Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.330
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(1): 131-144.e18, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34919814

RESUMO

Two HIV fusion-inhibitory lipopeptides (LP-97 and LP-98) were designed with highly potent, long-acting antiviral activity. Monotherapy using a low dose of LP-98 sharply reduced viral loads and maintained long-term viral suppression in 21 SHIVSF162P3-infected rhesus macaques. We found that five treated monkeys achieved potential posttreatment control (PTC) efficacy and had lower viral DNA in deep lymph nodes, whereas monkeys with a stable viral rebound had higher viral DNA in superficial lymph nodes. The tissues of PTC monkeys exhibited significantly decreased quantitative viral outgrowth and fewer PD-1+ central memory CD4+ T cells, and CD8+ T cells contributed to virologic control efficacy. Moreover, LP-98 administrated as a pre-exposure prophylaxis (PrEP) provided complete protection against SHIVSF162P3 and SIVmac239 infections in 51 monkeys via intrarectal, intravaginal, or intravenous challenge. In conclusion, our lipopeptides exhibit high potential as an efficient HIV treatment or prevention strategy.


Assuntos
Inibidores da Fusão de HIV/administração & dosagem , Lipopeptídeos/administração & dosagem , Profilaxia Pré-Exposição/métodos , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Feminino , Células HEK293 , Humanos , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Resposta Viral Sustentada , Células U937 , Carga Viral/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 121(15): e2401632121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568970

RESUMO

Photosynthetic protists, known as microalgae, are key contributors to primary production on Earth. Since early in evolution, they coexist with bacteria in nature, and their mode of interaction shapes ecosystems. We have recently shown that the bacterium Pseudomonas protegens acts algicidal on the microalga Chlamydomonas reinhardtii. It secretes a cyclic lipopeptide and a polyyne that deflagellate, blind, and lyse the algae [P. Aiyar et al., Nat. Commun. 8, 1756 (2017) and V. Hotter et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2107695118 (2021)]. Here, we report about the bacterium Mycetocola lacteus, which establishes a mutualistic relationship with C. reinhardtii and acts as a helper. While M. lacteus enhances algal growth, it receives methionine as needed organic sulfur and the vitamins B1, B3, and B5 from the algae. In tripartite cultures with the alga and the antagonistic bacterium P. protegens, M. lacteus aids the algae in surviving the bacterial attack. By combining synthetic natural product chemistry with high-resolution mass spectrometry and an algal Ca2+ reporter line, we found that M. lacteus rescues the alga from the antagonistic bacterium by cleaving the ester bond of the cyclic lipopeptide involved. The resulting linearized seco acid does not trigger a cytosolic Ca2+ homeostasis imbalance that leads to algal deflagellation. Thus, the algae remain motile, can swim away from the antagonistic bacteria and survive the attack. All three involved genera cooccur in nature. Remarkably, related species of Pseudomonas and Mycetocola also act antagonistically against C. reinhardtii or as helper bacteria in tripartite cultures.


Assuntos
Chlamydomonas reinhardtii , Ecossistema , Bactérias , Eucariotos , Lipopeptídeos
3.
J Immunol ; 212(11): 1639-1646, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629913

RESUMO

Recently, we reported that preexposure of B cells to IL-4 induced an alternate, signalosome-independent BCR signaling pathway leading to protein kinase C (PKC)δ phosphorylation (pTyr311), which occurs in the membrane compartment. This is considered to represent a form of receptor crosstalk and signal integration. Unlike the classical BCR signaling pathway, Lyn kinase is indispensable for BCR-induced downstream events in the alternate pathway. Our previous report that alternate BCR signaling leading to ERK phosphorylation is triggered by LPS and PAM3CSK4 (much like IL-4) raises the possibility that other signaling outcomes such as PKCδ phosphorylation might be similarly affected. To explore the range of mediators capable of producing an alternate pathway for BCR signaling, we examined PKCδ translocation and phosphorylation in LPS- and PAM3CSK4-treated B cells stimulated by anti-Ig. We found that LPS and PAM3CSK4 alter the signaling pathway used by the BCR to produce PKCδ phosphorylation. As with IL-4, elements of the signalosome are not needed for PKCδ phosphorylation when BCR triggering occurs after LPS and PAM3CSK4. However, with LPS and PAM3CSK4, anti-Ig-induced phosphorylation of PKCδ takes place in the cytosol, in contrast to the IL-4-induced alternate pathway, wherein PKCδ phosphorylation occurs in the membrane. Furthermore, the BCR signaling pathway induced by LPS and PAM3CSK4 differs from that induced by IL-4 by not requiring Lyn. Thus, an alternate, signalosome-independent BCR signaling pathway for PKCδ phosphorylation is induced by TLR agonists but differs in important ways from the alternate pathway induced by IL-4.


Assuntos
Interleucina-4 , Lipopeptídeos , Lipopolissacarídeos , Proteína Quinase C-delta , Receptores de Antígenos de Linfócitos B , Transdução de Sinais , Quinases da Família src , Proteína Quinase C-delta/metabolismo , Fosforilação , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Interleucina-4/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Lipopeptídeos/farmacologia , Quinases da Família src/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Receptores Toll-Like/metabolismo , Camundongos Endogâmicos C57BL
4.
Proc Natl Acad Sci U S A ; 120(42): e2304668120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812712

RESUMO

Bacterial natural products have found many important industrial applications. Yet traditional discovery pipelines often prioritize individual natural product families despite the presence of multiple natural product biosynthetic gene clusters in each bacterial genome. Systematic characterization of talented strains is a means to expand the known natural product space. Here, we report genomics, epigenomics, and metabolomics studies of Burkholderia sp. FERM BP-3421, a soil isolate and known producer of antitumor spliceostatins. Its genome is composed of two chromosomes and two plasmids encoding at least 29 natural product families. Metabolomics studies showed that FERM BP-3421 also produces antifungal aminopyrrolnitrin and approved anticancer romidepsin. From the orphan metabolome features, we connected a lipopeptide of 1,928 Da to an 18-module nonribosomal peptide synthetase encoded as a single gene in chromosome 1. Isolation and structure elucidation led to the identification of selethramide which contains a repeating pattern of serine and leucine and is cyclized at the side chain oxygen of the one threonine residue at position 13. A (R)-3-hydroxybutyric acid moiety decorates the N-terminal serine. Initial attempts to obtain deletion mutants to probe the role of selethramide failed. After acquiring epigenome (methylome) data for FERM BP-3421, we employed a mimicry by methylation strategy that improved DNA transfer efficiency. Mutants defective in selethramide biosynthesis showed reduced surfactant activity and impaired swarming motility that could be chemically complemented with selethramide. This work unveils a lipopeptide that promotes surface motility, establishes improved DNA transfer efficiency, and sets the stage for continued natural product identification from a prolific strain.


Assuntos
Produtos Biológicos , Burkholderia , Humanos , Burkholderia/genética , Peptídeo Sintases/genética , Lipopeptídeos/química , DNA , Produtos Biológicos/química , Serina/genética , Família Multigênica
5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35027450

RESUMO

Lipopeptides represent a large group of microbial natural products that include important antibacterial and antifungal drugs and some of the most-powerful known biosurfactants. The vast majority of lipopeptides comprise cyclic peptide backbones N-terminally equipped with various fatty acyl moieties. The known compounds of this type are biosynthesized by nonribosomal peptide synthetases, giant enzyme complexes that assemble their products in a non-gene-encoded manner. Here, we report the genome-guided discovery of ribosomally derived, fatty-acylated lipopeptides, termed selidamides. Heterologous reconstitution of three pathways, two from cyanobacteria and one from an arctic, ocean-derived alphaproteobacterium, allowed structural characterization of the probable natural products and suggest that selidamides are widespread over various bacterial phyla. The identified representatives feature cyclic peptide moieties and fatty acyl units attached to (hydroxy)ornithine or lysine side chains by maturases of the GCN5-related N-acetyltransferase superfamily. In contrast to nonribosomal lipopeptides that are usually produced as congener mixtures, the three selidamides are selectively fatty acylated with C10, C12, or C16 fatty acids, respectively. These results highlight the ability of ribosomal pathways to emulate products with diverse, nonribosomal-like features and add to the biocatalytic toolbox for peptide drug improvement and targeted discovery.


Assuntos
Lipopeptídeos/biossíntese , Lipopeptídeos/química , Ribossomos/metabolismo , Antibacterianos/metabolismo , Antifúngicos/metabolismo , Vias Biossintéticas , Cianobactérias/metabolismo , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos
6.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193957

RESUMO

Mycobacterium tuberculosis (Mtb) endures a combination of metal scarcity and toxicity throughout the human infection cycle, contributing to complex clinical manifestations. Pathogens counteract this paradoxical dysmetallostasis by producing specialized metal trafficking systems. Capture of extracellular metal by siderophores is a widely accepted mode of iron acquisition, and Mtb iron-chelating siderophores, mycobactin, have been known since 1965. Currently, it is not known whether Mtb produces zinc scavenging molecules. Here, we characterize low-molecular-weight zinc-binding compounds secreted and imported by Mtb for zinc acquisition. These molecules, termed kupyaphores, are produced by a 10.8 kbp biosynthetic cluster and consists of a dipeptide core of ornithine and phenylalaninol, where amino groups are acylated with isonitrile-containing fatty acyl chains. Kupyaphores are stringently regulated and support Mtb survival under both nutritional deprivation and intoxication conditions. A kupyaphore-deficient Mtb strain is unable to mobilize sufficient zinc and shows reduced fitness upon infection. We observed early induction of kupyaphores in Mtb-infected mice lungs after infection, and these metabolites disappeared after 2 wk. Furthermore, we identify an Mtb-encoded isonitrile hydratase, which can possibly mediate intracellular zinc release through covalent modification of the isonitrile group of kupyaphores. Mtb clinical strains also produce kupyaphores during early passages. Our study thus uncovers a previously unknown zinc acquisition strategy of Mtb that could modulate host-pathogen interactions and disease outcome.


Assuntos
Lipopeptídeos/metabolismo , Mycobacterium tuberculosis/metabolismo , Zinco/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Transporte Biológico , Quelantes/metabolismo , Modelos Animais de Doenças , Homeostase , Interações Hospedeiro-Patógeno , Metais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/crescimento & desenvolvimento , Sideróforos/metabolismo , Tuberculose/microbiologia
7.
Antimicrob Agents Chemother ; 68(5): e0158423, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526046

RESUMO

Rezafungin is a long-acting, intravenously administered echinocandin for the treatment of candidemia and invasive candidiasis (IC). Non-inferiority of rezafungin vs caspofungin for the treatment of adults with candidemia and/or IC was demonstrated in the Phase 3 ReSTORE study based on the primary endpoints of day 14 global cure and 30-day all-cause mortality. Here, an analysis of ReSTORE data evaluating efficacy outcomes by baseline Candida species is described. Susceptibility testing was performed for Candida species using the Clinical and Laboratory Standards Institute reference broth microdilution method. There were 93 patients in the modified intent-to-treat population who received rezafungin; 94 received caspofungin. Baseline Candida species distribution was similar in the two treatment groups; C. albicans (occurring in 41.9% and 42.6% of patients in the rezafungin and caspofungin groups, respectively), C. glabrata (25.8% and 26.6%), and C. tropicalis (21.5% and 18.1%) were the most common pathogens. Rates of global cure and mycological eradication at day 14 and day 30 all-cause mortality by Candida species were comparable in the rezafungin and caspofungin treatment groups and did not appear to be impacted by minimal inhibitory concentration (MIC) values for either rezafungin or caspofungin. Two patients had baseline isolates with non-susceptible MIC values (both in the rezafungin group: one non-susceptible to rezafungin and one to caspofungin, classified as intermediate); both were candidemia-only patients in whom rezafungin treatment was successful based on the day 30 all-cause mortality endpoint. This analysis of ReSTORE demonstrated the efficacy of rezafungin for candidemia and IC in patients infected with a variety of Candida species.


Assuntos
Antifúngicos , Candidemia , Candidíase Invasiva , Caspofungina , Equinocandinas , Testes de Sensibilidade Microbiana , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Candidemia/tratamento farmacológico , Candidemia/mortalidade , Candidemia/microbiologia , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/microbiologia , Candidíase Invasiva/mortalidade , Caspofungina/uso terapêutico , Caspofungina/farmacologia , Equinocandinas/uso terapêutico , Equinocandinas/farmacologia , Lipopeptídeos/uso terapêutico , Resultado do Tratamento
8.
J Antimicrob Chemother ; 79(1): 151-156, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37991226

RESUMO

OBJECTIVES: Caspofungin is an echinocandin antifungal agent that inhibits synthesis of glucan required for the fungal cell wall. Resistance is mediated by mutation of Fks1 glucan synthase, among which S645P is the most common resistance-associated polymorphism. Rapamycin is a macrolide that inhibits the mechanistic target of rapamycin (mTOR) protein kinase activity. This study investigated the interaction between rapamycin and caspofungin in inhibiting the growth of WT Candida albicans and Fks1 S645P mutant clinical isolate, and WT Candida lusitaniae and genetically engineered isogenic strain with Fks1 S645P mutation at equivalent position. METHODS: Interactions between caspofungin and rapamycin were evaluated using the microdilution chequerboard method in liquid medium. The results were analysed using the Loewe additivity model (FIC index, FICI) and the Bliss independence model (response surface, RS, analysis). RESULTS: Synergy between rapamycin and caspofungin was shown for C. albicans and C. lusitaniae strains by RS analysis of the chequerboard tests. Synergy was observed in strains susceptible and resistant to caspofungin. Weak subinhibitory concentrations of rapamycin were sufficient to restore caspofungin susceptibility. CONCLUSIONS: We report here, for the first time, synergy between caspofungin and rapamycin in Candida species. Synergy was shown for strains susceptible and resistant to caspofungin. This study highlights the possible implication of the TOR pathway in sensing antifungal-mediated cell wall stress and in modulating the cellular response to echinocandins in Candida yeasts.


Assuntos
Antifúngicos , Candida , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Caspofungina/farmacologia , Sirolimo/farmacologia , Equinocandinas/farmacologia , Candida albicans , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica/genética , Lipopeptídeos/farmacologia
9.
J Antimicrob Chemother ; 79(1): 157-165, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38000088

RESUMO

BACKGROUND: Pharmacokinetic/pharmacodynamic (PK/PD) targets of echinocandins failed to support current clinical breakpoints of Candida parapsilosis as the PTA is low for susceptible isolates despite the good clinical efficacy of echinocandins against these infections. We therefore investigated the effect of micafungin against C. parapsilosis using an in vitro PK/PD in the presence of 10% human serum. METHODS: Three susceptible (MIC = 0.5-2 mg/L) and one resistant (MIC > 8 mg/L) C. parapsilosis sensu stricto isolates were tested at two different inocula (104 and 103 cfu/mL) simulating micafungin human exposures in RPMI and in RPMI + 10% pooled human serum. The exposure-effect relationship tAUC0-24/MIC was described and different PK/PD targets were determined in order to calculate the PTA for the standard 100 mg IV q24h dose. RESULTS: A maximal effect was found at fCmax ≥ 4 mg/L in RPMI and tCmax ≥ 64 mg/L (fCmax = 0.08 mg/L) in the presence of serum for which in vitro PK/PD targets were 50 times lower. Stasis in the presence of serum was found at 272-240 tAUC0-24/MIC, close to the clinical PK/PD target (285 tAUC/MIC), validating the in vitro model. However, the PTA was low for susceptible isolates with EUCAST/CLSI MICs ≤ 2 mg/L. Among the different PK/PD targets investigated, the PK/PD target 28 tAUC/MIC associated with 10% of maximal effect with the low inoculum resulted in PTAs ≥ 95% for susceptible isolates with EUCAST/CLSI MICs ≤ 2 mg/L. CONCLUSIONS: A new PK/PD target was found for micafungin and C. parapsilosis that supports the current clinical breakpoint. This target could be used for assessing echinocandin efficacy against C. parapsilosis.


Assuntos
Antifúngicos , Candida parapsilosis , Humanos , Micafungina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Lipopeptídeos/farmacologia , Candida , Equinocandinas/farmacologia , Mitomicina/farmacologia , Testes de Sensibilidade Microbiana
10.
Appl Environ Microbiol ; 90(2): e0177923, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193673

RESUMO

The Pseudoalteromonas genus marine bacteria have attracted increasing interest because of their abilities to produce bioactive metabolites. The pigmented Pseudoalteromonas group encodes more secondary metabolite biosynthetic gene clusters (BGCs) than the non-pigmented group. Here, we report a yellow pigmented bacterium Pseudoalteromonas sp. strain T1lg65, which was isolated from a mangrove forest sediment. We showed that the yellow pigments of T1lg65 belong to the group of lipopeptide alterochromides. Further genetic analyses of the alterochromide BGC revealed that the yellow pigments are biosynthesized by aryl-polyene synthases and nonribosomal peptide synthases. Within the gene cluster, altA encodes a tyrosine ammonia acid lyase, which catalyzes synthesis of the precursor 4-hydroxycinnamic acid (4-HCA) from tyrosine in the alterochromide biosynthetic pathway. In addition, altN, encoding a putative flavin-dependent halogenase, was proven to be responsible for the bromination of alterochromides based on gene deletion, molecular docking, and site mutagenesis analyses. In summary, the biosynthetic pathway, precursor synthesis, and bromination mechanism of the lipopeptide alterochromides were studied in-depth. Our results expand the knowledge on biosynthesis of Pseudoalteromonas pigments and could promote the development of active pigments in the future.IMPORTANCEThe marine bacteria Pseudoalteromonas spp. are important biological resources because they are producers of bioactive natural products, including antibiotics, pigments, enzymes, and antimicrobial peptides. One group of the microbial pigments, alterochromides, holds a great value for their novel lipopeptide structures and antimicrobial activities. Previous studies were limited to the structural characterization of alterochromides and genome mining for the alterochromide biosynthesis. This work focused on the biosynthetic mechanism for alterochromide production, especially revealing functions of two key genes within the gene cluster for the alterochromide biosynthesis. On the one hand, our study provides a target for metabolic engineering of the alterochromide biosynthesis; on the other hand, the 4-HCA synthase AltA and brominase AltN show potential in the biocatalyst industry.


Assuntos
Pseudoalteromonas , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Simulação de Acoplamento Molecular , Flavinas/metabolismo , Lipopeptídeos/metabolismo , Tirosina/metabolismo
11.
BMC Microbiol ; 24(1): 193, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831400

RESUMO

INTRODUCTION: Optimal exploitation of the huge amounts of agro-industrial residuals that are produced annually, which endangers the ecosystem and ultimately contributes to climate change, is one of the solutions available to produce value-added compounds. AIM AND OBJECTIVES: This study aimed at the economic production and optimization of surfactin. Therefore, the production was carried out by the microbial conversion of Potato Peel Waste (PPW) and Frying Oil Waste (FOW) utilizing locally isolated Bacillus halotolerans. Also, investigating its potential application as an antimicrobial agent towards some pathogenic strains. RESULTS: Screening the bacterial isolates for surfactin production revealed that the strain with the highest yield (49 g/100 g substrate) and efficient oil displacement activity was genetically identified as B. halotolerans. The production process was then optimized utilizing Central Composite Design (CCD) resulting in the amelioration of yield by 11.4% (from 49 to 55.3 g/100 g substrate) and surface tension (ST) by 8.3% (from 36 to 33 mN/m) with a constant level of the critical micelle concentration (CMC) at 125 mg/L. Moreover, the physiochemical characterization studies of the produced surfactin by FTIR, 1H NMR, and LC-MS/MS proved the existence of a cyclic lipopeptide (surfactin). The investigations further showed a strong emulsification affinity for soybean and motor oil (E24 = 50%), as well as the ability to maintain the emulsion stable over a wide pH (4-10) and temperature (10-100 °C) range. Interestingly, surfactin had a broad-spectrum range of inhibition activity against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, klebsiella pneumonia, and Candida albicans. CONCLUSION: Subsequently, the screening of the isolates and the utilized food-processing wastes along with the extraction technique resulted in a high yield of surfactin characterized by acceptable ST and CMC levels. However, optimization of the cultural conditions to improve the activity and productivity was achieved using Factor-At-A-Time (OFAT) and Central Composite Design (CCD). In contrast, surface activity recorded a maximum level of (33 mN/n) and productivity of 55.3 g/100 g substrate. The optimized surfactin had also the ability to maintain the stability of emulsions over a wide range of pH and temperature. Otherwise, the obtained results proved the promising efficiency of the surfactin against bacterial and fungal pathogens.


Assuntos
Bacillus , Resíduos Industriais , Lipopeptídeos , Solanum tuberosum , Bacillus/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo , Lipopeptídeos/biossíntese , Lipopeptídeos/química , Lipopeptídeos/isolamento & purificação , Solanum tuberosum/microbiologia , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/biossíntese , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Agricultura/métodos
12.
BMC Microbiol ; 24(1): 227, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937715

RESUMO

This study investigated the influence of bacterial cyclic lipopeptides (LP; surfactins, iturins, fengycins) on microbial interactions. The objective was to investigate whether the presence of bacteria inhibits fungal growth and whether this inhibition is due to the release of bacterial metabolites, particularly LP. Selected endophytic bacterial strains with known plant-growth promoting potential were cultured in the presence of Fusarium oxysporum f.sp. strigae (Fos), which was applied as model fungal organism. The extracellular metabolome of tested bacteria, with a focus on LP, was characterized, and the inhibitory effect of bacterial LP on fungal growth was investigated. The results showed that Bacillus velezensis GB03 and FZB42, as well as B. subtilis BSn5 exhibited the strongest antagonism against Fos. Paraburkholderia phytofirmans PsJN, on the other hand, tended to have a slight, though non-significant growth promotion effect. Crude LP from strains GB03 and FZB42 had the strongest inhibitory effect on Fos, with a significant inhibition of spore germination and damage of the hyphal structure. Liquid chromatography tandem mass spectrometry revealed the production of several variants of iturin, fengycin, and surfactin LP families from strains GB03, FZB42, and BSn5, with varying intensity. Using plate cultures, bacillomycin D fractions were detected in higher abundance in strains GB03, FZB42, and BSn5 in the presence of Fos. Additionally, the presence of Fos in dual plate culture triggered an increase in bacillomycin D production from the Bacillus strains. The study demonstrated the potent antagonistic effect of certain Bacillus strains (i.e., GB03, FZB42, BSn5) on Fos development. Our findings emphasize the crucial role of microbial interactions in shaping the co-existence of microbial assemblages.


Assuntos
Antibiose , Antifúngicos , Bacillus , Fusarium , Lipopeptídeos , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo , Bacillus/metabolismo , Antifúngicos/farmacologia , Peptídeos Cíclicos/farmacologia , Interações Microbianas , Burkholderiaceae/crescimento & desenvolvimento , Burkholderiaceae/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento
13.
Microb Pathog ; 190: 106604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490458

RESUMO

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Assuntos
Alternaria , Bacillus subtilis , Fungicidas Industriais , Lipopeptídeos , Nitrilas , Doenças das Plantas , Solanum tuberosum , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Nitrilas/farmacologia , Lipopeptídeos/farmacologia , RNA Ribossômico 16S/genética , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Peptídeos Cíclicos/farmacologia
14.
Chemistry ; 30(1): e202303395, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877614

RESUMO

Biohybrid catalysts that operate in aqueous media are intriguing for systems chemistry. In this paper, we investigate whether control over the self-assembly of biohybrid catalysts can tune their properties. As a model, we use the catalytic activity of functional hybrid molecules consisting of a catalytic H-dPro-Pro-Glu tripeptide, derivatized with fatty acid and nucleobase moieties. This combination of simple biological components merged the catalytic properties of the peptide with the self-assembly of the lipid, and the structural ordering of the nucleobases. The biomolecule hybrids self-assemble in aqueous media into fibrillar assemblies and catalyze the reaction between butanal and nitrostyrene. The interactions between the nucleobases enhanced the order of the supramolecular structures and affected their catalytic activity and stereoselectivity. The results point to the significant control and ordering that nucleobases can provide in the self-assembly of biologically inspired supramolecular catalysts.


Assuntos
Lipopeptídeos , Água , Lipopeptídeos/química , Catálise
15.
Int Immunol ; 35(1): 7-17, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36053252

RESUMO

Complementarity-determining regions (CDRs) of αß T-cell receptors (TCRs) sense peptide-bound MHC (pMHC) complexes via chemical interactions, thereby mediating antigen specificity and MHC restriction. Flexible finger-like movement of CDR loops contributes to the establishment of optimal interactions with pMHCs. In contrast, peptide ligands captured in MHC molecules are considered more static because of the rigid hydrogen-bond network that stabilizes peptide ligands in the antigen-binding groove of MHC molecules. An array of crystal structures delineating pMHC complexes in TCR-docked and TCR-undocked forms is now available, which enables us to assess TCR engagement-induced conformational changes in peptide ligands. In this short review, we overview conformational changes in MHC class I-bound peptide ligands upon TCR docking, followed by those for CD1-bound glycolipid ligands. Finally, we analyze the co-crystal structure of the TCR:lipopeptide-bound MHC class I complex that we recently reported. We argue that TCR engagement-induced conformational changes markedly occur in lipopeptide ligands, which are essential for exposure of a primary T-cell epitope to TCRs. These conformational changes are affected by amino acid residues, such as glycine, that do not interact directly with TCRs. Thus, ligand recognition by specific TCRs involves not only T-cell epitopes but also non-epitopic amino acid residues. In light of their critical function, we propose to refer to these residues as non-epitopic residues affecting ligand plasticity and antigenicity (NR-PA).


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T , Ligantes , Receptores de Antígenos de Linfócitos T/química , Antígenos , Antígenos de Histocompatibilidade Classe I , Aminoácidos , Lipopeptídeos
16.
Brain Behav Immun ; 119: 333-350, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38561095

RESUMO

Neonatal sepsis remains one of the leading causes of mortality in newborns. Several brainstem-regulated physiological processes undergo disruption during neonatal sepsis. Mechanistic knowledge gaps exist at the interplay between metabolism and immune activation to brainstem neural circuits and pertinent physiological functions in neonates. To delineate this association, we induced systemic inflammation either by TLR4 (LPS) or TLR1/2 (PAM3CSK4) ligand administration in postnatal day 5 mice (PD5). Our findings show that LPS and PAM3CSK4 evoke substantial changes in respiration and metabolism. Physiological trade-offs led to hypometabolic-hypothermic responses due to LPS, but not PAM3CSK4, whereas to both TLR ligands blunted respiratory chemoreflexes. Neuroinflammatory pathways modulation in brainstem showed more robust effects in LPS than PAM3CSK4. Brainstem neurons, microglia, and astrocyte gene expression analyses showed unique responses to TLR ligands. PAM3CSK4 did not significantly modulate gene expression changes in GLAST-1 positive brainstem astrocytes. PD5 pups receiving PAM3CSK4 failed to maintain a prolonged metabolic state repression, which correlated to enhanced gasping latency and impaired autoresuscitation during anoxic chemoreflex challenges. In contrast, LPS administered pups showed no significant changes in anoxic chemoreflex. Electrophysiological studies from brainstem slices prepared from pups exposed to either TLR4 or PAM3CSK4 showed compromised transmission between preBötzinger complex and Hypoglossal as an exclusive response to the TLR1/2 ligand. Spatial gene expression analysis demonstrated a region-specific modulation of PAM3CSK4 within the raphe nucleus relative to other anatomical sites evaluated. Our findings suggest that metabolic changes due to inflammation might be a crucial tolerance mechanism for neonatal sepsis preserving neural control of breathing.


Assuntos
Animais Recém-Nascidos , Tronco Encefálico , Lipopolissacarídeos , Sepse Neonatal , Receptor 1 Toll-Like , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Animais , Camundongos , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 2 Toll-Like/metabolismo , Sepse Neonatal/metabolismo , Tronco Encefálico/metabolismo , Receptor 1 Toll-Like/metabolismo , Lipopeptídeos/farmacologia , Respiração/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Astrócitos/metabolismo , Masculino , Ligantes , Microglia/metabolismo , Feminino , Inflamação/metabolismo
17.
Biomacromolecules ; 25(2): 1205-1213, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38204421

RESUMO

The conformation and self-assembly of two pairs of model lipidated tripeptides in aqueous solution are probed using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). The palmitoylated lipopeptides comprise C16-YKK or C16-WKK (with two l-lysine residues) or their respective derivatives containing d-lysine (k), i.e., C16-Ykk and C16-Wkk. All four molecules self-assemble into spherical micelles which show structure factor effects in SAXS profiles due to intermicellar packing in aqueous solution. Consistent with micellar structures, the tripeptides in the coronas have a largely unordered conformation, as probed using spectroscopic methods. The molecules are found to have good cytocompatibility with fibroblasts at sufficiently low concentrations, although some loss of cell viability is noted at the highest concentrations examined (above the critical aggregation concentration of the lipopeptides, determined from fluorescence dye probe measurements). Preliminary tests also showed antimicrobial activity against both Gram-negative and Gram-positive bacteria.


Assuntos
Anti-Infecciosos , Lipopeptídeos , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Lisina , Espalhamento a Baixo Ângulo , Difração de Raios X , Anti-Infecciosos/farmacologia , Micelas
18.
Microb Cell Fact ; 23(1): 144, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773450

RESUMO

Fengycin is an important member of the lipopeptide family with a wide range of applications in the agricultural, food, medical and cosmetic industries. However, its commercial application is severely hindered by low productivity and high cost. Therefore, numerous studies have been devoted to improving the production of fengycin. We summarize these studies in this review with the aim of providing a reference and guidance for future researchers. This review begins with an overview of the synthesis mechanism of fengycin via the non-ribosomal peptide synthetases (NRPS), and then delves into the strategies for improving the fengycin production in recent years. These strategies mainly include fermentation optimization and metabolic engineering, and the metabolic engineering encompasses enhancement of precursor supply, application of regulatory factors, promoter engineering, and application of genome-engineering (genome shuffling and genome-scale metabolic network model). Finally, we conclude this review with a prospect of fengycin production.


Assuntos
Lipopeptídeos , Engenharia Metabólica , Engenharia Metabólica/métodos , Lipopeptídeos/biossíntese , Lipopeptídeos/metabolismo , Fermentação , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo
19.
Microb Cell Fact ; 23(1): 100, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566071

RESUMO

Surfactin is a cyclic hexalipopeptide compound, nonribosomal synthesized by representatives of the Bacillus subtilis species complex which includes B. subtilis group and its closely related species, such as B. subtilis subsp subtilis, B. subtilis subsp spizizenii, B. subtilis subsp inaquosorum, B. atrophaeus, B. amyloliquefaciens, B. velezensis (Steinke mSystems 6: e00057, 2021) It functions as a biosurfactant and signaling molecule and has antibacterial, antiviral, antitumor, and plant disease resistance properties. The Bacillus lipopeptides play an important role in agriculture, oil recovery, cosmetics, food processing and pharmaceuticals, but the natural yield of surfactin synthesized by Bacillus is low. This paper reviews the regulatory pathways and mechanisms that affect surfactin synthesis and release, highlighting the regulatory genes involved in the transcription of the srfAA-AD operon. The several ways to enhance surfactin production, such as governing expression of the genes involved in synthesis and regulation of surfactin synthesis and transport, removal of competitive pathways, optimization of media, and fermentation conditions were commented. This review will provide a theoretical platform for the systematic genetic modification of high-yielding strains of surfactin.


Assuntos
Bacillus , Bacillus/genética , Bacillus/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Óperon , Fermentação , Lipopeptídeos , Peptídeos Cíclicos
20.
Microb Cell Fact ; 23(1): 94, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539197

RESUMO

BACKGROUND: Surfactin, a green lipopeptide bio-surfactant, exhibits excellent surface, hemolytic, antibacterial, and emulsifying activities. However, a lack of clear understanding of the synthesis regulation mechanism of surfactin homologue components has hindered the customized production of surfactin products with different biological activities. RESULTS: In this study, exogenous valine and 2-methylbutyric acid supplementation significantly facilitated the production of C14-C15 surfactin proportions (up to 75% or more), with a positive correlation between the homologue proportion and fortified concentration. Subsequently, the branched-chain amino acid degradation pathway and the glutamate synthesis pathway are identified as critical pathways in regulating C14-C15 surfactin synthesis by transcriptome analysis. Overexpression of genes bkdAB and glnA resulted in a 1.4-fold and 1.3-fold increase in C14 surfactin, respectively. Finally, the C14-rich surfactin was observed to significantly enhance emulsification activity, achieving an EI24 exceeding 60% against hexadecane, while simultaneously reducing hemolytic activity. Conversely, the C15-rich surfactin demonstrated an increase in both hemolytic and antibacterial activities. CONCLUSION: This study presents the first evidence of a potential connection between surfactin homologue synthesis and the conversion of glutamate and glutamine, providing a theoretical basis for targeting the synthesis regulation and structure-activity relationships of surfactin and other lipopeptide compounds.


Assuntos
Ácidos Graxos , Tensoativos , Ácidos Graxos/metabolismo , Tensoativos/metabolismo , Ácido Glutâmico/metabolismo , Lipopeptídeos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Peptídeos Cíclicos/química , Bacillus subtilis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA