Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(43): 21545-21555, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591245

RESUMO

The cadherin-catenin adhesion complex is the central component of the cell-cell adhesion adherens junctions that transmit mechanical stress from cell to cell. We have determined the nanoscale structure of the adherens junction complex formed by the α-catenin•ß-catenin•epithelial cadherin cytoplasmic domain (ABE) using negative stain electron microscopy, small-angle X-ray scattering, and selective deuteration/small-angle neutron scattering. The ABE complex is highly pliable and displays a wide spectrum of flexible structures that are facilitated by protein-domain motions in α- and ß-catenin. Moreover, the 107-residue intrinsically disordered N-terminal segment of ß-catenin forms a flexible "tongue" that is inserted into α-catenin and participates in the assembly of the ABE complex. The unanticipated ensemble of flexible conformations of the ABE complex suggests a dynamic mechanism for sensitivity and reversibility when transducing mechanical signals, in addition to the catch/slip bond behavior displayed by the ABE complex under mechanical tension. Our results provide mechanistic insight into the structural dynamics for the cadherin-catenin adhesion complex in mechanotransduction.


Assuntos
Caderinas/química , Caderinas/metabolismo , Mecanotransdução Celular , alfa Catenina/química , alfa Catenina/metabolismo , beta Catenina/química , beta Catenina/metabolismo , Junções Aderentes/química , Junções Aderentes/genética , Junções Aderentes/metabolismo , Motivos de Aminoácidos , Caderinas/genética , Humanos , Conformação Molecular , Ligação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo , alfa Catenina/genética , beta Catenina/genética
2.
Nature ; 518(7538): 245-8, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25607361

RESUMO

Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.


Assuntos
Apoptose , Polaridade Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Células Epiteliais/citologia , Epitélio/embriologia , Morfogênese , Junções Aderentes/química , Junções Aderentes/metabolismo , Animais , Forma Celular , Células Epiteliais/metabolismo , Modelos Biológicos , Miosina Tipo II/metabolismo
3.
J Cell Sci ; 131(7)2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29507118

RESUMO

The apical junctional complex (AJC), which includes tight junctions (TJs) and adherens junctions (AJs), determines the epithelial polarity, cell-cell adhesion and permeability barrier. An intriguing characteristic of a TJ is the dynamic nature of its multiprotein complex. Occludin is the most mobile TJ protein, but its significance in TJ dynamics is poorly understood. On the basis of phosphorylation sites, we distinguished a sequence in the C-terminal domain of occludin as a regulatory motif (ORM). Deletion of ORM and expression of a deletion mutant of occludin in renal and intestinal epithelia reduced the mobility of occludin at the TJs. ORM deletion attenuated Ca2+ depletion, osmotic stress and hydrogen peroxide-induced disruption of TJs, AJs and the cytoskeleton. The double point mutations T403A/T404A, but not T403D/T404D, in occludin mimicked the effects of ORM deletion on occludin mobility and AJC disruption by Ca2+ depletion. Both Y398A/Y402A and Y398D/Y402D double point mutations partially blocked AJC disruption. Expression of a deletion mutant of occludin attenuated collective cell migration in the renal and intestinal epithelia. Overall, this study reveals the role of ORM and its phosphorylation in occludin mobility, AJC dynamics and epithelial cell migration.


Assuntos
Junções Aderentes/química , Ocludina/química , Fosfoproteínas/química , Junções Íntimas/química , Junções Aderentes/genética , Animais , Cálcio/metabolismo , Movimento Celular/genética , Polaridade Celular/genética , Citoesqueleto/química , Citoesqueleto/genética , Cães , Células Epiteliais/química , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Junções Intercelulares/química , Junções Intercelulares/genética , Células Madin Darby de Rim Canino , Ocludina/genética , Fosfoproteínas/genética , Fosforilação/genética , Mutação Puntual/genética , Domínios Proteicos/genética , Junções Íntimas/genética
4.
Heart Fail Rev ; 24(1): 115-132, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30288656

RESUMO

Intercalated discs (ICDs) are highly orchestrated structures that connect neighboring cardiomyocytes in the heart. Three major complexes are distinguished in ICD: desmosome, adherens junction (AJ), and gap junction (GJ). Desmosomes are major cell adhesion junctions that anchor cell membrane to the intermediate filament network; AJs connect the actin cytoskeleton of adjacent cells; and gap junctions metabolically and electrically connect the cytoplasm of adjacent cardiomyocytes. All these complexes work as a single unit, the so-called area composita, interdependently rather than individually. Mutation or altered expression of ICD proteins results in various cardiac diseases, such as ARVC (arrhythmogenic right ventricular cardiomyopathy), dilated cardiomyopathy, and hypotrophy cardiomyopathy, eventually leading to heart failure. In this article, we first review the recent findings on the structural organization of ICD and their functions and then focus on the recent advances in molecular pathogenesis of the ICD-related heart diseases, which include two major areas: i) the ICD gene mutations in cardiac diseases, and ii) the involvement of ICD proteins in signal transduction pathways leading to myocardium remodeling and eventual heart failure. These major ICD-related signaling pathways include Wnt/ß-catenin pathway, p38 MAPK cascade, Rho-dependent serum response factor (SRF) signaling, calcineurin/NFAT signaling, Hippo kinase cascade, etc., which are differentially regulated in pathological conditions.


Assuntos
Junções Aderentes/metabolismo , Adesão Celular , Desmossomos/metabolismo , Junções Comunicantes/metabolismo , Cardiopatias/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Junções Aderentes/química , Junções Aderentes/genética , Animais , Desmossomos/química , Desmossomos/genética , Junções Comunicantes/química , Junções Comunicantes/genética , Cardiopatias/genética , Humanos , Mutação de Sentido Incorreto , Transdução de Sinais
5.
PLoS Comput Biol ; 13(3): e1005411, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28273072

RESUMO

Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model.


Assuntos
Actomiosina/fisiologia , Junções Aderentes/fisiologia , Células Epiteliais/fisiologia , Mecanotransdução Celular/fisiologia , Contração Muscular/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Actomiosina/química , Junções Aderentes/química , Animais , Simulação por Computador , Células Epiteliais/química , Humanos , Modelos Biológicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/fisiologia , Estresse Mecânico , Proteína rhoA de Ligação ao GTP/química
6.
Proc Natl Acad Sci U S A ; 112(17): 5395-400, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25855637

RESUMO

Desmosomes and adherens junctions are intercellular adhesive structures essential for the development and integrity of vertebrate tissue, including the epidermis and heart. Their cell adhesion molecules are cadherins: type 1 cadherins in adherens junctions and desmosomal cadherins in desmosomes. A fundamental difference is that desmosomes have a highly ordered structure in their extracellular region and exhibit calcium-independent hyperadhesion, whereas adherens junctions appear to lack such ordered arrays, and their adhesion is always calcium-dependent. We present here the structure of the entire ectodomain of desmosomal cadherin desmoglein 2 (Dsg2), using a combination of small-angle X-ray scattering, electron microscopy, and solution-based biophysical techniques. This structure reveals that the ectodomain of Dsg2 is flexible even in the calcium-bound state and, on average, is shorter than the type 1 cadherin crystal structures. The Dsg2 structure has an excellent fit with the electron tomography reconstructions of human desmosomes. This fit suggests an arrangement in which desmosomal cadherins form trans interactions but are too far apart to interact in cis, in agreement with previously reported observations. Cadherin flexibility may be key to explaining the plasticity of desmosomes that maintain tissue integrity in their hyperadhesive form, but can adopt a weaker, calcium-dependent adhesion during wound healing and early development.


Assuntos
Junções Aderentes/química , Desmogleína 2/química , Desmossomos/química , Junções Aderentes/genética , Junções Aderentes/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmossomos/genética , Desmossomos/metabolismo , Humanos , Estrutura Terciária de Proteína
7.
Cell Tissue Res ; 360(3): 749-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25238996

RESUMO

The epithelial monolayer of the intestine is a selective barrier permitting nutrient and electrolyte absorption yet acting to protect the underlying tissue compartments and cellular components from attack and infiltration by antigens, bacteria and bacterial products present in the lumen. Disruption of this barrier has been associated with inflammatory bowel disease (IBD). The adherens junction (AJ), together with tight junctions (TJ) and desmosomes, form an apical junction complex that controls epithelial cell-to-cell adherence and barrier function as well as regulation of the actin cytoskeleton, intracellular signalling pathways and transcriptional regulation. Numerous studies and reviews highlight the responses of TJs to physiological and pathological stimuli. By comparison, the response of AJ proteins, and the subsequent consequences for barrier function, when exposed to the IBD inflammatory milieu, is less well studied. In this review, we will highlight the roles and responses of the AJ proteins in IBD and provide suggestions for future studies. We will also consider recently proposed therapeutic strategies to preserve or restore epithelial barrier functions to prevent and treat IBD.


Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , beta Catenina/metabolismo , Junções Aderentes/química , Animais , Epitélio/patologia , Humanos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/terapia
8.
Nature ; 457(7228): 495-9, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19029882

RESUMO

Apical constriction facilitates epithelial sheet bending and invagination during morphogenesis. Apical constriction is conventionally thought to be driven by the continuous purse-string-like contraction of a circumferential actin and non-muscle myosin-II (myosin) belt underlying adherens junctions. However, it is unclear whether other force-generating mechanisms can drive this process. Here we show, with the use of real-time imaging and quantitative image analysis of Drosophila gastrulation, that the apical constriction of ventral furrow cells is pulsed. Repeated constrictions, which are asynchronous between neighbouring cells, are interrupted by pauses in which the constricted state of the cell apex is maintained. In contrast to the purse-string model, constriction pulses are powered by actin-myosin network contractions that occur at the medial apical cortex and pull discrete adherens junction sites inwards. The transcription factors Twist and Snail differentially regulate pulsed constriction. Expression of snail initiates actin-myosin network contractions, whereas expression of twist stabilizes the constricted state of the cell apex. Our results suggest a new model for apical constriction in which a cortical actin-myosin cytoskeleton functions as a developmentally controlled subcellular ratchet to reduce apical area incrementally.


Assuntos
Actinas/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Gastrulação , Miosina Tipo II/metabolismo , Actinas/química , Junções Aderentes/química , Junções Aderentes/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Miosina Tipo II/química , Periodicidade , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Proteína 1 Relacionada a Twist/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(46): 18815-20, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23112161

RESUMO

Classical cadherin cell-cell adhesion proteins play key morphogenetic roles during development and are essential for maintaining tissue integrity in multicellular organisms. Classical cadherins bind in two distinct conformations, X-dimer and strand-swap dimer; during cellular rearrangements, these adhesive states are exposed to mechanical stress. However, the molecular mechanisms by which cadherins resist tensile force and the pathway by which they convert between different conformations are unclear. Here, we use single molecule force measurements with an atomic force microscope (AFM) to show that E-cadherin, a prototypical classical cadherin, forms three types of adhesive bonds: catch bonds, which become longer lived in the presence of tensile force; slip bonds, which become shorter lived when pulled; and ideal bonds that are insensitive to mechanical stress. We show that X-dimers form catch bonds, whereas strand-swap dimers form slip bonds. Our data suggests that ideal bonds are formed as X-dimers convert to strand-swap binding. Catch, slip, and ideal bonds allow cadherins to withstand tensile force and tune the mechanical properties of adhesive junctions.


Assuntos
Caderinas/química , Multimerização Proteica , Junções Aderentes/química , Junções Aderentes/genética , Junções Aderentes/metabolismo , Junções Aderentes/ultraestrutura , Animais , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/fisiologia , Microscopia de Força Atômica/métodos , Estrutura Quaternária de Proteína
10.
J Biol Chem ; 288(22): 15913-25, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23589308

RESUMO

α-Catenin is an actin- and vinculin-binding protein that regulates cell-cell adhesion by interacting with cadherin adhesion receptors through ß-catenin, but the mechanisms by which it anchors the cadherin-catenin complex to the actin cytoskeleton at adherens junctions remain unclear. Here we determined crystal structures of αE-catenin in the autoinhibited state and the actin-binding domain of αN-catenin. Together with the small-angle x-ray scattering analysis of full-length αN-catenin, we deduced an elongated multidomain assembly of monomeric α-catenin that structurally and functionally couples the vinculin- and actin-binding mechanisms. Cellular and biochemical studies of αE- and αN-catenins show that αE-catenin recruits vinculin to adherens junctions more effectively than αN-catenin, partly because of its higher affinity for actin filaments. We propose a molecular switch mechanism involving multistate conformational changes of α-catenin. This would be driven by actomyosin-generated tension to dynamically regulate the vinculin-assisted linkage between adherens junctions and the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina , Junções Aderentes , Modelos Biológicos , Proteínas do Tecido Nervoso , Vinculina , alfa Catenina , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Junções Aderentes/química , Junções Aderentes/genética , Junções Aderentes/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Vinculina/química , Vinculina/genética , Vinculina/metabolismo , alfa Catenina/química , alfa Catenina/genética , alfa Catenina/metabolismo
11.
Clin Immunol ; 148(2): 265-78, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23792687

RESUMO

Eosinophilic esophagitis (EoE), an inflammatory atopic disease of the esophagus, causes massive eosinophil infiltration, basal cell hyperplasia, and sub-epithelial fibrosis. To elucidate cellular and molecular factors involved in esophageal tissue damage and remodeling, we examined pinch biopsies from EoE and normal pediatric patients. An inflammation gene array confirmed that eotaxin-3, its receptor CCR3 and interleukins IL-13 and IL-5 were upregulated. An extracellular matrix (ECM) gene array revealed upregulation of CD44 & CD54, and of ECM proteases (ADAMTS1 & MMP14). A cytokine antibody array showed a marked decrease in IL-1α and IL-1 receptor antagonist and an increase in eotaxin-2 and epidermal growth factor. Western analysis indicated reduced expression of intercellular junction proteins, E-cadherin and claudin-1 and increased expression of occludin and vimentin. We have identified a number of novel genes and proteins whose expression is altered in EoE. These findings provide new insights into the molecular mechanisms of the disease.


Assuntos
Esofagite Eosinofílica/metabolismo , Esofagite Eosinofílica/patologia , Esôfago/patologia , Proteínas da Matriz Extracelular/metabolismo , Inflamação/metabolismo , Moléculas de Adesão Juncional/metabolismo , Junções Aderentes/química , Adolescente , Criança , Pré-Escolar , Citocinas/genética , Citocinas/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Moléculas de Adesão Juncional/genética , Masculino , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Vimentina/genética , Vimentina/metabolismo
12.
J Cell Sci ; 124(Pt 23): 4001-13, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22159415

RESUMO

Adherens junctions (AJs) in epithelial cells are constantly turning over to modulate adhesion properties under various physiological and developmental contexts, but how such AJ dynamics are regulated during the apical-basal polarization of primary epithelia remains unclear. Here, we used new and genetically validated GFP markers of Drosophila E-cadherin (DE-cadherin, hereafter referred to as DE-Cad) and ß-catenin (Armadillo, Arm) to quantitatively assay the in vivo dynamics of biosynthetic turnover and membrane redistribution by fluorescence recovery after photobleaching (FRAP) assays. Our data showed that membrane DE-Cad and Arm in AJs of polarizing epithelial cells had much faster biosynthetic turnover than in polarized cells. Fast biosynthetic turnover of membrane DE-Cad is independent of actin- and dynamin-based trafficking, but is microtubule-dependent. Furthermore, Arm in AJs of polarizing cells showed a faster and diffusion-based membrane redistribution that was both quantitatively and qualitatively different from the slower and exchange-based DE-Cad membrane distribution, indicating that the association of Arm with DE-Cad is more dynamic in polarizing cells, and only becomes stable in polarized epithelial cells. Consistently, biochemical assays showed that the binding of Arm to DE-Cad is weaker in polarizing cells than in polarized cells. Our data revealed that the molecular interaction between DE-Cad and Arm is modulated during apical-basal polarization, suggesting a new mechanism that might be crucial for establishing apical-basal polarity through regulating the AJ dynamics.


Assuntos
Junções Aderentes/fisiologia , Proteínas do Domínio Armadillo/química , Caderinas/química , Polaridade Celular , Proteínas de Drosophila/química , Células Epiteliais/fisiologia , Fatores de Transcrição/química , Junções Aderentes/química , Animais , Drosophila/química , Drosophila/genética , Embrião não Mamífero/química , Embrião não Mamífero/fisiologia , Células Epiteliais/química , Células Epiteliais/citologia , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/química , Imunoprecipitação , Membranas/química , Membranas/fisiologia , Complexos Multiproteicos/química , Ligação Proteica , Estabilidade Proteica , Transporte Proteico
13.
Histochem Cell Biol ; 137(6): 777-90, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22327832

RESUMO

The human uterine epithelium is characterised by remarkable plasticity with cyclic changes in differentiation that are controlled by ovarian steroid hormones to optimise conditions for embryo implantation. To understand whether and how cell-cell adhesion is affected, the localisation of junction proteins was studied throughout the menstrual cycle. Expression patterns were examined by immunofluorescence in 36 human endometrial specimens of different cycle stages. Antibodies against the desmosomal proteins desmoplakin 1/2 (Dp 1/2) and desmoglein 2 (Dsg 2), the adherens junction proteins E-cadherin and ß-catenin and also the common junctional linker protein plakoglobin showed a strong subapical staining during the proliferative phase until the early luteal phase (day 20). In the mid- to late luteal phase, however, these junctional proteins redistributed over the entire lateral plasma membranes. In contrast, tight junction proteins (ZO-1, claudin 4) remained at their characteristic subapical position throughout the menstrual cycle. mRNA levels of Dp 1/2, E-cadherin and ZO-1 obtained by real time RT-PCR were not significantly changed during the menstrual cycle. The observed redistribution of desmosomes and adherens junctions coincides with the onset of the so called implantation window of human endometrium. We propose that this change is controlled by ovarian steroids and prepares the endometrium for successful trophoblast invasion.


Assuntos
Endométrio/metabolismo , Células Epiteliais/metabolismo , Ciclo Menstrual/fisiologia , Junções Aderentes/química , Junções Aderentes/metabolismo , Caderinas/metabolismo , Desmoplaquinas/metabolismo , Implantação do Embrião , Endométrio/citologia , Células Epiteliais/citologia , Feminino , Humanos , beta Catenina/metabolismo
14.
Exp Cell Res ; 317(4): 413-22, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21146521

RESUMO

Mammalian ortholog of Scribble tumor suppressor has been reported to regulate cadherin-mediated epithelial cell adhesion by stabilizing the coupling of E-cadherin with catenins, but the molecular mechanism involved remains unknown. In this study, we investigated the relationship between the localization of mouse Scribble at cadherin-based adherens junctions (AJs) and its phosphorylation state. Immunofluorescence staining confirmed that Scribble was localized at AJs as well as at the basolateral plasma membrane in epithelial cells. We found that Scribble was detected as two bands by Western blotting analysis and that the band shift to the higher molecular weight was dependent on its phosphorylation at Ser 1601. Triton X-100 treatment extracted Scribble localized on the basolateral membrane but not Scribble localized at AJs in cultured epithelial cells, and the Triton X-100-resistant Scribble was the Ser 1601-unphosphorylated form. Conversely, an in-house-generated antibody that predominantly recognized Ser 1601-phosphorylated Scribble only detected Scribble protein on the lateral plasma membrane. Furthermore, Ser 1601-unphosphorylated Scribble was selectively coprecipitated with E-cadherin-catenin complexes in E-cadherin-expressing mouse L fibroblasts. Taken together, these results suggest that the phosphorylation state of Scribble regulates its complex formation with the E-cadherin-catenin system and may control cadherin-mediated cell-cell adhesion.


Assuntos
Junções Aderentes/química , Caderinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , alfa Catenina/metabolismo , Animais , Adesão Celular , Técnicas de Cultura de Células , Células Epiteliais , Fibroblastos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Camundongos , Fosforilação , Ligação Proteica
15.
Nature ; 442(7102): 580-4, 2006 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16862128

RESUMO

Epithelial tissues maintain a robust architecture during development. This fundamental property relies on intercellular adhesion through the formation of adherens junctions containing E-cadherin molecules. Localization of E-cadherin is stabilized through a pathway involving the recruitment of actin filaments by E-cadherin. Here we identify an additional pathway that organizes actin filaments in the apical junctional region (AJR) where adherens junctions form in embryonic epithelia. This pathway is controlled by Bitesize (Btsz), a synaptotagmin-like protein that is recruited in the AJR independently of E-cadherin and is required for epithelial stability in Drosophila embryos. On loss of btsz, E-cadherin is recruited normally to the AJR, but is not stabilized properly and actin filaments fail to form a stable continuous network. In the absence of E-cadherin, actin filaments are stable for a longer time than they are in btsz mutants. We identify two polarized cues that localize Btsz: phosphatidylinositol (4,5)-bisphosphate, to which Btsz binds; and Par-3. We show that Btsz binds to the Ezrin-Radixin-Moesin protein Moesin, an F-actin-binding protein that is localized apically and is recruited in the AJR in a btsz-dependent manner. Expression of a dominant-negative form of Ezrin that does not bind F-actin phenocopies the loss of btsz. Thus, our data indicate that, through their interaction, Btsz and Moesin may mediate the proper organization of actin in a local domain, which in turn stabilizes E-cadherin. These results provide a mechanism for the spatial order of actin organization underlying junction stabilization in primary embryonic epithelia.


Assuntos
Actinas/química , Actinas/metabolismo , Junções Aderentes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Sinaptotagminas , Junções Aderentes/química , Animais , Caderinas/química , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica , Interferência de RNA
16.
Dev Biol ; 338(2): 136-47, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19962374

RESUMO

The function of epithelial tissues is dependent on their polarised architecture, and loss of cell polarity is a hallmark of various diseases. Here we analyse cell polarisation in the follicular epithelium of Drosophila, an epithelium that arises by a mesenchymal-epithelial transition. Although many epithelia are formed by mesenchymal precursors, it is unclear how they polarise. Here we show how lateral, apical, and adherens junction proteins act stepwise to establish polarity in the follicular epithelium. Polarisation starts with the formation of adherens junctions, whose positioning is controlled by combined activities of Par-3, beta-catenin, and Discs large. Subsequently, Par-6 and aPKC localise to the apical membrane in a Par-3-dependent manner. Apical membrane specification continues by the accumulation of the Crumbs complex, which is controlled by Par-3, Par-6, and aPKC. Thus, our data elucidate the genetic mechanisms leading to the stepwise polarisation of an epithelium with a mesenchymal origin.


Assuntos
Polaridade Celular , Drosophila/citologia , Células Epiteliais/citologia , Junções Intercelulares/química , Junções Aderentes/química , Animais , Proteínas de Drosophila/fisiologia , Células Epiteliais/ultraestrutura , Epitélio , Mesoderma/citologia
17.
J Urol ; 186(3): 1121-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21784462

RESUMO

PURPOSE: TRPV4 (transient receptor potential vanilloid 4 channel) is a nonselective cation channel involved in different sensory functions that was recently implicated in bladder mechanosensation. We investigated the cellular site of TRPV4 in bladder urothelium and explored a molecular connection between TRPV4 and urothelial adherence junctions. MATERIALS AND METHODS: We obtained healthy tissues sections from cystectomy in humans due to cancer in 3 and noncancerous conditions in 2. Besides human biopsies tissues from 7 normal and 7 TRPV4-/-mice, and the urothelial cell line RT4 were also used. Experiments were done with polyclonal antibody against TRPV4 (against the N-terminus of rat TRPV4). A molecular connection between TRPV4 and different adherence junction components was investigated using immunofluorescence, Western blot and immunoprecipitation. RESULTS: Results revealed TRPV4 on urothelial cell membranes near adherence junctions. Results were comparable in the urothelial cell line, human bladders and mouse bladders. Subsequent immunoprecipitation experiments established a molecular connection of TRPV4 to α-catenin, an integral part of the adherence junction that catenates E-cadherin to the actin-microfilament network. CONCLUSIONS: Results provide evidence for the location of TRPV4 in human bladder urothelium. TRPV4 is molecularly connected to adherence junctions on the urothelial cell membrane. TRPV4 coupling to a rigid intracellular and intercellular structural network would agree with the hypothesis that TRPV4 can be activated by bladder stretch.


Assuntos
Junções Aderentes/química , Canais de Cátion TRPV/análise , Bexiga Urinária/química , Urotélio/química , Animais , Células Cultivadas , Humanos , Camundongos , Ratos
18.
Curr Opin Cell Biol ; 13(5): 600-3, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11544029

RESUMO

Adherens junctions are composed of a cadherin-catenin complex and its associated proteins. Recently, an increasing number of novel members of adherens junctions, including membrane and PDZ proteins, have been reported. Interactions among these components in adherens junctions seem to be dynamically regulated during the formation of adherens junction complexes in epithelial cells.


Assuntos
Junções Aderentes/química , Proteínas de Caenorhabditis elegans , Junções Aderentes/fisiologia , Animais , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Modelos Biológicos , Proteínas Musculares/metabolismo , Fosfoproteínas/análise , Transdução de Sinais , Proteína da Zônula de Oclusão-1 , alfa Catenina
19.
Nat Cell Biol ; 3(10): 913-7, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11584273

RESUMO

Interactions between microtubule and actin networks are thought to be crucial for mechanical and signalling events at the cell cortex. Cytoplasmic dynein has been proposed to mediate many of these interactions. Here, we report that dynein is localized to the cortex at adherens junctions in cultured epithelial cells and that this localization is sensitive to drugs that disrupt the actin cytoskeleton. Dynein is recruited to developing contacts between cells, where it localizes with the junctional proteins beta-catenin and E-cadherin. Microtubules project towards these early contacts and we hypothesize that dynein captures and tethers microtubules at these sites. Dynein immunoprecipitates with beta-catenin, and biochemical analysis shows that dynein binds directly to beta-catenin. Overexpression of beta-catenin disrupts the cellular localization of dynein and also dramatically perturbs the organization of the cellular microtubule array. In cells overexpressing beta-catenin, the centrosome becomes disorganized and microtubules no longer appear to be anchored at the cortex. These results identify a novel role for cytoplasmic dynein in capturing and tethering microtubules at adherens junctions, thus mediating cross-talk between actin and microtubule networks at the cell cortex.


Assuntos
Junções Aderentes/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Transativadores , Junções Aderentes/química , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células Cultivadas , Cromatografia de Afinidade , Proteínas do Citoesqueleto/genética , Citoesqueleto/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Microscopia de Fluorescência , Nocodazol/farmacologia , Testes de Precipitina , Ligação Proteica , Tiazóis/farmacologia , Tiazolidinas , beta Catenina
20.
J Cell Biol ; 172(3): 321-3, 2006 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-16449186

RESUMO

On December 11, 2005, Shoichiro Tsukita died at the young age of 52, after 14 months of treatment for cancer. Early in his career, Tsukita succeeded in isolating and purifying the adherens junction with his wife Sachiko, an accomplishment that he followed up with an impressive series of discoveries of cell adhesion and cytoskeletal molecules, including what may have been his greatest contribution to the field, the identification of occludin and the claudin family of molecules, which were watershed discoveries in the study of the molecular nature of tight junctions.


Assuntos
Junções Íntimas/química , Junções Íntimas/fisiologia , Junções Aderentes/química , Junções Aderentes/fisiologia , Proteínas de Ligação a Calmodulina/história , Proteínas de Ligação a Calmodulina/fisiologia , Adesão Celular/fisiologia , Proteínas do Citoesqueleto/história , Proteínas do Citoesqueleto/fisiologia , História do Século XX , História do Século XXI , Japão , Proteínas de Membrana/história , Proteínas de Membrana/fisiologia , Microscopia Eletrônica , Ocludina , Fosfoproteínas/história , Fosfoproteínas/fisiologia , Junções Íntimas/ultraestrutura , Proteína da Zônula de Oclusão-1 , alfa Catenina/história , alfa Catenina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA