RESUMO
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Proteínas/química , Solventes/química , Água/química , PolímerosRESUMO
The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.
Assuntos
Líquidos Iônicos , Animais , Humanos , Apoptose/efeitos dos fármacos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Estresse Oxidativo/efeitos dos fármacosRESUMO
Enzymatic catalysis presents an eco-friendly, energy-efficient method for lignin degradation. However, challenges arise due to the inherent incompatibility between enzymes and native lignin. In this work, we introduce a supramolecular catalyst composed of fluorenyl-modified amino acids and Cu2+, designed based on the aromatic stacking of the fluorenyl group, which can operate in ionic liquid environments suitable for the dissolution of native lignin. Amino acids and halide anions of ionic liquids shape the copper site's coordination sphere, showcasing remarkable catechol oxidase-mimetic activity. The catalyst exhibits thermophilic property, and maintains oxidative activity up to 75 °C, which allows the catalyzed degradation of the as-dissolved native lignin with high efficiency even without assistance of the electron mediator. In contrast, at this condition, the native copper-dependent oxidase completely lost its activity. This catalyst with superior stability and activity offer promise for sustainable lignin valorization through biocatalytic routes compatible with ionic liquid pretreatment, addressing limitations in native enzymes for industrially relevant conditions.
Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Lignina/química , Cobre , Oxirredutases , Catálise , AminoácidosRESUMO
Membrane channel proteins (MCPs) play key roles in matter transport through cell membranes and act as major targets for vaccines and drugs. For emerging ionic liquid (IL) drugs, a rational understanding of how ILs affect the structure and transport function of MCP is crucial to their design. In this work, GPU-accelerated microsecond-long molecular dynamics simulations were employed to investigate the modulating mechanism of ILs on MCP. Interestingly, ILs prefer to insert into the lipid bilayer and channel of aquaporin-2 (AQP2) but adsorb on the entrance of voltage-gated sodium channels (Nav). Molecular trajectory and free energy analysis reflect that ILs have a minimal impact on the structure of MCPs but significantly influence MCP functions. It demonstrates that ILs can decrease the overall energy barrier for water through AQP2 by 1.88 kcal/mol, whereas that for Na+ through Nav is increased by 1.70 kcal/mol. Consequently, the permeation rates of water and Na+ can be enhanced and reduced by at least 1 order of magnitude, respectively. Furthermore, an abnormal IL gating mechanism was proposed by combining the hydrophobic nature of MCP and confined water/ion coordination effects. More importantly, we performed experiments to confirm the influence of ILs on AQP2 in human cells and found that treatment with ILs significantly accelerated the changes in cell volume in response to altered external osmotic pressure. Overall, these quantitative results will not only deepen the understanding of IL-cell interactions but may also shed light on the rational design of drugs and disease diagnosis.
Assuntos
Permeabilidade da Membrana Celular , Ativação do Canal Iônico , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Líquidos Iônicos/química , Líquidos Iônicos/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Água/química , Linhagem CelularRESUMO
Cohesive and interfacial adhesion energies are difficult to balance to obtain reversible adhesives with both high mechanical strength and high adhesion strength, although various methods have been extensively investigated. Here, a biocompatible citric acid/L-(-)-carnitine (CAC)-based ionic liquid was developed as a solvent to prepare tough and high adhesion strength ionogels for reversible engineered and biological adhesives. The prepared ionogels exhibited good mechanical properties, including tensile strength (14.4 MPa), Young's modulus (48.1 MPa), toughness (115.2 MJ m-3), and high adhesion strength on the glass substrate (24.4 MPa). Furthermore, the ionogels can form mechanically matched tough adhesion at the interface of wet biological tissues (interfacial toughness about 191 J m-2) and can be detached by saline solution on demand, thus extending potential applications in various clinical scenarios such as wound adhesion and nondestructive transfer of organs.
Assuntos
Materiais Biocompatíveis , Ácido Cítrico , Géis , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Ácido Cítrico/química , Géis/química , Carnitina/química , Líquidos Iônicos/química , Resistência à Tração , Adesivos/químicaRESUMO
Horseradish peroxidase (HRP) is an enzyme that oxidizes pollutants from wastewater. A previous report indicated that peroxidases can have an enhancement in initial enzymatic activity in an aqueous solution of 0.26 M 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIm][EtSO4]) at neutral pH. However, the atomistic details remain elusive. In the enzymatic landscape of HRP, compound II (Cpd II) plays a key role and involves a histidine (H42) residue. Cpd II exists as oxoferryl (2a) or hydroxoferryl (2b(FeIV)) forms, where 2a is the predominantly observed form in experimental studies. Intriguingly, the ferric 2b(FeIII) form seen in synthetic complexes has not been observed in HRP. Here, we have investigated the structure and dynamics of HRP in pure water and aqueous [EMIm][EtSO4] (0.26 M), as well as the reaction mechanism of 2a to 2b conversion using polarizable molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations. When HRP is solvated in aq [EMIm][EtSO4], the catalytic water displaces, and H42 directly orients over the ferryl moiety, allowing a direct proton transfer (PT) with a significant energy barrier reduction. Conversely, in neat water, the reaction of 2a to 2b follows the previously reported mechanism. We further investigated the deprotonated form of H42. Analysis of the electric fields at the active site indicates that the aq [EMIm][EtSO4] medium facilitates the reaction by providing a more favorable environment compared with the system solvated in neat water. Overall, the atomic level supports the previous experimental observations and underscores the importance of favorable electric fields in the active site to promote catalysis.
Assuntos
Peroxidase do Rábano Silvestre , Líquidos Iônicos , Simulação de Dinâmica Molecular , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Líquidos Iônicos/química , Imidazóis/química , Teoria Quântica , Soluções , Água/químicaRESUMO
Fentanyl is an extremely potent opioid that is commonly laced into other drugs. Fentanyl poses a danger to users but also to responders or bystanders who may unknowingly ingest a lethal dose (â¼2 mg) of fentanyl from aerosolized powder or vapor. Electrochemistry offers a small, simple, and affordable platform for the direct detection of illicit substances; however, it is largely limited to solution-phase measurements. Here, we demonstrate the hands-free capture and electroanalyzation of aerosols containing fentanyl. A novel electrochemical cell is constructed by a microwire (cylindrical working electrode) traversing an ionic liquid film that is suspended within a conductive loop (reference/counter electrode). We provide a quantitative finite element simulation of the resulting electrochemical system. The suspended film maintains a high-surface area:volume, allowing the electrochemical cell to act as an effective aerosol collector. The low vapor pressure (negligible evaporation) of ionic liquid makes it a robust candidate for in-field applications, and the use of a hydrophobic ionic liquid allows for the extraction of fentanyl from solids and sprayed aqueous aerosols.
Assuntos
Aerossóis , Técnicas Eletroquímicas , Fentanila , Fentanila/análise , Aerossóis/química , Aerossóis/análise , Líquidos Iônicos/química , Eletrodos , Analgésicos Opioides/análiseRESUMO
Natural organisms have evolved precise sensing systems relying on unique ion channels, which can efficiently perceive various physical/chemical stimuli based on ionic signal transmission in biological fluid environments. However, it is still a huge challenge to achieve extensive applications of the artificial counterparts as an efficient wet sensing platform due to the fluidity of the working medium. Herein, nanofluidic membranes with selective cation transport properties and solid-state organic electrochemical transistors (OECTs) with amplified signals are integrated together to mimic human gustatory sensation, achieving ionic gustatory reagent recognition and a portable configuration. Cu-HHTP nanofluidic membranes with selective cation transport through their uniform micropores are constructed first, followed by assembly with OECTs to form the designed nanofluidic membrane-assisted OECTs (nanofluidic OECTs). As a result, they can distinguish typically ionic gustatory reagents, and even ionic liquids (ILs), demonstrating enhanced gustatory perception performance under a wide concentration range (10-7-10-1 m) compared with those of conventional OECTs. The linear correlations between the response and the reagent concentration further indicate the promising potential for practical application as a next-generation sensing platform. It is suggested that nanofluidic membranes mediated intramembrane cation transport based on the steric hindrance effect, resulting in distinguishable and improved response to multiple ions.
Assuntos
Cátions , Transistores Eletrônicos , Nanotecnologia/métodos , Humanos , Paladar/fisiologia , Líquidos Iônicos/química , Técnicas Eletroquímicas/métodosRESUMO
Active electric-driven droplet manipulation in digital microfluidics constitutes a promising domain owing to the unique and programmable wettability inherent in sessile ionic droplets. The coupling between the electric field and flow field enables precise control over wetting characteristics and droplet morphology. This study delves into the deformation phenomena of ionic sessile ferrofluid droplets in ambient air induced by uniform electric fields. Under the assumption of a pinned mode throughout the process, the deformation is characterized by variations in droplet height and contact angle in response to the applied electric field intensity. A numerical model is formulated to simulate the deformation dynamics of ferrofluid droplets, employing the phase field method for tracking droplet deformation. The fidelity of the numerical outcomes is assessed through the validation process, involving a comparison of droplet geometric deformations with corresponding experimental results. The impact of the electric field on the deformation of dielectric droplets is modulated by parameters such as electric field strength and droplet size. Through meticulously designed experiments, the substantial influence of both field strength and droplet size is empirically verified, elucidating the behavior of ionic sessile droplets. Considering the interplay of electric force, viscous force, and interfacial tension, the heightened field intensity is observed to effectively reduce the contact angle, augment droplet height, and intensify internal droplet flow. Under varying electric field conditions, droplets assume diverse shapes, presenting a versatile approach for microfluidic operations. The outcomes of this research hold significant guiding implications for microfluidic manipulation, droplet handling, and sensing applications.
Assuntos
Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/instrumentação , Molhabilidade , Microfluídica/métodos , Microfluídica/instrumentação , Eletricidade , Líquidos Iônicos/química , Modelos TeóricosRESUMO
The capability of peptide and amino acid-based molecules to act as ionogelators and eutectogelators entrapping ionic liquids (ILs) and deep eutectic solvents (DESs) forming ionogels and eutectogels has gathered attention in recent decades. The self-assembly process, primarily driven by non-covalent interactions as hydrogen bonding, remains serendipitous in nature. This review provides a comprehensive and detailed report on self-assembly of unmodified and modified amino acids and peptides in the non-conventional solvents, ILs and DESs. Understanding these processes holds great promise for the development of innovative soft-materials, and to the progress of supramolecular systems in non-conventional solvent environments.
Assuntos
Aminoácidos , Géis , Ligação de Hidrogênio , Líquidos Iônicos , Peptídeos , Solventes , Aminoácidos/química , Peptídeos/química , Géis/química , Líquidos Iônicos/química , Solventes/químicaRESUMO
We report an efficient sustainable two-step anion exchange synthetic procedure for the preparation of choline API ionic liquids (Cho-API-ILs) that contain active pharmaceutical ingredients (APIs) as anions combined with choline-based cations. We have evaluated the in vitro cytotoxicity for the synthesized compounds using three different cells lines, namely, HEK293 (normal kidney cell line), SW480, and HCT 116 (colon carcinoma cells). The solubility of APIs and Cho-API-ILs was evaluated in water/buffer solutions and was found higher for Cho-API-ILs. Further, we have investigated the antimicrobial potential of the pure APIs, ILs, and Cho-API-ILs against clinically relevant microorganisms, and the results demonstrated the promise of Cho-API-ILs as potent antimicrobial agents to treat bacterial infections. Moreover, the aggregation and adsorption properties of the Cho-API-ILs were observed by using a surface tension technique. The aggregation behavior of these Cho-API-ILs was further supported by conductivity and pyrene probe fluorescence. The thermodynamics of aggregation for Cho-API-ILs has been assessed from the temperature dependence of surface tension. The micellar size and their stability have been studied by dynamic light scattering, transmission electron microscopy, and zeta potential. Therefore, the duality in the nature of Cho-API-ILs has been explored with the upgradation of their physical, chemical, and biopharmaceutical properties, which enhance the opportunities for advances in pharmaceutical sciences.
Assuntos
Anti-Infecciosos , Líquidos Iônicos , Humanos , Solubilidade , Líquidos Iônicos/química , Células HEK293 , Micelas , Colina/químicaRESUMO
Ionic liquids (ILs) are interesting chemical compounds that have a wide range of industrial and scientific applications. They have extraordinary properties, such as the tunability of many of their physical properties and, accordingly, their activities; and the ease of synthesis methods. Hence, they became important building blocks in catalysis, extraction, electrochemistry, analytics, biotechnology, etc. This study determined antifungal activities of various imidazolium-based ionic liquids against yeast Saccharomyces cerevisiae via minimum inhibitory concentration (MIC) estimation method. Increasing the length of the alkyl group attached to the imidazolium cation, enhanced the antifungal activity of the ILs, as well as their ability of the disruption of the cell membrane integrity. FTIR studies performed on the S. cerevisiae cells treated with the ILs revealed alterations in the biochemical composition of these cells. Interestingly, the alterations in fatty acid content occurred in parallel with the increase in the activity of the molecules upon the increase in the length of the attached alkyl group. This trend was confirmed by statistical analysis and machine learning methodology. The classification of antifungal activities based on FTIR spectra of S. cerevisiae cells yielded a prediction accuracy of 83%, indicating the pharmacy and medicine industries could benefit from machine learning methodology. Furthermore, synthesized ionic compounds exhibit significant potential for pharmaceutical and medical applications.
Assuntos
Antifúngicos , Membrana Celular , Imidazóis , Líquidos Iônicos , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/química , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Imidazóis/farmacologia , Imidazóis/química , Antifúngicos/farmacologia , Antifúngicos/química , Membrana Celular/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
This study investigates the rheological behavior of two plant-based polysaccharides, with different degrees of hydrophilicity, agar (highly hydrophilic) and guar gum (hydrophilic), in water and 1-ethyl-3-methylimidazolium acetate (EMImAc). The rheological response of these polymers is highly dependent on the solvent's ability to disrupt intermolecular associations. In water, agar forms hydrogels, while guar gum behaves as a viscoelastic liquid with slow modes. The plateau modulus (GN0) scales with polymer concentration (c) as GN0 â¼ c3, consistent with other natural polymers. In EMImAc, both polysaccharides form viscoelastic liquids, exhibiting GN0 â¼ c2.3, as expected for semiflexible polymer solutions. However, the terminal relaxation time, τD, and the specific viscosity, ηsp, scale as τD â¼ c5.3 and ηsp â¼ c7.6, indicative of intermolecular chain-chain associations. Despite the solvent or polysaccharide, the fractional viscosity overshoot and the shear strain at the maximum stress show a terminal Weissenberg number dependence similar to other synthetic polymers.
Assuntos
Galactanos , Líquidos Iônicos , Mananas , Gomas Vegetais , Reologia , Água , Líquidos Iônicos/química , Gomas Vegetais/química , Mananas/química , Água/química , Viscosidade , Galactanos/química , Ágar/química , Polissacarídeos/química , Imidazóis/química , Interações Hidrofóbicas e HidrofílicasRESUMO
A multifunctional polyoxometalate-ionic liquid (POM-IL)-based hybrid material comprising silicotungstic acid, [BmIm]4[SiW12O40], has been synthesized and demonstrated its efficiency toward methylene blue removal and as an antibacterial agent. Single-crystal XRD analysis confirms that the material crystallizes in monoclinic symmetry (SG: Pn), with lattice parameters a = 13.1396(5) Å, b = 16.9655(8) Å, c = 14.3493(7) Å, and Z = 2. The structure comprises a single polyanionic [SiW12O40]4- moiety surrounded by four cationic [BmIm]+ units of two different conformations, which supported DFT and Hirshfeld surface analysis. The material shows excellent removal efficiency for methylene blue, with a maximum adsorption capacity of 92.47 mg/g and 83.05% reusability after five cycles. On the contrary, FTIR and ζ-potential analyses confirm that electrostatic interactions are the predominant factors governing the adsorption process. The material also acts as a superior antibacterial agent against the opportunistic pathogens Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli with a MIC of 500-700 µg/mL. However, a comparative assessment showed that the material was more effective against P. aeruginosa compared to the other two pathogens. PXRD analysis confirms the phase purity, and FESEM and TEM analyses exhibit block-shaped morphology with particle sizes â¼2-3 µm.
Assuntos
Antibacterianos , Corantes , Líquidos Iônicos , Azul de Metileno , Compostos de Tungstênio , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Líquidos Iônicos/síntese química , Adsorção , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Azul de Metileno/química , Azul de Metileno/farmacologia , Corantes/química , Corantes/farmacologia , Corantes/síntese química , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Estrutura Molecular , Desenho de FármacosRESUMO
Selective degradation of disease-causing proteins using proteolysis targeting chimeras (PROTACs) has gained great attention, thanks to its several advantages over traditional therapeutic modalities. Despite the advances made so far, the structural chemical complexity of PROTACs poses challenges in their synthetic approaches. PROTACs are typically prepared through a convergent approach, first synthesizing two fragments separately (target protein and E3 ligase ligands) and then coupling them to produce a fully assembled PROTAC. The amidation reaction represents the most common coupling exploited in PROTACs synthesis. Unfortunately, the overall isolated yields of such synthetic procedures are usually low due to one or more purification steps to obtain the final PROTAC with acceptable purity. In this work, we focused our attention on the optimization of the final amidation step for the synthesis of an anti-SARS-CoV-2 PROTAC by investigating different amidation coupling reagents and a range of alternative solvents, including ionic liquids (ILs). Among the ILs screened, [OMIM][ClO4] emerged as a successful replacement for the commonly used DMF within the HATU-mediated amidation reaction, thus allowing the synthesis of the target PROTAC under mild and sustainable conditions in very high isolated yields. With the optimised conditions in hand, we explored the scalability of the synthetic approach and the substrate scope of the reaction by employing different E3 ligase ligand (VHL and CRBN)-based intermediates containing linkers of different lengths and compositions or by using different target protein ligands. Interestingly, in all cases, we obtained high isolated yields and complete conversion in short reaction times.
Assuntos
Líquidos Iônicos , Proteólise , Líquidos Iônicos/química , Líquidos Iônicos/síntese química , Ubiquitina-Proteína Ligases/metabolismo , SARS-CoV-2 , Amidas/química , Amidas/síntese química , Humanos , Ligantes , Estrutura Molecular , Antivirais/química , Antivirais/síntese química , Antivirais/farmacologia , Quimera de Direcionamento de ProteóliseRESUMO
We combined both density functional theory and classical molecular dynamics simulations to investigate the molecular mechanisms governing hydrogen solvation in a total of 12 ionic liquids. Overall, the analysis of the structural properties under high temperature and pressure conditions revealed weak interactions between hydrogen and the ionic liquids, with a slight preference of this gas to be placed at the apolar domains. Interestingly, those ionic liquids comprising nitrate anions allow the accommodation of hydrogen molecules also in the polar areas. The study of the hydrogen velocity autocorrelation functions supports this observation. In addition, the structure of all of the tested ionic liquids was almost insensitive to the addition of hydrogen, so the available free volume and cavity formation are presumably the most important factors affecting solubility.
Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Hidrogênio , Fenômenos Químicos , Simulação de Dinâmica Molecular , SolubilidadeRESUMO
Viruses are a group of widespread organisms that are often responsible for very dangerous diseases, as most of them follow a mechanism to multiply and infect their hosts as quickly as possible. Pathogen viruses also mutate regularly, with the result that measures to prevent virus transmission and recover from the disease caused are often limited. The development of new substances is very time-consuming and highly budgeted and requires the sacrifice of many living organisms. Computational chemistry methods allow faster analysis at a much lower cost and, most importantly, reduce the number of living organisms sacrificed experimentally to a minimum. Ionic liquids (ILs) are a group of chemical compounds that could potentially find a wide range of applications due to their potential virucidal activity. In our study, we conducted a complex computational analysis to predict the antiviral activity of ionic liquids against three surrogate viruses: two nonenveloped viruses, Listeria monocytogenes phage P100 and Escherichia coli phage MS2, and one enveloped virus, Pseudomonas syringae phage Phi6. Based on experimental data of toxic activity (logEC90), we assigned activity classes to 154 ILs. Prediction models were created and validated according to the Organization for Economic Co-operation and Development (OECD) recommendations using the Classification Tree method. Further, we performed an external validation of our models through virtual screening on a set of 1277 theoretically generated ionic liquids and then selected 10 active ionic liquids, which were synthesized to verify their activity against the analyzed viruses. Our study proved the effectiveness and efficiency of computational methods to predict the antiviral activity of ionic liquids. Thus, computational models are a cost-effective alternative approach compared with time-consuming experimental studies where live animals are involved.
Assuntos
Líquidos Iônicos , Animais , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Aprendizado de Máquina , Antivirais/farmacologiaRESUMO
Significant progress has been made in recent years in theoretical modeling of the electric double layer (EDL), a key concept in electrochemistry important for energy storage, electrocatalysis, and multitudes of other technological applications. However, major challenges remain in understanding the microscopic details of the electrochemical interface and charging mechanisms under realistic conditions. This review delves into theoretical methods to describe the equilibrium and dynamic responses of the EDL structure and capacitance for electrochemical systems commonly deployed for capacitive energy storage. Special emphasis is given to recent advances that intend to capture the nonclassical EDL behavior such as oscillatory ion distributions, polarization of nonmetallic electrodes, charge transfer, and various forms of phase transitions in the micropores of electrodes interfacing with an organic electrolyte or ionic liquid. This comprehensive analysis highlights theoretical insights into predictable relationships between materials characteristics and electrochemical performance and offers a perspective on opportunities for further development toward rational design and optimization of electrochemical systems.
Assuntos
Líquidos Iônicos , Capacitância Elétrica , Eletroquímica , Eletrodos , Eletrólitos , Líquidos Iônicos/químicaRESUMO
Lipids in human colostrum provide the majority of energy intake and essential fatty acids for developing infants. The fatty acid composition of human colostrum is highly variable and influenced by multiple factors. Human colostrum is a complex sample bringing challenges to fatty acid profiling. This work aimed to optimize the use of ionic liquid (IL) columns and flow-modulated comprehensive two-dimensional gas chromatography coupled to mass spectrometry (FM-GC×GC-MS) for fatty acid profiling in human colostrum. Derivatization strategies were optimized and the elution behavior of fatty acid methyl esters (FAME) on various 1D column phases (Solgel-WAX, SLB-IL60i, SLB-IL76i, and SLB-IL111i). Derivatization with sodium methoxide yielded a satisfactory recovery rate (90%) at milder conditions and reduced time. The use of IL60 as the 1D column provided superior separation, good peak shape, and better utilization of elution space. As a proof of concept, the developed method was applied to access the effects of the mode of neonatal delivery (vaginal vs. C-section) on the fatty acid profile of human colostrum samples. The integrated multidimensional gas chromatography strategy improved FAME detection and separation and can be a useful tool for accessing the effects of different factors on the fatty acid profiling of complex samples.
Assuntos
Ácidos Graxos , Líquidos Iônicos , Recém-Nascido , Feminino , Gravidez , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácidos Graxos/análise , Líquidos Iônicos/química , Colostro/química , Espectrometria de MassasRESUMO
Hydrogen bonds (H-bonds) are highly sensitive to the surrounding environments owing to their dipolar nature, with polar solvents kown to significantly weaken H-bonds. Herein, the stability of the H-bonding motif ureidopyrimidinone (UPy) is investigated, embedded into a highly polar polymeric ionic liquid (PIL) consisting of pendant pyrrolidinium bis(trifluoromethylsulfonyl)imide (IL) moieties, to study the influence of such ionic environments on the UPy H-bonds. The content of the surrounding IL is changed by addition of an additional low molecular weight IL to further boost the IL content around the UPy moieties in molar ratios of UPy/IL ranging from 1/4 up to 1/113, thereby promoting the polar microenvironment around the UPy-H-bonds. Variable-temperature solid-state MAS NMR spectroscopy and FT-IR spectroscopy demonstrate that the UPy H-bonds are largely present as (UPy-) dimers, but sensitive to elevated temperatures (>70 °C). Subsequent rheology and DSC studies reveal that the ILs only solvate the polymeric chains but do not interfere with the UPy-dimer H-bonds, thus accounting for their high stability and applicability in many material systems.