (RHOGDI1), termed Rhonin. Rhonin inhibits the binding of the RHOGDI1 chaperone to GDP-bound RHO GTPases and alters the subcellular localization of RHO GTPases.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Ligantes , Proteínas rho de Ligação ao GTP , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
10.
Biochemistry ; 60(19): 1533-1551, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33913706

RESUMO

There are three RhoGDIs in mammalian cells, which were initially defined as negative regulators of Rho family small GTPases. However, it is now accepted that RhoGDIs not only maintain small GTPases in their inactive GDP-bound form but also act as chaperones for small GTPases, targeting them to specific intracellular membranes and protecting them from degradation. Studies to date with RhoGDIs have usually focused on the interactions between the "typical" or "classical" small GTPases, such as the Rho, Rac, and Cdc42 subfamily members, and either the widely expressed RhoGDI-1 or the hematopoietic-specific RhoGDI-2. Less is known about the third member of the family, RhoGDI-3 and its interacting partners. RhoGDI-3 has a unique N-terminal extension and is found to localize in both the cytoplasm and the Golgi. RhoGDI-3 has been shown to target RhoB and RhoG to endomembranes. In order to facilitate a more thorough understanding of RhoGDI function, we undertook a systematic study to determine all possible Rho family small GTPases that interact with the RhoGDIs. RhoGDI-1 and RhoGDI-2 were found to have relatively restricted activity, mainly binding members of the Rho and Rac subfamilies. RhoGDI-3 displayed wider specificity, interacting with the members of Rho, Rac, and Cdc42 subfamilies but also forming complexes with "atypical" small Rho GTPases such as Wrch2/RhoV, Rnd2, Miro2, and RhoH. Levels of RhoA, RhoB, RhoC, Rac1, RhoH, and Wrch2/RhoV bound to GTP were found to decrease following coexpression with RhoGDI-3, confirming its role as a negative regulator of these small Rho GTPases.


Assuntos
Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo , Inibidor gama de Dissociação do Nucleotídeo Guanina rho/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ligação Proteica , Proteínas rho de Ligação ao GTP/química , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/fisiologia , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/fisiologia , Inibidor gama de Dissociação do Nucleotídeo Guanina rho/fisiologia , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/metabolismo , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/fisiologia
11.
J Neurochem ; 157(3): 494-507, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33320336

RESUMO

Phospholipid Phosphatase-Related Protein Type 1 (PLPPR1) is a member of a family of lipid phosphatase related proteins, integral membrane proteins characterized by six transmembrane domains. This family of proteins is enriched in the brain and recent data indicate potential pleiotropic functions in several different contexts. An inherent ability of this family of proteins is to induce morphological changes, and we have previously reported that members of this family interact with each other and may function co-operatively. However, the function of PLPPR1 is not yet understood. Here we show that the expression of PLPPR1 reduces the inhibition of neurite outgrowth of cultured mouse hippocampal neurons by chondroitin sulfate proteoglycans and the retraction of neurites of Neuro-2a cells by lysophosphatidic acid (LPA). Further, we show that PLPPR1 reduces the activation of Ras homolog family member A (RhoA) by LPA in Neuro-2a cells, and that this is because of an association of PLPPR1with the Rho-specific guanine nucleotide dissociation inhibitor (RhoGDI1). These results establish a novel signaling pathway for the PLPPR1 protein.


Assuntos
Axônios/fisiologia , Proteínas de Membrana/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Hipocampo/citologia , Imuno-Histoquímica , Lisofosfolipídeos/farmacologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neuritos , Proteômica , Transfecção , Proteínas ras/fisiologia , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/genética
12.
Arterioscler Thromb Vasc Biol ; 40(3): 714-732, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31996022

RESUMO

OBJECTIVE: Calcification of atherosclerotic plaque is traditionally associated with increased cardiovascular event risk; however, recent studies have found increased calcium density to be associated with more stable disease. 3-hydroxy-3-methylglutaryl coenzymeA reductase inhibitors or statins reduce cardiovascular events. Invasive clinical studies have found that statins alter both the lipid and calcium composition of plaque but the molecular mechanisms of statin-mediated effects on plaque calcium composition remain unclear. We recently defined a macrophage Rac (Ras-related C3 botulinum toxin substrate)-IL-1ß (interleukin-1 beta) signaling axis to be a key mechanism in promoting atherosclerotic calcification and sought to define the impact of statin therapy on this pathway. Approach and Results: Here, we demonstrate that statin therapy is independently associated with elevated coronary calcification in a high-risk patient population and that statins disrupt the complex between Rac1 and its inhibitor RhoGDI (Rho GDP-dissociation inhibitor), leading to increased active (GTP bound) Rac1 in primary monocytes/macrophages. Rac1 activation is prevented by rescue with the isoprenyl precursor geranylgeranyl diphosphate. Statin-treated macrophages exhibit increased activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), increased IL-1ß mRNA, and increased Rac1-dependent IL-1ß protein secretion in response to inflammasome stimulation. Using an animal model of calcific atherosclerosis, inclusion of statin in the atherogenic diet led to a myeloid Rac1-dependent increase in atherosclerotic calcification, which was associated with increased serum IL-1ß expression, increased plaque Rac1 activation, and increased plaque expression of the osteogenic markers, alkaline phosphatase and RUNX2 (Runt-related transcription factor 2). CONCLUSIONS: Statins are capable of increasing atherosclerotic calcification through disinhibition of a macrophage Rac1-IL-1ß signaling axis.


Assuntos
Aterosclerose/tratamento farmacológico , Atorvastatina/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Macrófagos/efeitos dos fármacos , Neuropeptídeos/metabolismo , Placa Aterosclerótica , Calcificação Vascular/enzimologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Idoso , Animais , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Camundongos Knockout para ApoE , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Prenilação , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Estudos Retrospectivos , Transdução de Sinais , Calcificação Vascular/genética , Calcificação Vascular/patologia , Proteínas rac1 de Ligação ao GTP/deficiência , Proteínas rac1 de Ligação ao GTP/genética , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
13.
Cardiovasc Drugs Ther ; 35(4): 769-773, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33891248

RESUMO

PURPOSE: Ang II regulates RhoGDI1 stability and cell proliferation via SUMOylation. However, how Ang II regulates RhoGDI1 SUMOylation remains unknown. In this study, we focused on revealing the effects of E1 subunits (Aos1 and Uba2) on RhoGDI1 SUMOylation in HA-VSMC proliferation. METHODS: The expressions of Aos1, Uba2, and SUMO1 were suppressed by siRNA transfection. HA-VSMCs were treated with Ang II (100 nM) for 24 h. RhoGDI1 SUMOylation and ubiquitination were checked by co-immunoprecipitation. Cell proliferation was detected by EdU assay. RESULTS: Uba2 or Aos1 suppression significantly inhibited Ang II-induced SUMO2/3 modification of RhoGDI1 and cell proliferation, while not affecting SUMO1 modification of RhoGDI1. In addition, Uba2 or Aos1 suppression promoted RhoGDI1 ubiquitination and degradation. These indicate that both Uba2 and Aos1 are necessary for SUMO2/3 modification of RhoGDI1 that participates in cell proliferation by regulating RhoGDI1 ubiquitination and stability. Moreover, SUMO1 suppression did not affect RhoGDI1 ubiquitination and degradation and cell proliferation in Ang II-induced VSMCs, suggesting that SUMO1 modification does not participate in RhoGDI1 stability and cell proliferation. CONCLUSION: This study reveals the differences between SUMO2/3 and SUMO1 modification in regulating RhoGDI1 stability and Ang II-mediated cell proliferation. Schematic summary of roles of SUMO1 and SUMO2/3 modification of RhoGDI1 in regulating RhoGDI1 stability and cell proliferation in Ang II-treated HA-VSMCs.


Assuntos
Músculo Liso Vascular/fisiologia , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Angiotensina II/metabolismo , Proliferação de Células/fisiologia , Humanos , Contração Muscular/fisiologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Sumoilação , Ubiquitinação
14.
J Cell Physiol ; 235(10): 6978-6989, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32003021

RESUMO

The activity of Rho-specific guanine nucleotide dissociation inhibitor α (RhoGDIα) is regulated by its own phosphorylation at different amino acid sites. These phosphorylation sites may have a crucial role in local Rho GTPases activation during cell migration. This paper is designed to explore the influence of phosphorylation on shear stress-induced spatial RhoGDIα activation. Based on the fluorescence resonance energy transfer biosensor sl-RhoGDIα, which was constructed to test the RhoGDIα activity in living cells, new RhoGDIα phosphomimetic mutation (sl-S101E/S174E, sl-Y156E, sl-S101E, sl-S174E) and phosphorylation-deficient mutation (sl-S101A/S174A, sl-Y156A, sl-S101A, sl-S174A) biosensors were designed to test their effects on RhoGDIα activation upon shear stress application in human umbilical vein endothelial cells (HUVECs). The results showed lower RhoGDIα activity at the downstream of HUVECs (the region from the edge of the nucleus to the edge of the cell along with the flow). The overall decrease in RhoGDIα activity was inhibited by Y156A-mutant, whereas the polarized RhoGDIα and Rac1 activity were blocked by S101A/S174A mutant. It is concluded that the Tyr156 phosphorylation mainly mediates shear stress-induced overall RhoGDIα activity, while Ser101/Ser174 phosphorylation mediates its polarization. This study demonstrates that differential phosphorylation of RhoGDIα regulates shear stress-induced spatial RhoGDIα activation, which could be a potential target to control cell migration.


Assuntos
Fosforilação/fisiologia , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas rac1 de Ligação ao GTP/metabolismo
15.
Mol Biol Rep ; 47(12): 9739-9747, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33200314

RESUMO

Dengue virus (DV) is the most rapidly spreading arbovirus in the world. Our previous studies indicated that Rac1, a kind of Rho GTPase, was related with the increased vascular permeability in DV infection. However, the molecular mechanisms that regulate the activity of the Rac1 pathway during DV infection is not fully understood yet. Recently, Rho-specific guanine nucleotide dissociated inhibitors (Rho GDIs), as a pivotal upstream regulator of Rho GTPase, attract our attention. To identify the role of GDI-1 in DV2 infection, the expression of GDI in Eahy926 cells was detected. Moreover, a GDI-1 down-regulated cell line was constructed to explore the correlation between GDI-1 and Rac1 and to further evaluate the function of GDI in DV life cycle. Our results indicated that DV2 infection could up-regulate GDI-1 expression, and down-regulation of GDI enhanced the activity of Rac1. In addition, down-regulated GDI-1 significantly inhibited all steps of DV2 replication cycle. GDI-1 plays an important role in DV2 infection via negatively regulating the activation of the Rac1-actin pathway. These results not only contribute to our further understanding of the pathogenesis of severe dengue but also provide further insight into the development of antiviral drugs.


Assuntos
Actinas/metabolismo , Vírus da Dengue/fisiologia , Dengue/virologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Aedes/virologia , Animais , Linhagem Celular , Humanos , Internalização do Vírus , Replicação Viral
16.
Exp Cell Res ; 380(2): 131-140, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31029634

RESUMO

Transforming growth factor-ß1 (TGF-ß1) alters the fibroblast phenotype by promoting transdifferentiation into myofibroblasts, which exhibit the ability to promote collagen synthesis and extracellular matrix (ECM) deposition, thereby playing a significant role in the pathology of silicosis. In this study, we investigated the regulatory mechanisms involved in myofibroblast transdifferentiation. Two-dimensional gel electrophoresis showed that Rho GDP-dissociation inhibitor α (RhoGDIα) was upregulated following myofibroblast transdifferentiation stimulated by TGF-ß1. We hypothesised that RhoGDIα may induce myofibroblast transdifferentiation and thus result in silicosis. Accordingly, the biological significance of RhoGDIα in cell proliferation and apoptosis was investigated by deletion of RhoGDIα in MRC-5 cells. In addition, a mechanistic study showed that fasudil, an inhibitor of the RhoA/Rho kinase (ROCK) signalling pathway, reduced the levels of RhoGDIα, RhoA, and phospho-myosin phosphatase (phospho-MYPT) in MRC-5 cells and silicosis model rats. Knockdown of RhoGDIα inhibited myofibroblast transdifferentiation and collagen deposition through RhoGDIα/RhoA/ROCK signalling in silicosis model mice. Overall, downregulation of RhoGDIα may significantly promote cell apoptosis and inhibit cell growth, resulting in reversal of myofibroblast transdifferentiation by RhoA/ROCK in vitro and in vivo. These data will facilitate further exploration of the potential use of RhoGDIα as a target for silicosis therapy.


Assuntos
Silicose/tratamento farmacológico , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Silicose/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
17.
J Am Soc Nephrol ; 28(12): 3545-3562, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28775002

RESUMO

Alteration of podocyte behavior is critically involved in the development and progression of many forms of human glomerular diseases. The molecular mechanisms that control podocyte behavior, however, are not well understood. Here, we investigated the role of Kindlin-2, a component of cell-matrix adhesions, in podocyte behavior in vivo Ablation of Kindlin-2 in podocytes resulted in alteration of actin cytoskeletal organization, reduction of the levels of slit diaphragm proteins, effacement of podocyte foot processes, and ultimately massive proteinuria and death due to kidney failure. Through proteomic analyses and in vitro coimmunoprecipitation experiments, we identified Rho GDP-dissociation inhibitor α (RhoGDIα) as a Kindlin-2-associated protein. Loss of Kindlin-2 in podocytes significantly reduced the expression of RhoGDIα and resulted in the dissociation of Rac1 from RhoGDIα, leading to Rac1 hyperactivation and increased motility of podocytes. Inhibition of Rac1 activation effectively suppressed podocyte motility and alleviated the podocyte defects and proteinuria induced by the loss of Kindlin-2 in vivo Our results identify a novel Kindlin-2-RhoGDIα-Rac1 signaling axis that is critical for regulation of podocyte structure and function in vivo and provide evidence that it may serve as a useful target for therapeutic control of podocyte injury and associated glomerular diseases.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Proteínas de Neoplasias/metabolismo , Neuropeptídeos/metabolismo , Podócitos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Albuminúria/metabolismo , Animais , Apoptose , Movimento Celular , Creatinina/análise , Proteínas do Citoesqueleto/genética , Progressão da Doença , Feminino , Fibrose , Genótipo , Humanos , Glomérulos Renais/patologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas de Neoplasias/genética , RNA Interferente Pequeno/metabolismo , Insuficiência Renal/patologia , Transdução de Sinais
18.
J Biol Chem ; 291(11): 5484-5499, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26719334

RESUMO

Rho proteins are small GTP/GDP-binding proteins primarily involved in cytoskeleton regulation. Their GTP/GDP cycle is often tightly connected to a membrane/cytosol cycle regulated by the Rho guanine nucleotide dissociation inhibitor α (RhoGDIα). RhoGDIα has been regarded as a housekeeping regulator essential to control homeostasis of Rho proteins. Recent proteomic screens showed that RhoGDIα is extensively lysine-acetylated. Here, we present the first comprehensive structural and mechanistic study to show how RhoGDIα function is regulated by lysine acetylation. We discover that lysine acetylation impairs Rho protein binding and increases guanine nucleotide exchange factor-catalyzed nucleotide exchange on RhoA, these two functions being prerequisites to constitute a bona fide GDI displacement factor. RhoGDIα acetylation interferes with Rho signaling, resulting in alteration of cellular filamentous actin. Finally, we discover that RhoGDIα is endogenously acetylated in mammalian cells, and we identify CBP, p300, and pCAF as RhoGDIα-acetyltransferases and Sirt2 and HDAC6 as specific deacetylases, showing the biological significance of this post-translational modification.


Assuntos
Lisina/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Acetilação , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Cristalografia por Raios X , Nucleotídeos de Guanina/metabolismo , Células HEK293 , Células HeLa , Desacetilase 6 de Histona , Histona Desacetilases/metabolismo , Humanos , Modelos Moleculares , Sirtuína 2/metabolismo , Sumoilação , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/análise , Proteína rhoA de Ligação ao GTP/química
19.
Cancer Sci ; 108(7): 1293-1302, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28417530

RESUMO

Rho GDP-dissociation inhibitor α (RhoGDIα) is an essential regulator for Rho GTPases. Although RhoGDIα may serve as an oncogene in colorectal cancer (CRC), the underlying mechanism is still unclear. We investigated the function, mechanism, and clinical significance of RhoGDIα in CRC progression. We founded that downregulation of RhoGDIα repressed CRC cell proliferation, motility, and invasion. Overexpression of RhoGDIα increased DNA damage response signals at telomeres, and led to telomere shortening in CRC cells, also being validated in 26 pairs of CRC tissues. Mechanistic studies revealed that RhoGDIα could promote telomeric repeat factor 1 (TRF1) expression through the phosphatidylinositol 3-kinase-protein kinase B signal pathway. Moreover, RhoGDIα protein levels were strongly correlated with TRF1 in CRC tissues. A cohort of 297 CRC samples validated the positive relationship between RhoGDIα and TRF1, and revealed that RhoGDIα and TRF1 levels were negatively associated with CRC patients' survival. Taken together, our results suggest that RhoGDIα regulate TRF1 and telomere length and may be novel prognostic biomarkers in colorectal cancer.


Assuntos
Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/biossíntese , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Biomarcadores Tumorais/análise , Western Blotting , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Invasividade Neoplásica/patologia , Prognóstico , Modelos de Riscos Proporcionais , Reação em Cadeia da Polimerase em Tempo Real , Encurtamento do Telômero , Análise Serial de Tecidos
20.
Biochemistry ; 55(2): 304-12, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26695096

RESUMO

Rho proteins are major regulators of the cytoskeleton. As most Ras-related proteins, they switch between an active, GTP-bound and an inactive, GDP-bound conformation. Rho proteins are targeted to the plasma membrane via a polybasic region and a prenyl group attached to a C-terminal cysteine residue. To distribute Rho proteins in the cell, the molecular chaperone RhoGDIα binds to the prenylated Rho proteins forming a cytosolic pool of mainly GDP-loaded Rho. Most studies characterized the interaction of prenylated Rho proteins and RhoGDIα. However, RhoGDIα was also shown to bind to nonprenylated Rho proteins with physiologically relevant micomolar affinities. Recently, it was discovered that RhoGDIα is targeted by post-translational lysine acetylation. For one site, K141, it was hypothesized that acetylation might lead to increased levels of formation of filamentous actin and filopodia in mammalian cells. The functional consequences of lysine acetylation for the interplay with nonprenylated RhoA have not been investigated. Here, we report that lysine acetylation at lysines K127 and K141 in the RhoGDIα immunoglobulin domain interferes with the interaction toward nonprenylated RhoA using a combined biochemical and biophysical approach. We determined the first crystal structure of a doubly acetylated protein, RhoGDIα, in complex with RhoA·GDP. We discover that the C-terminus of RhoA adopts a different conformation forming an intermolecular ß-sheet with the RhoGDIα immunoglobulin domain.


Assuntos
Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Acetilação , Animais , Humanos , Camundongos , Modelos Biológicos , Ligação Proteica , Termodinâmica , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/química , Proteína rhoA de Ligação ao GTP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA