Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.134
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
N Engl J Med ; 390(3): 212-220, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38231622

RESUMO

BACKGROUND: The Resynchronization-Defibrillation for Ambulatory Heart Failure Trial (RAFT) showed a greater benefit with respect to mortality at 5 years among patients who received cardiac-resynchronization therapy (CRT) than among those who received implantable cardioverter-defibrillators (ICDs). However, the effect of CRT on long-term survival is not known. METHODS: We randomly assigned patients with New York Heart Association (NYHA) class II or III heart failure, a left ventricular ejection fraction of 30% or less, and an intrinsic QRS duration of 120 msec or more (or a paced QRS duration of 200 msec or more) to receive either an ICD alone or a CRT defibrillator (CRT-D). We assessed long-term outcomes among patients at the eight highest-enrolling participating sites. The primary outcome was death from any cause; the secondary outcome was a composite of death from any cause, heart transplantation, or implantation of a ventricular assist device. RESULTS: The trial enrolled 1798 patients, of whom 1050 were included in the long-term survival trial; the median duration of follow-up for the 1050 patients was 7.7 years (interquartile range, 3.9 to 12.8), and the median duration of follow-up for those who survived was 13.9 years (interquartile range, 12.8 to 15.7). Death occurred in 405 of 530 patients (76.4%) assigned to the ICD group and in 370 of 520 patients (71.2%) assigned to the CRT-D group. The time until death appeared to be longer for those assigned to receive a CRT-D than for those assigned to receive an ICD (acceleration factor, 0.80; 95% confidence interval, 0.69 to 0.92; P = 0.002). A secondary-outcome event occurred in 412 patients (77.7%) in the ICD group and in 392 (75.4%) in the CRT-D group. CONCLUSIONS: Among patients with a reduced ejection fraction, a widened QRS complex, and NYHA class II or III heart failure, the survival benefit associated with receipt of a CRT-D as compared with ICD appeared to be sustained during a median of nearly 14 years of follow-up. (RAFT ClinicalTrials.gov number, NCT00251251.).


Assuntos
Terapia de Ressincronização Cardíaca , Desfibriladores Implantáveis , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Estimativa de Kaplan-Meier , Volume Sistólico , Resultado do Tratamento , Função Ventricular Esquerda , Eletrocardiografia , Seguimentos , Fatores de Tempo
2.
Nature ; 594(7864): 560-565, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040253

RESUMO

Myocardial infarction is a major cause of premature death in adults. Compromised cardiac function after myocardial infarction leads to chronic heart failure with systemic health complications and a high mortality rate1. Effective therapeutic strategies are needed to improve the recovery of cardiac function after myocardial infarction. More specifically, there is a major unmet need for a new class of drugs that can improve cardiomyocyte contractility, because inotropic therapies that are currently available have been associated with high morbidity and mortality in patients with systolic heart failure2,3 or have shown a very modest reduction of risk of heart failure4. Microtubule detyrosination is emerging as an important mechanism for the regulation of cardiomyocyte contractility5. Here we show that deficiency of microtubule-affinity regulating kinase 4 (MARK4) substantially limits the reduction in the left ventricular ejection fraction after acute myocardial infarction in mice, without affecting infarct size or cardiac remodelling. Mechanistically, we provide evidence that MARK4 regulates cardiomyocyte contractility by promoting phosphorylation of microtubule-associated protein 4 (MAP4), which facilitates the access of vasohibin 2 (VASH2)-a tubulin carboxypeptidase-to microtubules for the detyrosination of α-tubulin. Our results show how the detyrosination of microtubules in cardiomyocytes is finely tuned by MARK4 to regulate cardiac inotropy, and identify MARK4 as a promising therapeutic target for improving cardiac function after myocardial infarction.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Microtúbulos/química , Infarto do Miocárdio/fisiopatologia , Proteínas Serina-Treonina Quinases/fisiologia , Tirosina/química , Proteínas Angiogênicas , Animais , Carboxipeptidases , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos , Miócitos Cardíacos , Volume Sistólico , Função Ventricular Esquerda
3.
N Engl J Med ; 389(12): 1069-1084, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37622681

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction is increasing in prevalence and is associated with a high symptom burden and functional impairment, especially in persons with obesity. No therapies have been approved to target obesity-related heart failure with preserved ejection fraction. METHODS: We randomly assigned 529 patients who had heart failure with preserved ejection fraction and a body-mass index (the weight in kilograms divided by the square of the height in meters) of 30 or higher to receive once-weekly semaglutide (2.4 mg) or placebo for 52 weeks. The dual primary end points were the change from baseline in the Kansas City Cardiomyopathy Questionnaire clinical summary score (KCCQ-CSS; scores range from 0 to 100, with higher scores indicating fewer symptoms and physical limitations) and the change in body weight. Confirmatory secondary end points included the change in the 6-minute walk distance; a hierarchical composite end point that included death, heart failure events, and differences in the change in the KCCQ-CSS and 6-minute walk distance; and the change in the C-reactive protein (CRP) level. RESULTS: The mean change in the KCCQ-CSS was 16.6 points with semaglutide and 8.7 points with placebo (estimated difference, 7.8 points; 95% confidence interval [CI], 4.8 to 10.9; P<0.001), and the mean percentage change in body weight was -13.3% with semaglutide and -2.6% with placebo (estimated difference, -10.7 percentage points; 95% CI, -11.9 to -9.4; P<0.001). The mean change in the 6-minute walk distance was 21.5 m with semaglutide and 1.2 m with placebo (estimated difference, 20.3 m; 95% CI, 8.6 to 32.1; P<0.001). In the analysis of the hierarchical composite end point, semaglutide produced more wins than placebo (win ratio, 1.72; 95% CI, 1.37 to 2.15; P<0.001). The mean percentage change in the CRP level was -43.5% with semaglutide and -7.3% with placebo (estimated treatment ratio, 0.61; 95% CI, 0.51 to 0.72; P<0.001). Serious adverse events were reported in 35 participants (13.3%) in the semaglutide group and 71 (26.7%) in the placebo group. CONCLUSIONS: In patients with heart failure with preserved ejection fraction and obesity, treatment with semaglutide (2.4 mg) led to larger reductions in symptoms and physical limitations, greater improvements in exercise function, and greater weight loss than placebo. (Funded by Novo Nordisk; STEP-HFpEF ClinicalTrials.gov number, NCT04788511.).


Assuntos
Peptídeos Semelhantes ao Glucagon , Insuficiência Cardíaca , Obesidade , Humanos , Peptídeos Semelhantes ao Glucagon/efeitos adversos , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Obesidade/complicações , Volume Sistólico
4.
N Engl J Med ; 389(11): 975-986, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37632463

RESUMO

BACKGROUND: Ferric carboxymaltose therapy reduces symptoms and improves quality of life in patients who have heart failure with a reduced ejection fraction and iron deficiency. Additional evidence about the effects of ferric carboxymaltose on clinical events is needed. METHODS: In this double-blind, randomized trial, we assigned ambulatory patients with heart failure, a left ventricular ejection fraction of 40% or less, and iron deficiency, in a 1:1 ratio, to receive intravenous ferric carboxymaltose or placebo, in addition to standard therapy for heart failure. Ferric carboxymaltose or placebo was given every 6 months as needed on the basis of iron indexes and hemoglobin levels. The primary outcome was a hierarchical composite of death within 12 months after randomization, hospitalizations for heart failure within 12 months after randomization, or change from baseline to 6 months in the 6-minute walk distance. The significance level was set at 0.01. RESULTS: We enrolled 3065 patients, of whom 1532 were randomly assigned to the ferric carboxymaltose group and 1533 to the placebo group. Death by month 12 occurred in 131 patients (8.6%) in the ferric carboxymaltose group and 158 (10.3%) in the placebo group; a total of 297 and 332 hospitalizations for heart failure, respectively, occurred by month 12; and the mean (±SD) change from baseline to 6 months in the 6-minute walk distance was 8±60 and 4±59 m, respectively (Wilcoxon-Mann-Whitney P = 0.02; unmatched win ratio, 1.10; 99% confidence interval, 0.99 to 1.23). Repeated dosing of ferric carboxymaltose appeared to be safe with an acceptable adverse-event profile in the majority of patients. The number of patients with serious adverse events occurring during the treatment period was similar in the two groups (413 patients [27.0%] in the ferric carboxymaltose group and 401 [26.2%] in the placebo group). CONCLUSIONS: Among ambulatory patients who had heart failure with a reduced ejection fraction and iron deficiency, there was no apparent difference between ferric carboxymaltose and placebo with respect to the hierarchical composite of death, hospitalizations for heart failure, or 6-minute walk distance. (Funded by American Regent, a Daiichi Sankyo Group company; HEART-FID ClinicalTrials.gov number, NCT03037931.).


Assuntos
Compostos Férricos , Insuficiência Cardíaca , Deficiências de Ferro , Humanos , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Deficiências de Ferro/complicações , Deficiências de Ferro/tratamento farmacológico , Qualidade de Vida , Volume Sistólico , Função Ventricular Esquerda , Compostos Férricos/administração & dosagem , Compostos Férricos/efeitos adversos , Compostos Férricos/uso terapêutico , Método Duplo-Cego , Administração Intravenosa , Assistência Ambulatorial
5.
Circ Res ; 134(12): 1752-1766, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843295

RESUMO

Heart failure (HF) is characterized by a progressive decline in cardiac function and represents one of the largest health burdens worldwide. Clinically, 2 major types of HF are distinguished based on the left ventricular ejection fraction (EF): HF with reduced EF and HF with preserved EF. While both types share several risk factors and features of adverse cardiac remodeling, unique hallmarks beyond ejection fraction that distinguish these etiologies also exist. These differences may explain the fact that approved therapies for HF with reduced EF are largely ineffective in patients suffering from HF with preserved EF. Improving our understanding of the distinct cellular and molecular mechanisms is crucial for the development of better treatment strategies. This article reviews the knowledge of the immunologic mechanisms underlying HF with reduced and preserved EF and discusses how the different immune profiles elicited may identify attractive therapeutic targets for these conditions. We review the literature on the reported mechanisms of adverse cardiac remodeling in HF with reduced and preserved EF, as well as the immune mechanisms involved. We discuss how the knowledge gained from preclinical models of the complex syndrome of HF as well as from clinical data obtained from patients may translate to a better understanding of HF and result in specific treatments for these conditions in humans.


Assuntos
Insuficiência Cardíaca , Volume Sistólico , Remodelação Ventricular , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/imunologia , Animais , Miocardite/fisiopatologia , Miocardite/imunologia , Função Ventricular Esquerda , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia
6.
Circ Res ; 135(2): 372-396, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963864

RESUMO

Despite clinical and scientific advancements, heart failure is the major cause of morbidity and mortality worldwide. Both mitochondrial dysfunction and inflammation contribute to the development and progression of heart failure. Although inflammation is crucial to reparative healing following acute cardiomyocyte injury, chronic inflammation damages the heart, impairs function, and decreases cardiac output. Mitochondria, which comprise one third of cardiomyocyte volume, may prove a potential therapeutic target for heart failure. Known primarily for energy production, mitochondria are also involved in other processes including calcium homeostasis and the regulation of cellular apoptosis. Mitochondrial function is closely related to morphology, which alters through mitochondrial dynamics, thus ensuring that the energy needs of the cell are met. However, in heart failure, changes in substrate use lead to mitochondrial dysfunction and impaired myocyte function. This review discusses mitochondrial and cristae dynamics, including the role of the mitochondria contact site and cristae organizing system complex in mitochondrial ultrastructure changes. Additionally, this review covers the role of mitochondria-endoplasmic reticulum contact sites, mitochondrial communication via nanotunnels, and altered metabolite production during heart failure. We highlight these often-neglected factors and promising clinical mitochondrial targets for heart failure.


Assuntos
Insuficiência Cardíaca , Mitocôndrias Cardíacas , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Animais , Dinâmica Mitocondrial , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Metabolismo Energético , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia
7.
Nature ; 580(7802): 252-256, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269341

RESUMO

Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease1, screening for cardiotoxicity2 and decisions regarding the clinical management of patients with a critical illness3. However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training4,5. Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.


Assuntos
Aprendizado Profundo , Cardiopatias/diagnóstico , Cardiopatias/fisiopatologia , Coração/fisiologia , Coração/fisiopatologia , Modelos Cardiovasculares , Gravação em Vídeo , Fibrilação Atrial , Conjuntos de Dados como Assunto , Ecocardiografia , Insuficiência Cardíaca/fisiopatologia , Hospitais , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Função Ventricular Esquerda/fisiologia
8.
Circulation ; 150(2): e33-e50, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38808502

RESUMO

With continued medical and surgical advancements, most children and adolescents with congenital heart disease are expected to survive to adulthood. Chronic heart failure is increasingly being recognized as a major contributor to ongoing morbidity and mortality in this population as it ages, and treatment strategies to prevent and treat heart failure in the pediatric population are needed. In addition to primary myocardial dysfunction, anatomical and pathophysiological abnormalities specific to various congenital heart disease lesions contribute to the development of heart failure and affect potential strategies commonly used to treat adult patients with heart failure. This scientific statement highlights the significant knowledge gaps in understanding the epidemiology, pathophysiology, staging, and outcomes of chronic heart failure in children and adolescents with congenital heart disease not amenable to catheter-based or surgical interventions. Efforts to harmonize the definitions, staging, follow-up, and approach to heart failure in children with congenital heart disease are critical to enable the conduct of rigorous scientific studies to advance our understanding of the actual burden of heart failure in this population and to allow the development of evidence-based heart failure therapies that can improve outcomes for this high-risk cohort.


Assuntos
American Heart Association , Cardiopatias Congênitas , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/fisiopatologia , Cardiopatias Congênitas/terapia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/epidemiologia , Adolescente , Criança , Estados Unidos/epidemiologia , Doença Crônica , Gerenciamento Clínico
9.
Circulation ; 149(19): 1474-1489, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38533643

RESUMO

BACKGROUND: Heart failure triggers a shift in myocardial metabolic substrate utilization, favoring the ketone body 3-hydroxybutyrate as energy source. We hypothesized that 14-day treatment with ketone ester (KE) would improve resting and exercise hemodynamics and exercise capacity in patients with heart failure with reduced ejection fraction. METHODS: In a randomized, double-blind cross-over study, nondiabetic patients with heart failure with reduced ejection fraction received 14-day KE and 14-day isocaloric non-KE comparator regimens of 4 daily doses separated by a 14-day washout period. After each treatment period, participants underwent right heart catheterization, echocardiography, and blood sampling at plasma trough levels and after dosing. Participants underwent an exercise hemodynamic assessment after a second dosing. The primary end point was resting cardiac output (CO). Secondary end points included resting and exercise pulmonary capillary wedge pressure and peak exercise CO and metabolic equivalents. RESULTS: We included 24 patients with heart failure with reduced ejection fraction (17 men; 65±9 years of age; all White). Resting CO at trough levels was higher after KE compared with isocaloric comparator (5.2±1.1 L/min versus 5.0±1.1 L/min; difference, 0.3 L/min [95% CI, 0.1-0.5), and pulmonary capillary wedge pressure was lower (8±3 mm Hg versus 11±3 mm Hg; difference, -2 mm Hg [95% CI, -4 to -1]). These changes were amplified after KE dosing. Across all exercise intensities, KE treatment was associated with lower mean exercise pulmonary capillary wedge pressure (-3 mm Hg [95% CI, -5 to -1] ) and higher mean CO (0.5 L/min [95% CI, 0.1-0.8]), significantly different at low to moderate steady-state exercise but not at peak. Metabolic equivalents remained similar between treatments. In exploratory analyses, KE treatment was associated with 18% lower NT-proBNP (N-terminal pro-B-type natriuretic peptide; difference, -98 ng/L [95% CI, -185 to -23]), higher left ventricular ejection fraction (37±5 versus 34±5%; P=0.01), and lower left atrial and ventricular volumes. CONCLUSIONS: KE treatment for 14 days was associated with higher CO at rest and lower filling pressures, cardiac volumes, and NT-proBNP levels compared with isocaloric comparator. These changes persisted during exercise and were achieved on top of optimal medical therapy. Sustained modulation of circulating ketone bodies is a potential treatment principle in patients with heart failure with reduced ejection fraction. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05161650.


Assuntos
Insuficiência Cardíaca , Volume Sistólico , Humanos , Masculino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Feminino , Método Duplo-Cego , Idoso , Volume Sistólico/efeitos dos fármacos , Pessoa de Meia-Idade , Estudos Cross-Over , Tolerância ao Exercício/efeitos dos fármacos , Administração Oral , Função Ventricular Esquerda/efeitos dos fármacos , Resultado do Tratamento , Ésteres/administração & dosagem , Cetonas/administração & dosagem
10.
Circulation ; 149(24): 1865-1874, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38690659

RESUMO

BACKGROUND: The morbidity and mortality rates of patients with heart failure (HF) and functional mitral regurgitation (MR) remain substantial despite guideline-directed medical therapy for HF. We evaluated the efficacy of ertugliflozin for reduction of functional MR associated with HF with mild to moderately reduced ejection fraction. METHODS: The EFFORT trial (Ertugliflozin for Functional Mitral Regurgitation) was a multicenter, double-blind, randomized trial to examine the hypothesis that the sodium-glucose cotransporter 2 inhibitor ertugliflozin is effective for improving MR in patients with HF with New York Heart Association functional class II or III, 35%≤ejection fraction<50%, and effective regurgitant orifice area of chronic functional MR >0.1 cm2 on baseline echocardiography. We randomly assigned 128 patients to receive either ertugliflozin or placebo in addition to guideline-directed medical therapy for HF. The primary end point was change in effective regurgitant orifice area of functional MR from baseline to the 12-month follow-up. Secondary end points included changes in regurgitant volume, left ventricular (LV) volume indices, left atrial volume index, LV global longitudinal strain, and NT-proBNP (N-terminal pro-B-type natriuretic peptide). RESULTS: The treatment groups were generally well-balanced with regard to baseline characteristics: mean age, 66±11 years; 61% men; 13% diabetes; 51% atrial fibrillation; 43% use of angiotensin receptor-neprilysin inhibitor; ejection fraction, 42±8%; and effective regurgitant orifice area, 0.20±0.12 cm2. The decrease in effective regurgitant orifice area was significantly greater in the ertugliflozin group than in the placebo group (-0.05±0.06 versus 0.03±0.12 cm2; P<0.001). Compared with placebo, ertugliflozin significantly reduced regurgitant volume by 11.2 mL (95% CI, -16.1 to -6.3; P=0.009), left atrial volume index by 6.0 mL/m2 (95% CI, -12.16 to 0.15; P=0.005), and LV global longitudinal strain by 1.44% (95% CI, -2.42% to -0.46%; P=0.004). There were no significant between-group differences regarding changes in LV volume indices, ejection fraction, or NT-proBNP levels. Serious adverse events occurred in one patient (1.6%) in the ertugliflozin group and 6 (9.2%) in the placebo group (P=0.12). CONCLUSIONS: Among patients with functional MR associated with HF, ertugliflozin significantly improved LV global longitudinal strain and left atrial remodeling, and reduced functional MR. Sodium-glucose cotransporter 2 inhibitors may be considered for patients with functional MR. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04231331.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Insuficiência Cardíaca , Insuficiência da Valva Mitral , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Insuficiência da Valva Mitral/tratamento farmacológico , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/fisiopatologia , Masculino , Feminino , Idoso , Método Duplo-Cego , Pessoa de Meia-Idade , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Volume Sistólico/efeitos dos fármacos , Resultado do Tratamento , Fragmentos de Peptídeos/sangue , Função Ventricular Esquerda/efeitos dos fármacos , Peptídeo Natriurético Encefálico
11.
Circulation ; 150(4): 272-282, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38841854

RESUMO

BACKGROUND: A hypothetical concern has been raised that sacubitril/valsartan might cause cognitive impairment because neprilysin is one of several enzymes degrading amyloid-ß peptides in the brain, some of which are neurotoxic and linked to Alzheimer-type dementia. To address this, we examined the effect of sacubitril/valsartan compared with valsartan on cognitive function in patients with heart failure with preserved ejection fraction in a prespecified substudy of PARAGON-HF (Prospective Comparison of Angiotensin Receptor Neprilysin Inhibitor With Angiotensin Receptor Blocker Global Outcomes in Heart Failure With Preserved Ejection Fraction). METHODS: In PARAGON-HF, serial assessment of cognitive function was conducted in a subset of patients with the Mini-Mental State Examination (MMSE; score range, 0-30, with lower scores reflecting worse cognitive function). The prespecified primary analysis of this substudy was the change from baseline in MMSE score at 96 weeks. Other post hoc analyses included cognitive decline (fall in MMSE score of ≥3 points), cognitive impairment (MMSE score <24), or the occurrence of dementia-related adverse events. RESULTS: Among 2895 patients included in the MMSE substudy with baseline MMSE score measured, 1453 patients were assigned to sacubitril/valsartan and 1442 to valsartan. Their mean age was 73 years, and the median follow-up was 32 months. The mean±SD MMSE score at randomization was 27.4±3.0 in the sacubitril/valsartan group, with 10% having an MMSE score <24; the corresponding numbers were nearly identical in the valsartan group. The mean change from baseline to 96 weeks in the sacubitril/valsartan group was -0.05 (SE, 0.07); the corresponding change in the valsartan group was -0.04 (0.07). The mean between-treatment difference at week 96 was -0.01 (95% CI, -0.20 to 0.19; P=0.95). Analyses of a ≥3-point decline in MMSE, decrease to a score <24, dementia-related adverse events, and combinations of these showed no difference between sacubitril/valsartan and valsartan. No difference was found in the subgroup of patients tested for apolipoprotein E ε4 allele genotype. CONCLUSIONS: Patients with heart failure with preserved ejection fraction in PARAGON-HF had relatively low baseline MMSE scores. Cognitive change, measured by MMSE, did not differ between treatment with sacubitril/valsartan and treatment with valsartan in patients with heart failure with preserved ejection fraction. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01920711.


Assuntos
Aminobutiratos , Antagonistas de Receptores de Angiotensina , Compostos de Bifenilo , Cognição , Combinação de Medicamentos , Insuficiência Cardíaca , Volume Sistólico , Tetrazóis , Valsartana , Humanos , Compostos de Bifenilo/uso terapêutico , Valsartana/uso terapêutico , Valsartana/efeitos adversos , Aminobutiratos/uso terapêutico , Aminobutiratos/efeitos adversos , Masculino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Feminino , Idoso , Cognição/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Antagonistas de Receptores de Angiotensina/uso terapêutico , Antagonistas de Receptores de Angiotensina/efeitos adversos , Pessoa de Meia-Idade , Tetrazóis/uso terapêutico , Tetrazóis/efeitos adversos , Estudos Prospectivos , Neprilisina/antagonistas & inibidores , Resultado do Tratamento , Disfunção Cognitiva/tratamento farmacológico , Idoso de 80 Anos ou mais
12.
N Engl J Med ; 387(12): 1089-1098, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36027570

RESUMO

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of hospitalization for heart failure and cardiovascular death among patients with chronic heart failure and a left ventricular ejection fraction of 40% or less. Whether SGLT2 inhibitors are effective in patients with a higher left ventricular ejection fraction remains less certain. METHODS: We randomly assigned 6263 patients with heart failure and a left ventricular ejection fraction of more than 40% to receive dapagliflozin (at a dose of 10 mg once daily) or matching placebo, in addition to usual therapy. The primary outcome was a composite of worsening heart failure (which was defined as either an unplanned hospitalization for heart failure or an urgent visit for heart failure) or cardiovascular death, as assessed in a time-to-event analysis. RESULTS: Over a median of 2.3 years, the primary outcome occurred in 512 of 3131 patients (16.4%) in the dapagliflozin group and in 610 of 3132 patients (19.5%) in the placebo group (hazard ratio, 0.82; 95% confidence interval [CI], 0.73 to 0.92; P<0.001). Worsening heart failure occurred in 368 patients (11.8%) in the dapagliflozin group and in 455 patients (14.5%) in the placebo group (hazard ratio, 0.79; 95% CI, 0.69 to 0.91); cardiovascular death occurred in 231 patients (7.4%) and 261 patients (8.3%), respectively (hazard ratio, 0.88; 95% CI, 0.74 to 1.05). Total events and symptom burden were lower in the dapagliflozin group than in the placebo group. Results were similar among patients with a left ventricular ejection fraction of 60% or more and those with a left ventricular ejection fraction of less than 60%, and results were similar in prespecified subgroups, including patients with or without diabetes. The incidence of adverse events was similar in the two groups. CONCLUSIONS: Dapagliflozin reduced the combined risk of worsening heart failure or cardiovascular death among patients with heart failure and a mildly reduced or preserved ejection fraction. (Funded by AstraZeneca; DELIVER ClinicalTrials.gov number, NCT03619213.).


Assuntos
Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Volume Sistólico , Função Ventricular Esquerda , Compostos Benzidrílicos/efeitos adversos , Compostos Benzidrílicos/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos/efeitos adversos , Glucosídeos/uso terapêutico , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos
13.
Arterioscler Thromb Vasc Biol ; 44(7): 1570-1583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38813697

RESUMO

BACKGROUND: Pulmonary hypertension (PH) represents an important phenotype in heart failure with preserved ejection fraction (HFpEF). However, management of PH-HFpEF is challenging because mechanisms involved in the regulation of PH-HFpEF remain unclear. METHODS: We used a mass spectrometry-based comparative plasma proteomics approach as a sensitive and comprehensive hypothesis-generating discovery technique to profile proteins in patients with PH-HFpEF and control subjects. We then validated and investigated the role of one of the identified proteins using in vitro cell cultures, in vivo animal models, and independent cohort of human samples. RESULTS: Plasma proteomics identified high protein abundance levels of B2M (ß2-microglobulin) in patients with PH-HFpEF. Interestingly, both circulating and skeletal muscle levels of B2M were increased in mice with skeletal muscle SIRT3 (sirtuin-3) deficiency or high-fat diet-induced PH-HFpEF. Plasma and muscle biopsies from a validation cohort of PH-HFpEF patients were found to have increased B2M levels, which positively correlated with disease severity, especially pulmonary capillary wedge pressure and right atrial pressure at rest. Not only did the administration of exogenous B2M promote migration/proliferation in pulmonary arterial vascular endothelial cells but it also increased PCNA (proliferating cell nuclear antigen) expression and cell proliferation in pulmonary arterial vascular smooth muscle cells. Finally, B2m deletion improved glucose intolerance, reduced pulmonary vascular remodeling, lowered PH, and attenuated RV hypertrophy in mice with high-fat diet-induced PH-HFpEF. CONCLUSIONS: Patients with PH-HFpEF display higher circulating and skeletal muscle expression levels of B2M, the magnitude of which correlates with disease severity. Our findings also reveal a previously unknown pathogenic role of B2M in the regulation of pulmonary vascular proliferative remodeling and PH-HFpEF. These data suggest that circulating and skeletal muscle B2M can be promising targets for the management of PH-HFpEF.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca , Hipertensão Pulmonar , Proteômica , Volume Sistólico , Microglobulina beta-2 , Adulto , Idoso , Animais , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Microglobulina beta-2/genética , Microglobulina beta-2/sangue , Microglobulina beta-2/metabolismo , Biomarcadores/sangue , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Proteômica/métodos , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Remodelação Vascular , Função Ventricular Esquerda
14.
Nature ; 568(7752): 351-356, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971818

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a common syndrome with high morbidity and mortality for which there are no evidence-based therapies. Here we report that concomitant metabolic and hypertensive stress in mice-elicited by a combination of high-fat diet and inhibition of constitutive nitric oxide synthase using Nω-nitro-L-arginine methyl ester (L-NAME)-recapitulates the numerous systemic and cardiovascular features of HFpEF in humans. Expression of one of the unfolded protein response effectors, the spliced form of X-box-binding protein 1 (XBP1s), was reduced in the myocardium of our rodent model and in humans with HFpEF. Mechanistically, the decrease in XBP1s resulted from increased activity of inducible nitric oxide synthase (iNOS) and S-nitrosylation of the endonuclease inositol-requiring protein 1α (IRE1α), culminating in defective XBP1 splicing. Pharmacological or genetic suppression of iNOS, or cardiomyocyte-restricted overexpression of XBP1s, each ameliorated the HFpEF phenotype. We report that iNOS-driven dysregulation of the IRE1α-XBP1 pathway is a crucial mechanism of cardiomyocyte dysfunction in HFpEF.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Estresse Nitrosativo , Volume Sistólico , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Endorribonucleases/metabolismo , Insuficiência Cardíaca/prevenção & controle , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(36): e2206708119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044551

RESUMO

The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death of the cell. The release of Ca2+ from the ryanodine receptors 2 (RyR2) on the sarcoplasmic reticulum (SR) at mitochondria-SR microdomains serves as the critical communication to match energy production to meet metabolic demands. Therefore, we tested the hypothesis that alterations in the mitochondria-SR connectomics contribute to SAN dysfunction in HF. We took advantage of a mouse model of chronic pressure overload-induced HF by transverse aortic constriction (TAC) and a SAN-specific CRISPR-Cas9-mediated knockdown of mitofusin-2 (Mfn2), the mitochondria-SR tethering GTPase protein. TAC mice exhibited impaired cardiac function with HF, cardiac fibrosis, and profound SAN dysfunction. Ultrastructural imaging using electron microscope (EM) tomography revealed abnormal mitochondrial structure with increased mitochondria-SR distance. The expression of Mfn2 was significantly down-regulated and showed reduced colocalization with RyR2 in HF SAN cells. Indeed, SAN-specific Mfn2 knockdown led to alterations in the mitochondria-SR microdomains and SAN dysfunction. Finally, disruptions in the mitochondria-SR microdomains resulted in abnormal mitochondrial Ca2+ handling, alterations in localized protein kinase A (PKA) activity, and impaired mitochondrial function in HF SAN cells. The current study provides insights into the role of mitochondria-SR microdomains in SAN automaticity and possible therapeutic targets for SAN dysfunction in HF patients.


Assuntos
Conectoma , Insuficiência Cardíaca , Mitocôndrias Cardíacas , Retículo Sarcoplasmático , Síndrome do Nó Sinusal , Nó Sinoatrial , Animais , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Camundongos , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/patologia , Síndrome do Nó Sinusal/patologia , Síndrome do Nó Sinusal/fisiopatologia , Nó Sinoatrial/fisiopatologia
16.
Eur Heart J ; 45(26): 2281-2293, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733250

RESUMO

Current understanding of iron-deficient heart failure is based on blood tests that are thought to reflect systemic iron stores, but the available evidence suggests greater complexity. The entry and egress of circulating iron is controlled by erythroblasts, which (in severe iron deficiency) will sacrifice erythropoiesis to supply iron to other organs, e.g. the heart. Marked hypoferraemia (typically with anaemia) can drive the depletion of cardiomyocyte iron, impairing contractile performance and explaining why a transferrin saturation < ≈15%-16% predicts the ability of intravenous iron to reduce the risk of major heart failure events in long-term trials (Type 1 iron-deficient heart failure). However, heart failure may be accompanied by intracellular iron depletion within skeletal muscle and cardiomyocytes, which is disproportionate to the findings of systemic iron biomarkers. Inflammation- and deconditioning-mediated skeletal muscle dysfunction-a primary cause of dyspnoea and exercise intolerance in patients with heart failure-is accompanied by intracellular skeletal myocyte iron depletion, which can be exacerbated by even mild hypoferraemia, explaining why symptoms and functional capacity improve following intravenous iron, regardless of baseline haemoglobin or changes in haemoglobin (Type 2 iron-deficient heart failure). Additionally, patients with advanced heart failure show myocardial iron depletion due to both diminished entry into and enhanced egress of iron from the myocardium; the changes in iron proteins in the cardiomyocytes of these patients are opposite to those expected from systemic iron deficiency. Nevertheless, iron supplementation can prevent ventricular remodelling and cardiomyopathy produced by experimental injury in the absence of systemic iron deficiency (Type 3 iron-deficient heart failure). These observations, taken collectively, support the possibility of three different mechanistic pathways for the development of iron-deficient heart failure: one that is driven through systemic iron depletion and impaired erythropoiesis and two that are characterized by disproportionate depletion of intracellular iron in skeletal and cardiac muscle. These mechanisms are not mutually exclusive, and all pathways may be operative at the same time or may occur sequentially in the same patients.


Assuntos
Anemia Ferropriva , Insuficiência Cardíaca , Ferro , Músculo Esquelético , Miócitos Cardíacos , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ferro/metabolismo , Miócitos Cardíacos/metabolismo , Músculo Esquelético/metabolismo , Anemia Ferropriva/metabolismo , Miocárdio/metabolismo , Deficiências de Ferro , Eritropoese/fisiologia , Eritroblastos/metabolismo
17.
Eur Heart J ; 45(29): 2634-2643, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-38898573

RESUMO

BACKGROUND AND AIMS: In chronic ischaemic heart failure, revascularisation strategies control symptoms but are less effective in improving left ventricular ejection fraction (LVEF). The aim of this trial is to investigate the safety of cardiac shockwave therapy (SWT) as a novel treatment option and its efficacy in increasing cardiac function by inducing angiogenesis and regeneration in hibernating myocardium. METHODS: In this single-blind, parallel-group, sham-controlled trial (cardiac shockwave therapy for ischemic heart failure, CAST-HF; NCT03859466) patients with LVEF ≤40% requiring surgical revascularisation were enrolled. Patients were randomly assigned to undergo direct cardiac SWT or sham treatment in addition to coronary bypass surgery. The primary efficacy endpoint was the improvement in LVEF measured by cardiac magnetic resonance imaging from baseline to 360 days. RESULTS: Overall, 63 patients were randomized, out of which 30 patients of the SWT group and 28 patients of the Sham group attained 1-year follow-up of the primary endpoint. Greater improvement in LVEF was observed in the SWT group (Δ from baseline to 360 days: SWT 11.3%, SD 8.8; Sham 6.3%, SD 7.4, P = .0146). Secondary endpoints included the 6-minute walking test, where patients randomized in the SWT group showed a greater Δ from baseline to 360 days (127.5 m, SD 110.6) than patients in the Sham group (43.6 m, SD 172.1) (P = .028) and Minnesota Living with Heart Failure Questionnaire score on day 360, which was 11.0 points (SD 19.1) for the SWT group and 17.3 points (SD 15.1) for the Sham group (P = .15). Two patients in the treatment group died for non-device-related reasons. CONCLUSIONS: In conclusion, the CAST-HF trial indicates that direct cardiac SWT, in addition to coronary bypass surgery improves LVEF and physical capacity in patients with ischaemic heart failure.


Assuntos
Ponte de Artéria Coronária , Insuficiência Cardíaca , Isquemia Miocárdica , Volume Sistólico , Humanos , Masculino , Feminino , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/fisiopatologia , Método Simples-Cego , Pessoa de Meia-Idade , Isquemia Miocárdica/terapia , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/complicações , Isquemia Miocárdica/cirurgia , Volume Sistólico/fisiologia , Idoso , Resultado do Tratamento , Terapia Combinada , Ondas de Choque de Alta Energia/uso terapêutico
18.
Annu Rev Physiol ; 83: 39-58, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33074771

RESUMO

Heart failure (HF) is a global pandemic with a poor prognosis after hospitalization. Despite HF syndrome complexities, evidence of significant sympathetic overactivity in the manifestation and progression of HF is universally accepted. Confirmation of this dogma is observed in guideline-directed use of neurohormonal pharmacotherapies as a standard of care in HF. Despite reductions in morbidity and mortality, a growing patient population is resistant to these medications, while off-target side effects lead to dismal patient adherence to lifelong drug regimens. Novel therapeutic strategies, devoid of these limitations, are necessary to attenuate the progression of HF pathophysiology while continuing to reduce morbidity and mortality. Renal denervation is an endovascular procedure, whereby the ablation of renal nerves results in reduced renal afferent and efferent sympathetic nerve activity in the kidney and globally. In this review, we discuss the current state of preclinical and clinical research related to renal sympathetic denervation to treat HF.


Assuntos
Insuficiência Cardíaca/terapia , Simpatectomia/métodos , Animais , Progressão da Doença , Insuficiência Cardíaca/fisiopatologia , Humanos , Rim/fisiopatologia
19.
J Physiol ; 602(14): 3401-3422, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843407

RESUMO

Heart failure with preserved ejection fraction (HFpEF) has been characterized by lower blood flow to exercising limbs and lower peak oxygen utilization ( V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ), possibly associated with disease-related changes in sympathetic (α-adrenergic) signaling. Thus, in seven patients with HFpEF (70 ± 6 years, 3 female/4 male) and seven controls (CON) (66 ± 3 years, 3 female/4 male), we examined changes (%Δ) in leg blood flow (LBF, Doppler ultrasound) and leg V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ to intra-arterial infusion of phentolamine (PHEN, α-adrenergic antagonist) or phenylephrine (PE, α1-adrenergic agonist) at rest and during single-leg knee-extension exercise (0, 5 and 10 W). At rest, the PHEN-induced increase in LBF was not different between groups, but PE-induced reductions in LBF were lower in HFpEF (-16% ± 4% vs. -26% ± 5%, HFpEF vs. CON; P < 0.05). During exercise, the PHEN-induced increase in LBF was greater in HFpEF at 10 W (16% ± 8% vs. 8% ± 5%; P < 0.05). PHEN increased leg V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ in HFpEF (10% ± 3%, 11% ± 6%, 15% ± 7% at 0, 5 and 10 W; P < 0.05) but not in controls (-1% ± 9%, -4% ± 2%, -1% ± 5%; P = 0.24). The 'magnitude of sympatholysis' (PE-induced %Δ LBF at rest - PE-induced %Δ LBF during exercise) was lower in patients with HFpEF (-6% ± 4%, -6% ± 6%, -7% ± 5% vs. -13% ± 6%, -17% ± 5%, -20% ± 5% at 0, 5 and 10 W; P < 0.05) and was positively related to LBF, leg oxygen delivery, leg V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ , and the PHEN-induced increase in LBF (P < 0.05). Together, these data indicate that excessive α-adrenergic vasoconstriction restrains blood flow and limits V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ of the exercising leg in patients with HFpEF, and is related to impaired functional sympatholysis in this patient group. KEY POINTS: Sympathetic (α-adrenergic)-mediated vasoconstriction is exaggerated during exercise in patients with heart failure with preserved ejection fraction (HFpEF), which may contribute to limitations of blood flow, oxygen delivery and oxygen utilization in the exercising muscle. The ability to adequately attenuate α1-adrenergic vasoconstriction (i.e. functional sympatholysis) within the vasculature of the exercising muscle is impaired in patients with HFpEF. These observations extend our current understanding of HFpEF pathophysiology by implicating excessive α-adrenergic restraint and impaired functional sympatholysis as important contributors to disease-related impairments in exercising muscle blood flow and oxygen utilization in these patients.


Assuntos
Exercício Físico , Insuficiência Cardíaca , Músculo Esquelético , Volume Sistólico , Humanos , Masculino , Feminino , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Idoso , Músculo Esquelético/irrigação sanguínea , Exercício Físico/fisiologia , Pessoa de Meia-Idade , Fentolamina/farmacologia , Fluxo Sanguíneo Regional , Fenilefrina/farmacologia , Consumo de Oxigênio , Antagonistas Adrenérgicos alfa/farmacologia , Perna (Membro)/irrigação sanguínea
20.
Stroke ; 55(6): 1720-1727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660813

RESUMO

Reduced left ventricular ejection fraction ≤40%, a known risk factor for adverse cardiac outcomes and recurrent acute ischemic stroke, may be detected during an acute ischemic stroke hospitalization. A multidisciplinary care paradigm informed by neurology and cardiology expertise may facilitate the timely implementation of an array of proven heart failure-specific therapies and procedures in a nuanced manner to optimize brain and cardiac health.


Assuntos
AVC Isquêmico , Volume Sistólico , Humanos , Volume Sistólico/fisiologia , AVC Isquêmico/terapia , AVC Isquêmico/fisiopatologia , Disfunção Ventricular Esquerda/terapia , Disfunção Ventricular Esquerda/fisiopatologia , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/fisiopatologia , Encéfalo/fisiopatologia , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA