Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
EMBO Rep ; 24(9): e57372, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37497662

RESUMO

How cells coordinate their metabolism with division determines the rate of cell proliferation. Dynamic patterns of metabolite synthesis during the cell cycle are unexplored. We report the first isotope tracing analysis in synchronous, growing budding yeast cells. Synthesis of leucine, a branched-chain amino acid (BCAA), increases through the G1 phase of the cell cycle, peaking later during DNA replication. Cells lacking Bat1, a mitochondrial aminotransferase that synthesizes BCAAs, grow slower, are smaller, and are delayed in the G1 phase, phenocopying cells in which the growth-promoting kinase complex TORC1 is moderately inhibited. Loss of Bat1 lowers the levels of BCAAs and reduces TORC1 activity. Exogenous provision of valine and, to a lesser extent, leucine to cells lacking Bat1 promotes cell division. Valine addition also increases TORC1 activity. In wild-type cells, TORC1 activity is dynamic in the cell cycle, starting low in early G1 but increasing later in the cell cycle. These results suggest a link between BCAA synthesis from glucose to TORC1 activation in the G1 phase of the cell cycle.


Assuntos
Aminoácidos , Saccharomyces cerevisiae , Ciclo Celular , Aminoácidos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Leucina/biossíntese , Glucose/metabolismo , Fase G1
2.
J Biol Chem ; 299(2): 102789, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509144

RESUMO

α-Isopropylmalate synthase (IPMS) catalyzes the first step in leucine (Leu) biosynthesis and is allosterically regulated by the pathway end product, Leu. IPMS is a dimeric enzyme with each chain consisting of catalytic, accessory, and regulatory domains, with the accessory and regulatory domains of each chain sitting adjacent to the catalytic domain of the other chain. The IPMS crystal structure shows significant asymmetry because of different relative domain conformations in each chain. Owing to the challenges posed by the dynamic and asymmetric structures of IPMS enzymes, the molecular details of their catalytic and allosteric mechanisms are not fully understood. In this study, we have investigated the allosteric feedback mechanism of the IPMS enzyme from the bacterium that causes meningitis, Neisseria meningitidis (NmeIPMS). By combining molecular dynamics simulations with small-angle X-ray scattering, mutagenesis, and heterodimer generation, we demonstrate that Leu-bound NmeIPMS is in a rigid conformational state stabilized by asymmetric interdomain polar interactions. Furthermore, we found removing these polar interactions by mutagenesis impaired the allosteric response without compromising Leu binding. Our results suggest that the allosteric inhibition of NmeIPMS is achieved by restricting the flexibility of the accessory and regulatory domains, demonstrating that significant conformational flexibility is required for catalysis.


Assuntos
2-Isopropilmalato Sintase , Biocatálise , Leucina , Neisseria meningitidis , Domínios Proteicos , 2-Isopropilmalato Sintase/química , 2-Isopropilmalato Sintase/genética , 2-Isopropilmalato Sintase/metabolismo , Regulação Alostérica , Domínio Catalítico , Leucina/biossíntese , Leucina/química , Leucina/metabolismo , Neisseria meningitidis/enzimologia , Neisseria meningitidis/metabolismo , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X , Multimerização Proteica , Mutagênese , Maleabilidade
3.
Microb Cell Fact ; 20(1): 3, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407464

RESUMO

BACKGROUND: Biosynthesis of L-tert-leucine (L-tle), a significant pharmaceutical intermediate, by a cofactor regeneration system friendly and efficiently is a worthful goal all the time. The cofactor regeneration system of leucine dehydrogenase (LeuDH) and glucose dehydrogenase (GDH) has showed great coupling catalytic efficiency in the synthesis of L-tle, however the multi-enzyme complex of GDH and LeuDH has never been constructed successfully. RESULTS: In this work, a novel fusion enzyme (GDH-R3-LeuDH) for the efficient biosynthesis of L-tle was constructed by the fusion of LeuDH and GDH mediated with a rigid peptide linker. Compared with the free enzymes, both the environmental tolerance and thermal stability of GDH-R3-LeuDH had a great improved since the fusion structure. The fusion structure also accelerated the cofactor regeneration rate and maintained the enzyme activity, so the productivity and yield of L-tle by GDH-R3-LeuDH was all enhanced by twofold. Finally, the space-time yield of L-tle catalyzing by GDH-R3-LeuDH whole cells could achieve 2136 g/L/day in a 200 mL scale system under the optimal catalysis conditions (pH 9.0, 30 °C, 0.4 mM of NAD+ and 500 mM of a substrate including trimethylpyruvic acid and glucose). CONCLUSIONS: It is the first report about the fusion of GDH and LeuDH as the multi-enzyme complex to synthesize L-tle and reach the highest space-time yield up to now. These results demonstrated the great potential of the GDH-R3-LeuDH fusion enzyme for the efficient biosynthesis of L-tle.


Assuntos
Bacillus cereus/enzimologia , Bacillus megaterium/enzimologia , Glucose 1-Desidrogenase/metabolismo , Leucina Desidrogenase/metabolismo , Leucina/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/genética , Leucina Desidrogenase/química , Leucina Desidrogenase/genética , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
4.
PLoS Genet ; 14(10): e1007762, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30365497

RESUMO

Both branched-chain amino acids (BCAA) and iron are essential nutrients for eukaryotic cells. Previously, the Zn2Cys6-type transcription factor Leu3/LeuB was shown to play a crucial role in regulation of BCAA biosynthesis and nitrogen metabolism in Saccharomyces cerevisiae and Aspergillus nidulans. In this study, we found that the A. fumigatus homolog LeuB is involved in regulation of not only BCAA biosynthesis and nitrogen metabolism but also iron acquisition including siderophore metabolism. Lack of LeuB caused a growth defect, which was cured by supplementation with leucine or iron. Moreover, simultaneous inactivation of LeuB and HapX, a bZIP transcription factor required for adaptation to iron starvation, significantly aggravated the growth defect caused by inactivation of one of these regulators during iron starvation. In agreement with a direct role in regulation of both BCAA and iron metabolism, LeuB was found to bind to phylogenetically conserved motifs in promoters of genes involved in BCAA biosynthesis, nitrogen metabolism, and iron acquisition in vitro and in vivo, and was required for full activation of their expression. Lack of LeuB also caused activation of protease activity and autophagy via leucine depletion. Moreover, LeuB inactivation resulted in virulence attenuation of A. fumigatus in Galleria mellonella. Taken together, this study identified a previously uncharacterized direct cross-regulation of BCCA biosynthesis, nitrogen metabolism and iron homeostasis as well as proteolysis.


Assuntos
Aspergillus fumigatus/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Aspergillus nidulans/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Ferro/metabolismo , Leucina/biossíntese , Leucina/genética , Nitrogênio/metabolismo , Proteostase , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Virulência
5.
Curr Genet ; 66(1): 155-171, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31263943

RESUMO

The rice blast fungus Magnaporthe oryzae causes one of the most devastating crop diseases world-wide and new control strategies for blast disease are urgently required. We have used insertional mutagenesis in M. oryzae to define biological processes that are critical for blast disease. Here, we report the identification of LEU2A by T-DNA mutagenesis, which putatively encodes 3-isopropylmalate dehydrogenase (3-IPMDH) required for leucine biosynthesis, implicating that synthesis of this amino acid is required for fungal pathogenesis. M. oryzae contains a further predicted 3-IPMDH gene (LEU2B), two 2-isopropylmalate synthase (2-IPMS) genes (LEU4 and LEU9) and an isopropylmalate isomerase (IPMI) gene (LEU1). Targeted gene deletion mutants of LEU1, LEU2A or LEU4 are leucine auxotrophs, and severely defective in pathogenicity. All phenotypes associated with mutants lacking LEU1, LEU2A or LEU4 could be overcome by adding exogenous leucine. The expression levels of LEU1, LEU2A or LEU4 genes were significantly down-regulated by deletion of the transcription factor gene LEU3, an ortholog of Saccharomyces cerevisiae LEU3. We also functionally characterized leucine biosynthesis genes in the wheat pathogen Fusarium graminearum and found that FgLEU1, FgLEU3 and FgLEU4 are essential for wheat head blight disease, suggesting that leucine biosynthesis in filamentous fungal pathogens may be a conserved factor for fungal pathogenicity and, therefore, a potential target for disease control.


Assuntos
Leucina/biossíntese , Magnaporthe/citologia , Magnaporthe/fisiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Parede Celular/genética , DNA Bacteriano , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Mutagênese Insercional , Fenótipo , Esporos Fúngicos/genética , Virulência
6.
Appl Microbiol Biotechnol ; 104(15): 6601-6613, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32519119

RESUMO

2,3-Dihydroxyisovalerate is an intermediate of valine and leucine biosynthesis pathway; however, no natural microorganism has been found yet that can accumulate this compound. Klebsiella pneumoniae is a useful bacterium that can be used as a workhorse for the production of a range of industrially desirable chemicals. Dihydroxy acid dehydratase, encoded by the ilvD gene, catalyzes the reaction of 2-ketoisovalerate formation from 2,3-dihydroxyisovalerate. In this study, an ilvD disrupted strain was constructed which resulted in the inability to synthesize 2-ketoisovalerate, yet accumulate 2,3-dihydroxyisovalerate in its culture broth. 2,3-Butanediol is the main metabolite of K. pneumoniae and its synthesis pathway and the branched-chain amino acid synthesis pathway share the same step of the α-acetolactate synthesis. By knocking out the budA gene, carbon flow into the branched-chain amino acid synthesis pathway was upregulated, which resulted in a distinct increase in 2,3-dihydroxyisovalerate levels. Lactic acid was identified as a by-product of the process and by blocking the lactic acid synthesis pathway, a further increase in 2,3-dihydroxyisovalerate levels was obtained. The culture parameters of 2,3-dihydroxyisovalerate fermentation were optimized, which include acidic pH and medium level oxygen supplementation to favor 2,3-dihydroxyisovalerate synthesis. At optimal conditions (pH 6.5, 400 rpm), 36.5 g/L of 2,3-dihydroxyisovalerate was produced in fed-batch fermentation over 45 h, with a conversion ratio of 0.49 mol/mol glucose. Thus, a biological route of 2,3-dihydroxyisovalerate production with high conversion ratio and final titer was developed, providing a basis for an industrial process. Key Points • A biological route of 2,3-dihydroxyisovalerate production was setup. • Disruption of budA causes 2,3-dihydroxuisovalerate accumulation in K. pneumoniae. • Disruption of ilvD prevents 2,3-dihydroxyisovalerate reuse by the cell. • 36.5 g/L of 2,3-dihydroxyisovalerate was obtained in fed-batch fermentation.


Assuntos
Vias Biossintéticas , Fermentação , Klebsiella pneumoniae/metabolismo , Valeratos/metabolismo , Butileno Glicóis/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Klebsiella pneumoniae/genética , Ácido Láctico/metabolismo , Leucina/biossíntese , Oxigênio/metabolismo , Valina/biossíntese
7.
J Ind Microbiol Biotechnol ; 47(6-7): 485-495, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32535763

RESUMO

L-Leucine is an essential amino acid that has wide and expanding applications in the industry. It is currently fast-growing market demand that provides a powerful impetus to further increase its bioconversion productivity and production stability. In this study, we rationally engineered the metabolic flux from pyruvate to L-leucine synthesis in Corynebacterium glutamicum to enhance both pyruvate availability and L-leucine synthesis. First, the pyc (encoding pyruvate carboxylase) and avtA (encoding alanine-valine aminotransferase) genes were deleted to weaken the metabolic flux of the tricarboxylic acid cycle and reduce the competitive consumption of pyruvate. Next, the transcriptional level of the alaT gene (encoding alanine aminotransferase) was down regulated by inserting a terminator to balance L-leucine production and cell growth. Subsequently, the genes involved in L-leucine biosynthesis were overexpressed by replacing the native promoters PleuA and PilvBNC of the leuA gene and ilvBNC operon, respectively, with the promoter Ptuf of eftu (encoding elongation factor Tu) and using a shuttle expression vector. The resulting strain WL-14 produced 28.47 ± 0.36 g/L L-leucine in shake flask fermentation.


Assuntos
Carbono/metabolismo , Corynebacterium glutamicum/metabolismo , Leucina/biossíntese , Alanina/biossíntese , Ciclo do Ácido Cítrico , Corynebacterium glutamicum/genética , Fermentação , Microbiologia Industrial , Engenharia Metabólica , Plasmídeos/metabolismo , Ácido Pirúvico/metabolismo , Transaminases/metabolismo , Valina/biossíntese
8.
World J Microbiol Biotechnol ; 36(6): 82, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32458148

RESUMO

Lysine is widely used in food, medical and feed industries. The biosynthesis of L-lysine is closely related to NADPH level, but the regulation mechanism between the biosynthesis of L-lysine in C. glutamicum and the cofactor NADPH is still not clear. Here, a high intracellular NADPH level strain C. glutamicum XQ-5Δpgi::(zwf-gnd) was constructed by blocking the glycolytic pathway and overexpressing the pentose phosphate pathway in the lysine-producing strain C. glutamicum XQ-5, and the intracellular NADPH level in strain XQ-5Δpgi::(zwf-gnd) was increased from 3.57 × 10-5 nmol/(104 cells) to 1.8 × 10-4 nmol/(104 cell). Transcriptome analyses pointed to Cgl2680 as an important regulator of NADPH levels and L-lysine biosynthesis in C. glutamicum. By knocking out the gene Cgl2680, the intracellular NADPH level of the recombinant C. glutamicum lysCfbr ΔCgl2680 was raised from 7.95 × 10-5 nmol/(104 cells) to 2.04 × 10-4 nmol/(104 cells), consequently leading to a 2.3-fold increase in the NADPH/NADP+ ratio. These results indicated that the regulator Cgl2680 showed the negative regulation for NADPH regeneration. In addition, Cgl2680-deficient strain C. glutamicum lysCfbr ΔCgl2680 showed the increase of yield of both L-lysine and L-leucine as well as the increase of H2O2 tolerance. Collectively, our data demonstrated that Cgl2680 plays an important role in negatively regulating NADPH regeneration, and these results provides new insights for breeding L-lysine or L-leucine high-yielding strain.


Assuntos
Fator de Transcrição AraC/metabolismo , Corynebacterium glutamicum , Lisina/biossíntese , NADP/metabolismo , Fator de Transcrição AraC/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Engenharia Genética/métodos , Glicólise , Peróxido de Hidrogênio/metabolismo , Leucina/biossíntese , Via de Pentose Fosfato
9.
Plant Biotechnol J ; 17(2): 322-337, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29947463

RESUMO

Seed vigour is an imperative trait for the direct seeding of rice. Isopropylmalate synthase (IPMS) catalyses the committed step of leucine (Leu) biosynthesis, but its effect on seed vigour remains unclear. In this study, rice OsIPMS1 and OsIPMS2 was cloned, and the roles of OsIPMS1 in seed vigour were mainly investigated. OsIPMS1 and OsIPMS2 catalyse Leu biosynthesis, and Leu feedback inhibits their IPMS activities. Disruption of OsIPMS1 resulted in low seed vigour under various conditions, which might be tightly associated with the reduction of amino acids in germinating seeds. Eleven amino acids that associated with stress tolerance, GA biosynthesis and tricarboxylic acid (TCA) cycle were significantly reduced in osipms1 mutants compared with those in wide type (WT) during seed germination. Transcriptome analysis indicated that a total of 1209 differentially expressed genes (DEGs) were altered in osipms1a mutant compared with WT at the early germination stage, wherein most of the genes were involved in glycolysis/gluconeogenesis, protein processing, pyruvate, carbon, fructose and mannose metabolism. Further analysis confirmed that the regulation of OsIPMS1 in seed vigour involved in starch hydrolysis, glycolytic activity and energy levels in germinating seeds. The effects of seed priming were tightly associated with the mRNA levels of OsIPMS1 in priming seeds. The OsIPMS1 might be used as a biomarker to determine the best stop time-point of seed priming in rice. This study provides novel insights into the function of OsIPMS1 on seed vigour and should have practical applications in seed priming of rice.


Assuntos
Aciltransferases/metabolismo , Aminoácidos/metabolismo , Metabolismo Energético , Oryza/enzimologia , Aciltransferases/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Glicólise , Leucina/biossíntese , Mutação , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia
10.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31324637

RESUMO

Bacteria synthesize amino acids according to their availability in the environment or, in the case of pathogens, within the host. We explored the regulation of the biosynthesis of branched-chain amino acids (BCAAs) (l-leucine, l-valine, and l-isoleucine) in Vibrio alginolyticus, a marine fish and shellfish pathogen and an emerging opportunistic human pathogen. In this species, the ilvGMEDA operon encodes the main pathway for biosynthesis of BCAAs. Its upstream regulatory region shows no sequence similarity to the corresponding region in Escherichia coli or other Enterobacteriaceae, and yet we show that this operon is regulated by transcription attenuation. The translation of a BCAA-rich peptide encoded upstream of the structural genes provides an adaptive response similar to the E. coli canonical model. This study of a nonmodel Gram-negative organism highlights the mechanistic conservation of transcription attenuation despite the absence of primary sequence conservation.IMPORTANCE This study analyzes the regulation of the biosynthesis of branched-chain amino acids (leucine, valine, and isoleucine) in Vibrio alginolyticus, a marine bacterium that is pathogenic to fish and humans. The results highlight the conservation of the main regulatory mechanism with that of the enterobacterium Escherichia coli, suggesting that such a mechanism appeared early during the evolution of Gram-negative bacteria, allowing adaptation to a wide range of environments.


Assuntos
Aminoácidos de Cadeia Ramificada/biossíntese , Regulação Bacteriana da Expressão Gênica , Óperon , Transcrição Gênica , Vibrio alginolyticus/genética , Acetolactato Sintase/metabolismo , Organismos Aquáticos , Escherichia coli/genética , Isoleucina/biossíntese , Leucina/biossíntese , Sequências Reguladoras de Ácido Nucleico , Valina/biossíntese
11.
J Exp Bot ; 70(8): 2313-2323, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30753668

RESUMO

The growth and development of organisms must be tightly controlled and adjusted to nutrient availability and metabolic activities. The Target of Rapamycin (TOR) network is a major control mechanism in eukaryotes and influences processes such as translation, mitochondrial activity, production of reactive oxygen species, and the cytoskeleton. In Arabidopsis thaliana, inhibition of the TOR kinase causes changes in cell wall architecture and suppression of phenotypic defects of the cell wall formation mutant lrx1 (leucine-rich repeat extensin 1). The rol17 (repressor of lrx1 17) mutant was identified as a new suppressor of lrx1 that induces also a short root phenotype. The ROL17 locus encodes isopropylmalate synthase 1, a protein involved in leucine biosynthesis. Dependent on growth conditions, mutations in ROL17 do not necessarily alter the level of leucine, but always cause development of the rol17 mutant phenotypes, suggesting that the mutation does not only influence leucine biosynthesis. Changes in the metabolome of rol17 mutants are also found in plants with inhibited TOR kinase activity. Furthermore, rol17 mutants show reduced sensitivity to the TOR kinase inhibitor AZD-8055, indicating a modified TOR network. Together, these data suggest that suppression of lrx1 by rol17 is the result of an alteration of the TOR network.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glucosiltransferases/genética , Fosfatidilinositol 3-Quinases , Proteínas de Arabidopsis/metabolismo , Leucina/biossíntese , Mutação , Organogênese Vegetal , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
12.
Crit Rev Biotechnol ; 39(5): 633-647, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31055970

RESUMO

l-Leucine, as an essential branched-chain amino acid for humans and animals, has recently been attracting much attention because of its potential for a fast-growing market demand. The applicability ranges from flavor enhancers, animal feed additives and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. Microbial fermentation is the major method for producing l-leucine by using Escherichia coli and Corynebacterium glutamicum as host bacteria. This review gives an overview of the metabolic pathway of l-leucine (i.e. production, import and export systems) and highlights the main regulatory mechanisms of operons in E. coli and C. glutamicum l-leucine biosynthesis. We summarize here the current trends in metabolic engineering techniques and strategies for manipulating l-leucine producing strains. Finally, future perspectives to construct industrially advantageous strains are considered with respect to recent advances in biology.


Assuntos
Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Leucina/biossíntese , Corynebacterium glutamicum/genética , Escherichia coli/genética , Leucina/genética , Engenharia Metabólica , Óperon
13.
Extremophiles ; 23(4): 377-388, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30919057

RESUMO

Protein lysine Nε-acetylation is one of the important factors regulating cellular metabolism. We performed a proteomic analysis to identify acetylated proteins in the extremely thermophilic bacterium, Thermus thermophilus HB27. A total of 335 unique acetylated lysine residues, including many metabolic enzymes and ribosomal proteins, were identified in 208 proteins. Enzymes involved in amino acid metabolism were the most abundant among acetylated metabolic proteins. 2-Isopropylmalate synthase (IPMS), which catalyzes the first step in leucine biosynthesis, was acetylated at four lysine residues. Acetylation-mimicking mutations at Lys332 markedly decreased IPMS activity in vitro, suggesting that Lys332, which is located in subdomain II, plays a regulatory role in IPMS activity. We also investigated the acetylation-deacetylation mechanism of IPMS and revealed that it was acetylated non-enzymatically by acetyl-CoA and deacetylated enzymatically by TT_C0104. The present results suggest that leucine biosynthesis is regulated by post-translational protein modifications, in addition to feedback inhibition/repression, and that metabolic enzymes are regulated by protein acetylation in T. thermophilus.


Assuntos
2-Isopropilmalato Sintase/metabolismo , Proteínas de Bactérias/metabolismo , Processamento de Proteína Pós-Traducional , Thermus thermophilus/enzimologia , 2-Isopropilmalato Sintase/química , 2-Isopropilmalato Sintase/genética , Acetilação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Leucina/biossíntese , Thermus thermophilus/metabolismo
14.
Appl Microbiol Biotechnol ; 103(1): 327-337, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30357439

RESUMO

The biosynthesis of branched-chain amino acids (BCAAs) is conserved in fungi and plants, but not in animals. The Leu1 gene encodes isopropylmalate isomerase that catalyzes the conversion of α-isopropylmalate into ß-isopropylmalate in the second step of leucine biosynthesis in yeast. Here, we identified and characterized the functions of MoLeu1, an ortholog of yeast Leu1 in the rice blast fungus Magnaporthe oryzae. The transcriptional level of MoLEU1 was increased during conidiation and in infectious stages. Cellular localization analysis indicated that MoLeu1 localizes to the cytoplasm at all stages of fungal development. Targeted gene deletion of MoLEU1 led to leucine auxotrophy, and phenotypic analysis of the generated ∆Moleu1 strain revealed that MoLeu1-mediated leucine biosynthesis was required for vegetative growth, asexual development, and pathogenesis of M. oryzae. We further observed that invasive hyphae produced by the ∆Moleu1 strain were mainly limited to the primary infected host cells. The application of exogenous leucine fully restored vegetative growth and partially restored conidiation as well as pathogenicity defects in the ∆Moleu1 strain. In summary, our results suggested that MoLeu1-mediated leucine biosynthesis crucially promotes vegetative growth, conidiogenesis, and pathogenicity of M. oryzae. This study helps unveil the regulatory mechanisms that are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus.


Assuntos
Proteínas Fúngicas/metabolismo , Isomerases/metabolismo , Leucina/biossíntese , Magnaporthe/metabolismo , Magnaporthe/patogenicidade , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Hifas/patogenicidade , Isomerases/genética , Magnaporthe/genética , Magnaporthe/crescimento & desenvolvimento , Oryza/microbiologia , Doenças das Plantas/microbiologia , Reprodução Assexuada/genética , Esporos Fúngicos/crescimento & desenvolvimento
15.
Curr Microbiol ; 76(3): 370-375, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30706083

RESUMO

Because of its competitive inhibitor activity against aminopeptidase B, bestatin isolated from the broth of Streptomyces olivoreticuli ATCC 31159 is famous and currently used as an approved therapeutic agent for cancer and bacterial infections. It can be used alone or in combination with other antibiotics or anticancer drugs as adjuvant therapy drug for chemotherapy and radiotherapy. Due to the therapeutic importance of bestatin, mining of its biosynthetic mechanism is imperative. Genome mining, one of the bioinformatics-based approaches for the discovery of novel natural product, has been developed and applied widely. Herein, we reported the complete genome of Streptomyces olivoreticuli ATCC 31159 obtained from American Type Culture Collection (ATCC). It consists of 8,809,793 base pairs with a linear chromosome, GC content of 71.1%, 7520 protein-coding genes, 75 tRNA operons, 21 rRNA operons, 63 sRNAs. In addition, predictive analysis showed that at least 37 putative biosynthetic gene clusters (BGCs) of the secondary metabolites were obtained, 18 new BGCs with low similarity (< 25%) were included. The availability of novel and abundant gene clusters not only will provide clues for cracking the biosynthetic mechanism of bestatin, but also will provide valuable insight for mining the diverse bioactive compounds based on rational strategies.


Assuntos
Genoma Bacteriano/genética , Leucina/análogos & derivados , Streptomyces/genética , Composição de Bases , Sequência de Bases , Biologia Computacional , DNA Bacteriano/genética , Genes Bacterianos/genética , Leucina/biossíntese , Leucina/genética , Família Multigênica/genética , Óperon/genética , Metabolismo Secundário/genética , Análise de Sequência de DNA , Streptomyces/metabolismo
16.
Med Mycol ; 56(4): 458-468, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420779

RESUMO

Iron-sulfur clusters (ISC) are indispensable cofactors for essential enzymes in various cellular processes. In the model yeast Saccharomyces cerevisiae, the precursor of ISCs is exported from mitochondria via a mitochondrial ABC transporter Atm1 and used for cytosolic and nuclear ISC protein assembly. Although iron homeostasis has been implicated in the virulence of the human fungal pathogen Cryptococcus neoformans, the key components of the ISC biosynthesis pathway need to be fully elucidated. In the current study, a homolog of S. cerevisiae Atm1 was identified in C. neoformans, and its function was characterized. We constructed C. neoformans mutants lacking ATM1 and found that deletion of ATM1 affected mitochondrial functions. Furthermore, we observed diminished activity of the cytosolic ISC-containing protein Leu1 and the heme-containing protein catalase in the atm1 mutant. These results suggested that Atm1 is required for the biosynthesis of ISCs in the cytoplasm as well as heme metabolism in C. neoformans. In addition, the atm1 mutants were avirulent in a murine model of cryptococcosis. Overall, our results demonstrated that Atm1 plays a critical role in iron metabolism and virulence for C. neoformans.


Assuntos
Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas , Ferro/metabolismo , Mitocôndrias/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Criptococose/metabolismo , Criptococose/patologia , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/ultraestrutura , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/genética , Leucina/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Saccharomyces cerevisiae/genética , Deleção de Sequência , Superóxido Dismutase/genética , Virulência/genética
17.
Molecules ; 23(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134636

RESUMO

The production of branched-chain amino acids (BCAAs) is still challenging, therefore we rationally engineered Corynebacterium glutamicum FA-1 to increase the l-leucine production by optimizing the aminotransferases. Based on this, we investigated the effects of the native aminotransferases, i.e., branched-chain amino acid aminotransferase (BCAT; encoded by ilvE) and aspartate aminotransferase (AspB; encoded by aspB) on l-leucine production in C. glutamicum. The strain FA-1△ilvE still exhibited significant growth without leucine addition, while FA-1△ilvE△aspB couldn't, which indicated that AspB also contributes to L-leucine synthesis in vivo and the yield of leucine reached 20.81 ± 0.02 g/L. It is the first time that AspB has been characterized for l-leucine synthesis activity. Subsequently, the aromatic aminotransferase TyrB and the putative aspartate aminotransferases, the aspC, yhdR, ywfG gene products, were cloned, expressed and characterized for leucine synthesis activity in FA-1△ilvE△aspB. Only TyrB was able to synthesize l-leucine and the l-leucine production was 18.55 ± 0.42 g/L. The two putative branched-chain aminotransferase genes, ybgE and CaIlvE, were also cloned and expressed. Both genes products function efficiently in BCAAs biosynthesis. This is the first report of a rational modification of aminotransferase activity that improves the l-leucine production through optimizing the aminotransferases.


Assuntos
Aspartato Aminotransferases/metabolismo , Corynebacterium glutamicum/metabolismo , Leucina/biossíntese , Transaminases/metabolismo , Aminoácidos de Cadeia Ramificada/biossíntese , Aspartato Aminotransferases/genética , Vias Biossintéticas , Corynebacterium glutamicum/genética , Inativação Gênica , Transaminases/genética , Valina/biossíntese
18.
J Biol Chem ; 291(26): 13421-30, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27137927

RESUMO

Isopropylmalate dehydrogenase (IPMDH) and 3-(2'-methylthio)ethylmalate dehydrogenase catalyze the oxidative decarboxylation of different ß-hydroxyacids in the leucine- and methionine-derived glucosinolate biosynthesis pathways, respectively, in plants. Evolution of the glucosinolate biosynthetic enzyme from IPMDH results from a single amino acid substitution that alters substrate specificity. Here, we present the x-ray crystal structures of Arabidopsis thaliana IPMDH2 (AtIPMDH2) in complex with either isopropylmalate and Mg(2+) or NAD(+) These structures reveal conformational changes that occur upon ligand binding and provide insight on the active site of the enzyme. The x-ray structures and kinetic analysis of site-directed mutants are consistent with a chemical mechanism in which Lys-232 activates a water molecule for catalysis. Structural analysis of the AtIPMDH2 K232M mutant and isothermal titration calorimetry supports a key role of Lys-232 in the reaction mechanism. This study suggests that IPMDH-like enzymes in both leucine and glucosinolate biosynthesis pathways use a common mechanism and that members of the ß-hydroxyacid reductive decarboxylase family employ different active site features for similar reactions.


Assuntos
3-Isopropilmalato Desidrogenase/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Glucosinolatos/biossíntese , Leucina/biossíntese , 3-Isopropilmalato Desidrogenase/genética , 3-Isopropilmalato Desidrogenase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glucosinolatos/química , Glucosinolatos/genética , Leucina/química , Leucina/genética , Relação Estrutura-Atividade
19.
BMC Plant Biol ; 17(1): 71, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388946

RESUMO

BACKGROUND: Branched-chain amino acids (BCAAs) are synthesized by plants, fungi, bacteria, and archaea with plants being the major source of these amino acids in animal diets. Acetolactate synthase (ALS) is the first enzyme in the BCAA synthesis pathway. Although the functional contribution of ALS to BCAA biosynthesis has been extensively characterized, a comprehensive understanding of the regulation of this pathway at the molecular level is still lacking. RESULTS: To characterize the regulatory processes governing ALS activity we utilized several complementary approaches. Using the ALS catalytic protein subunit as bait we performed a yeast two-hybrid (Y2H) screen which resulted in the identification of a set of interacting proteins, two of which (denoted as ALS-INTERACTING PROTEIN1 and 3 [AIP1 and AIP3, respectively]) were found to be evolutionarily conserved orthologues of bacterial feedback-regulatory proteins and therefore implicated in the regulation of ALS activity. To investigate the molecular role AIPs might play in BCAA synthesis in Arabidopsis thaliana, we examined the functional contribution of aip1 and aip3 knockout alleles to plant patterning and development and BCAA synthesis under various growth conditions. Loss-of-function genetic backgrounds involving these two genes exhibited differential aberrant growth responses in valine-, isoleucine-, and sodium chloride-supplemented media. While BCAA synthesis is believed to be localized to the chloroplast, both AIP1 and AIP3 were found to localize to the peroxisome in addition to the chloroplast. Analysis of free amino acid pools in the mutant backgrounds revealed that they differ in the absolute amount of individual BCAAs accumulated and exhibit elevated levels of BCAAs in leaf tissues. Despite the phenotypic differences observed in aip1 and aip3 backgrounds, functional redundancy between these loci was suggested by the finding that aip1/aip3 double knockout mutants are severely developmentally compromised. CONCLUSIONS: Taken together the data suggests that the two regulatory proteins, in conjunction with ALS, have overlapping but distinct functions in BCAA synthesis, and also play a role in pathways unrelated to BCAA synthesis such as sodium-ion homeostasis, extending to broader aspects of patterning and development.


Assuntos
Acetolactato Sintase/metabolismo , Aminoácidos de Cadeia Ramificada/biossíntese , Arabidopsis/metabolismo , Acetolactato Sintase/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Isoleucina/biossíntese , Isoleucina/metabolismo , Leucina/biossíntese , Leucina/metabolismo
20.
Molecules ; 22(12)2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29240717

RESUMO

The unusual amino acid l-cyclopropylalanine was isolated from the mushroom Amanita virgineoides after detection in an anti-fungal screening test. l-Cyclopropylalanine was found to exhibit broad-spectrum inhibition against fungi and bacteria. The anti-fungal activity was found to be abolished in the presence of the amino acid l-leucine, but not any other amino acids, indicating that l-cyclopropylalanine may block the biosynthesis of the essential amino acid l-leucine, thereby inhibiting fungal and bacteria growth. Further biochemical studies found l-cyclopropylalanine indeed inhibits α-isopropylmalate synthase (α-IMPS), the enzyme that catalyzes the rate-limiting step in the biosynthetic pathway of l-leucine. Inhibition of essential l-leucine synthesis in fungal and bacteria organisms, a pathway absent in host organisms such as humans, may represent a novel antibiotic mechanism to counter the ever-increasing problem of drug resistance to existing antibiotics.


Assuntos
Alanina/análogos & derivados , Alanina/farmacologia , Amanita/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Leucina/biossíntese , 2-Isopropilmalato Sintase/antagonistas & inibidores , Alanina/química , Animais , Antibacterianos/química , Antifúngicos/química , Farmacorresistência Bacteriana , Escherichia coli , Expressão Gênica , Humanos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA