Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Cell ; 141(6): 1018-29, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20564790

RESUMO

Potassium channels embedded in cell membranes employ gates to regulate K+ current. While a specific constriction in the permeation pathway has historically been implicated in gating, recent reports suggest that the signature ion selectivity filter located in the outer membrane leaflet may be equally important. Inwardly rectifying K+ channels also control the directionality of flow, using intracellular polyamines to stem ion efflux by a valve-like action. This study presents crystallographic evidence of interdependent gates in the conduction pathway and reveals the mechanism of polyamine block. Reorientation of the intracellular domains, concomitant with activation, instigates polyamine release from intracellular binding sites to block the permeation pathway. Conformational adjustments of the slide helices, achieved by rotation of the cytoplasmic assembly relative to the pore, are directly correlated to the ion configuration in the selectivity filter. Ion redistribution occurs irrespective of the constriction, suggesting a more expansive role of the selectivity filter in gating than previously appreciated.


Assuntos
Proteínas de Bactérias/química , Magnetospirillum/química , Receptores KIR/química , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Fosfolipídeos/química , Poliaminas/química , Conformação Proteica , Receptores KIR/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
2.
Nano Lett ; 22(12): 4630-4639, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35686930

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) can be used as imaging agents to differentiate between normal and diseased tissue or track cell movement. Magnetic particle imaging (MPI) detects the magnetic properties of SPIONs, providing quantitative and sensitive image data. MPI performance depends on the size, structure, and composition of nanoparticles. Magnetotactic bacteria produce magnetosomes with properties similar to those of synthetic nanoparticles, and these can be modified by mutating biosynthetic genes. The use of Magnetospirillum gryphiswaldense, MSR-1 with a mamJ deletion, containing clustered magnetosomes instead of typical linear chains, resulted in improved MPI signal and resolution. Bioluminescent MSR-1 with the mamJ deletion were administered into tumor-bearing and healthy mice. In vivo bioluminescence imaging revealed the viability of MSR-1, and MPI detected signals in livers and tumors. The development of living contrast agents offers opportunities for imaging and therapy with multimodality imaging guiding development of these agents by tracking the location, viability, and resulting biological effects.


Assuntos
Magnetossomos , Magnetospirillum , Animais , Proteínas de Bactérias/análise , Meios de Contraste/análise , Meios de Contraste/farmacologia , Fenômenos Magnéticos , Magnetossomos/química , Magnetospirillum/química , Magnetospirillum/genética , Camundongos
3.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923565

RESUMO

Magnetosomes are membrane-enclosed iron oxide crystals biosynthesized by magnetotactic bacteria. As the biomineralization of bacterial magnetosomes can be genetically controlled, they have become promising nanomaterials for bionanotechnological applications. In the present paper, we explore a novel application of magnetosomes as nanotool for manipulating axonal outgrowth via stretch-growth (SG). SG refers to the process of stimulation of axonal outgrowth through the application of mechanical forces. Thanks to their superior magnetic properties, magnetosomes have been used to magnetize mouse hippocampal neurons in order to stretch axons under the application of magnetic fields. We found that magnetosomes are avidly internalized by cells. They adhere to the cell membrane, are quickly internalized, and slowly degrade after a few days from the internalization process. Our data show that bacterial magnetosomes are more efficient than synthetic iron oxide nanoparticles in stimulating axonal outgrowth via SG.


Assuntos
Axônios/metabolismo , Magnetossomos/metabolismo , Crescimento Neuronal , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Transporte Biológico , Células Cultivadas , Feminino , Hipocampo/citologia , Magnetospirillum/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Mecânico
4.
J Am Chem Soc ; 142(46): 19551-19557, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33166133

RESUMO

Biomineralization is mediated by specialized proteins that guide and control mineral sedimentation. In many cases, the active regions of these biomineralization proteins are intrinsically disordered. High-resolution structures of these proteins while they interact with minerals are essential for understanding biomineralization processes and the function of intrinsically disordered proteins (IDPs). Here we used the cavity of ferritin as a nanoreactor where the interaction between M6A, an intrinsically disordered iron-binding domain, and an iron oxide particle was visualized at high resolution by cryo-EM. Taking advantage of the differences in the electron-dose sensitivity of the protein and the iron oxide particles, we developed a method to determine the irregular shape of the particles found in our density maps. We found that the folding of M6A correlates with the detection of mineral particles in its vicinity. M6A interacts with the iron oxide particles through its C-terminal side, resulting in the stabilization of a helix at its N-terminal side. The stabilization of the helix at a region that is not in direct contact with the iron oxide particle demonstrates the ability of IDPs to respond to signals from their surroundings by conformational changes. These findings provide the first glimpse toward the long-suspected mechanism for biomineralization protein control over mineral microstructure, where unstructured regions of these proteins become more ordered in response to their interaction with the nascent mineral particles.


Assuntos
Apoferritinas/química , Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Compostos Férricos/química , Proteínas Intrinsicamente Desordenadas/química , Peptídeos/química , Sítios de Ligação , Biomineralização , Nanopartículas Magnéticas de Óxido de Ferro/química , Magnetospirillum/química , Modelos Moleculares , Tamanho da Partícula , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
5.
Anal Chem ; 92(1): 1114-1121, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31763820

RESUMO

Bacterial magnetic particles (BMPs) are an attractive carrier material for immunoassays because of their nanoscale size, dispersal ability, and membrane-bound structure. Antitetrabromobisphenol-A (TBBPA) nanobodies (Nbs) in the form of monovalence (Nb1), bivalence (Nb2), and trivalence (Nb3) were biotinylated and immobilized onto streptavidin (SA)-derivatized BMPs to construct the complexes of BMP-SA-Biotin-Nb1, -Nb2, and -Nb3, respectively. An increasing order of binding capability of BMP-SA-Biotin-Nb1, -Nb2, and -Nb3 to TBBPA was observed. These complexes showed high resilience to temperature (90 °C), methanol (100%), high pH (12), and strong ionic strength (1.37 M NaCl). A BMP-SA-Biotin-Nb3-based enzyme linked immunosorbent assay (ELISA) for TBBPA dissolved in methanol was developed, showing a half-maximum inhibition concentration (IC50) of 0.42 ng mL-1. TBBPA residues in landfill leachate, sewage, and sludge samples determined by this assay were in a range of

Assuntos
Anticorpos Imobilizados/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Magnetossomos/química , Bifenil Polibromatos/análise , Anticorpos de Domínio Único/imunologia , Poluentes Químicos da Água/análise , Sequência de Aminoácidos , Óxido Ferroso-Férrico/química , Retardadores de Chama/análise , Ferro/química , Limite de Detecção , Magnetospirillum/química , Bifenil Polibromatos/imunologia , Esgotos/análise , Sulfetos/química , Poluentes Químicos da Água/imunologia
6.
Nanomedicine ; 23: 102084, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454552

RESUMO

Although chemically synthesized ferro/ferrimagnetic nanoparticles have attracted great attention in cancer theranostics, they lack radio-enhancement efficacy due to low targeting and internalization ability. Herein, we investigated the potential of RGD-tagged magnetosomes, bacterial biogenic magnetic nanoparticles naturally coated with a biological membrane and genetically engineered to express an RGD peptide, as tumor radioenhancers for conventional radiotherapy and proton therapy. Although native and RGD-magnetosomes similarly enhanced radiation-induced damage to plasmid DNA, RGD-magnetoprobes were able to boost the efficacy of radiotherapy to a much larger extent than native magnetosomes both on cancer cells and in tumors. Combined to magnetosomes@RGD, proton therapy exceeded the efficacy of X-rays at equivalent doses. Also, increased secondary emissions were measured after irradiation of magnetosomes with protons versus photons. Our results indicate the therapeutic advantage of using functionalized magnetoparticles to sensitize tumors to both X-rays and protons and strengthen the case for developing biogenic magnetoparticles for multimodal nanomedicine in cancer therapy.


Assuntos
Magnetossomos/química , Magnetospirillum/química , Neoplasias Experimentais/radioterapia , Oligopeptídeos , Radiossensibilizantes , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Terapia com Prótons , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Terapia por Raios X
7.
Biotechnol Appl Biochem ; 66(3): 290-297, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30600567

RESUMO

Bacterial magnetosomes (BMs) are used as carriers for antibodies, enzymes, and nucleic acids. This study aimed to demonstrate the clinical utility of BMs derived from Magnetospirillum gryphiswaldense for use in anti-tumor immunotherapy. Bis(sulfosuccinimidyl) suberate (BS3) was used to prepare BM-anti-4-1BB antibody complexes. We used syngeneic TC-1 mouse models of cancer to investigate whether BMs combined with an anti-4-1BB agonistic antibodies could enhance the therapeutic effects of anti-4-1BB antibodies in localized disease settings. Anti-4-1BB antibodies were combined with purified BMs at a concentration of 168 mg antibody per milligram BM (mg IgG/mg BM) using BS3. The anti-4-1BB antibody-coupled BMs (BM-Ab complexes) and control BMs displayed similar morphologies and measurements when examined by transmission electron microscope (TEM). In a mouse tumor model, intravenous injection of BM-Abs combined with magnetic treatment resulted in greater tumor protection than did other treatment methods (P < 0.05). These results demonstrate the in vivo anti-tumor properties of BM-Abs complexes. The coupling of anti-4-1BB antibodies to magnetosomes may have potential for clinical application to antitumor antibody therapy.


Assuntos
Anticorpos/farmacologia , Antineoplásicos/farmacologia , Magnetossomos/química , Magnetospirillum/química , Animais , Anticorpos/química , Anticorpos/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/isolamento & purificação , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Propriedades de Superfície
8.
J Nanobiotechnology ; 17(1): 37, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30841927

RESUMO

BACKGROUND: Magnetosomes (also called bacterial magnetic nanoparticles; BMPs) are biomembrane-coated nanoparticles synthesized by magnetotactic bacteria (MTB). Engineered BMPs fused to protein A (termed ∆F-BMP-FA) bind antibodies (Abs) automatically, and thus provide a series of potential advantages. However, no report so far has systematically evaluated functional applicability of genetically engineered BMPs. RESULTS: We evaluated properties of ∆F-BMP-FA, and developed/optimized culture methods for host strain Magnetospirillum gryphiswaldense ΔF-FA, ∆F-BMP-FA extraction conditions, conditions for Ab conjugation to ∆F-BMP-FA surface, and procedures for antigen detection using ∆F-BMP-FA/Ab complexes (termed BMP-A-Ab). Fed-batch culture for 36 h in a 42-L fermentor resulted in yields (dry weight) of 2.26 g/L for strain ΔF-FA and 62 mg/L for ∆F-BMP-FA. Optimal wash cycle number for ∆F-BMP-FA purification was seven, with magnetic separation following each ultrasonication step. Fusion of protein A to BMPs resulted in ordered arrangement of Abs on BMP surface. Linkage rate 962 µg Ab per mg ∆F-BMP-FA was achieved. BMP-A-Ab were tested for detection of pathogen (Vibrio parahaemolyticus; Vp) surface antigen and hapten (gentamicin sulfate). Maximal Vp capture rate for BMP-A-Ab was 90% (higher than rate for commercial immunomagnetic beads), and detection sensitivity was 5 CFU/mL. ∆F-BMP-FA also bound Abs from crude mouse ascites to form complex. Lowest gentamicin sulfate detection line for BMP-A-Ab was 0.01 ng/mL, 400-fold lower than that for double Ab sandwich ELISA, and gentamicin sulfate recovery rate for BMP-A-Ab was 93.2%. CONCLUSION: Our findings indicate that engineered BMPs such as ∆F-BMP-FA are inexpensive, eco-friendly alternatives to commercial immunomagnetic beads for detection or diagnostic immunoassays, and have high Ab-conjugation and antigen-adsorption capacity.


Assuntos
Nanopartículas de Magnetita/química , Magnetossomos/química , Magnetospirillum/química , Proteína Estafilocócica A/química , Animais , Anticorpos/química , Antígenos de Bactérias/análise , Reatores Biológicos , Ensaio de Imunoadsorção Enzimática , Gentamicinas/análise , Haptenos/análise , Limite de Detecção , Camundongos , Engenharia de Proteínas , Propriedades de Superfície , Vibrio parahaemolyticus/isolamento & purificação
9.
J Nanobiotechnology ; 17(1): 126, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870376

RESUMO

BACKGROUND: An important but rarely addressed question in nano-therapy is to know whether bio-degraded nanoparticles with reduced sizes and weakened heating power are able to maintain sufficient anti-tumor activity to fully eradicate a tumor, hence preventing tumor re-growth. To answer it, we studied magnetosomes, which are nanoparticles synthesized by magnetotactic bacteria with sufficiently large sizes (~ 30 nm on average) to enable a follow-up of nanoparticle sizes/heating power variations under two different altering conditions that do not prevent anti-tumor activity, i.e. in vitro cellular internalization and in vivo intra-tumor stay for more than 30 days. RESULTS: When magnetosomes are internalized in U87-Luc cells by being incubated with these cells during 24 h in vitro, the dominant magnetosome sizes within the magnetosome size distribution (DMS) and specific absorption rate (SAR) strongly decrease from DMS ~ 40 nm and SAR ~ 1234 W/gFe before internalization to DMS ~ 11 nm and SAR ~ 57 W/gFe after internalization, a behavior that does not prevent internalized magnetosomes to efficiently destroy U87-Luc cell, i.e. the percentage of U87-Luc living cells incubated with magnetosomes decreases by 25% between before and after alternating magnetic field (AMF) application. When 2 µl of a suspension containing 40 µg of magnetosomes are administered to intracranial U87-Luc tumors of 2 mm3 and exposed (or not) to 15 magnetic sessions (MS), each one consisting in 30 min application of an AMF of 27 mT and 198 kHz, DMS and SAR decrease between before and after the 15 MS from ~ 40 nm and ~ 4 W/gFe down to ~ 29 nm and ~ 0 W/gFe. Although the magnetosome heating power is weakened in vivo, i.e. no measurable tumor temperature increase is observed after the sixth MS, anti-tumor activity remains persistent up to the 15th MS, resulting in full tumor disappearance among 50% of treated mice. CONCLUSION: Here, we report sustained magnetosome anti-tumor activity under conditions of significant magnetosome size reduction and complete loss of magnetosome heating power.


Assuntos
Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Nanopartículas de Magnetita/química , Magnetossomos/química , Magnetospirillum/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Calefação , Humanos , Hipertermia Induzida , Campos Magnéticos , Camundongos , Camundongos Nus , Tamanho da Partícula , Nanomedicina Teranóstica/métodos , Distribuição Tecidual
10.
Proc Natl Acad Sci U S A ; 113(47): 13396-13401, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821762

RESUMO

Magnetotactic bacteria produce iron-rich magnetic nanoparticles that are enclosed by membrane invaginations to form magnetosomes so they are able to sense and act upon Earth's magnetic field. In Magnetospirillum and other magnetotactic bacteria, to combine their magnetic moments, magnetosomes align along filaments formed by a bacterial actin homolog, MamK. Here, we present the crystal structure of a nonpolymerizing mutant of MamK from Magnetospirillum magneticum AMB-1 at 1.8-Å resolution, revealing its close similarity to actin and MreB. The crystals contain AMPPNP-bound monomeric MamK in two different conformations. To investigate conformational changes associated with polymerization, we used unmodified MamK protein and cryo-EM with helical 3D reconstruction in RELION to obtain a density map and a fully refined atomic model of MamK in filamentous form at 3.6-Å resolution. The filament is parallel (polar) double-helical, with a rise of 52.2 Å and a twist of 23.8°. As shown previously and unusually for actin-like filaments, the MamK subunits from each of the two strands are juxtaposed, creating an additional twofold axis along the filament. Compared with monomeric MamK, ADP-bound MamK in the filament undergoes a conformational change, rotating domains I and II against each other to further close the interdomain cleft between subdomains IB and IIB. The domain movement causes several loops to close around the nucleotide-binding pocket. Glu-143, a key residue for catalysis coordinating the magnesium ion, moves closer, presumably switching nucleotide hydrolysis upon polymerization-one of the hallmarks of cytomotive filaments of the actin type.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Actinas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Magnetospirillum/química , Polimerização , Citoesqueleto de Actina/química , Cristalografia por Raios X , Modelos Moleculares , Subunidades Proteicas/química , Raios X
11.
Biochem Biophys Res Commun ; 496(2): 719-725, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29355529

RESUMO

The gene therapy of cancer, due to the limit of its efficiency and safety, has not been widely used in clinical. Recently, bacterial magnetic particles (BMPs), which are membrane-bound nanocrystals found in magnetotactic bacteria, have been exploited as a new gene delivery system. However, its application on gene therapy remains to be explored. In our previous study, we found that a combination of cecropin B (ABPs) and apoptin (VP3) could serve as an effective gene therapeutic agent. Thus, in this study, we used BMPs to deliver the co-expression plasmid of these two gene, namely pVAX1-VA, and evaluated its therapeutic effect on human hepatocellular carcinoma (HepG2). Our results showed that BMPs significantly improved the efficiency of gene transfection (almost 3-fold than Lipofectamine 2000 at 48 h, P < .001), which led to stronger apoptosis (in a peak almost 2-fold than Lipofectamine 2000-pVAX1-VA, P < .01) and growth inhibition of HepG2 cells. More importantly, compared with Lipofectamine 2000-pVAX1-VA group, BMP-pVAX1-VA strikingly inhibited tumor growth (0.60 ±â€¯0.09 g vs. 0.88 ±â€¯0.11 g, P < .05) in nude mouse tumor models and increased the tumor-infiltrating lymphocytes considerably without apparent cytotoxicity. These findings suggest that BMPs could be an attractive gene delivery system for gene therapy and provide a potential available treatment for human hepatocellular carcinoma and maybe some other kinds of tumors.


Assuntos
Proteínas do Capsídeo/genética , Carcinoma Hepatocelular/terapia , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Proteínas de Insetos/genética , Neoplasias Hepáticas/terapia , Magnetossomos/química , Magnetospirillum/química , Animais , Antineoplásicos/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Portadores de Fármacos/química , Feminino , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Transfecção/métodos
12.
Bioconjug Chem ; 29(5): 1756-1762, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29648798

RESUMO

Thermoresponsive magnetic nanoparticles (MNPs) were synthesized using a magnetosome display system. An elastin-like polypeptide decamer of VPGVG (ELP10), which is hydrophobic above the transition temperature ( Tt) and can form an insoluble aggregation, was immobilized on biogenic MNPs in the magnetotactic bacterium, Magnetospirillum magneticum AMB-1. It was suggested that hydrophobicity of the MNP surface increased at 60 °C compared with 20 °C by the immobilization of ELP10. Size distribution analysis indicated that the immobilization of ELP10 onto MNPs induced the increased hydrophobicity with increasing temperatures up to 60 °C, promoting aggregation of the particles by hydrophobic and magnetic interactions. These results suggest that the acceleration of magnetic collection at 60 °C was caused by particle aggregation promoted by hydrophobic interaction between ELP-MNPs. Furthermore, the immobilization of ELP on MNPs gave a quick magnetic collection at 60 °C by external magnetic field. The thermoresponsive properties will further expand the utility of biotechnological applications of biogenic MNPs.


Assuntos
Elastina/química , Nanopartículas de Magnetita/química , Magnetossomos/química , Magnetospirillum/química , Peptídeos/química , Elastina/genética , Proteínas Imobilizadas/química , Proteínas Imobilizadas/genética , Campos Magnéticos , Magnetossomos/genética , Magnetossomos/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Peptídeos/genética , Temperatura , Transformação Genética , Temperatura de Transição
13.
Acc Chem Res ; 50(4): 832-841, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28191927

RESUMO

The wide range of fascinating supramolecular architectures found in nature, from DNA double helices to giant protein shells, inspires researchers to mimic the diverse shapes and functions of natural systems. Thus, a variety of artificial molecular platforms have been developed by assembling DNA-, peptide-, and protein-based building blocks for medicinal and biological applications. There has also been a significant interest in the research of non-natural oligomers (i.e., foldamers) that fold into well-defined secondary structures analogous to those found in proteins, because the assemblies of foldamers are expected not only to form biomimetic supramolecular architectures that resemble those of nature but also to display unique functions and unprecedented topologies at the same time due to their different folding propensities from those of natural building blocks. Foldamer-based supramolecular architectures have been reported in the form of nanofibers, nanochannels, nanosheets, and finite three-dimensional (3D) shapes. We have developed a new class of crystalline peptidic materials termed "foldectures" (a compound of foldamer and architecture) with unprecedented topological complexity derived from the rapid and nonequilibrium aqueous phase self-assembly of foldamers. In this Account, we discuss the morphological features, molecular packing structures, physical properties, and potential applications of foldectures. Foldectures exhibit well-defined, microscale, homogeneous, and finite structures with unique morphologies such as windmill, tooth, and trigonal bipyramid shapes. The symmetry elements of the morphologies vary with the foldamer building blocks and are retained upon surfactant-assisted shape evolution. Structural characterization by powder X-ray diffraction (PXRD) revealed the molecular packing structures, suggesting how the foldamer building blocks assembled in the 3D structure. The analysis by PXRD showed that intermolecular hydrogen bonding connects foldamers in head-to-tail fashion, while hydrophobic attraction plays a role in arranging foldamers in parallel, antiparallel, or cholesteric phase-like manners. Each packing structure from the foldamer building blocks possesses distinct symmetry elements that are directly expressed in the 3D morphologies. Because of their well-ordered molecular packing structures, foldectures exhibit facet-dependent surface characteristics and anisotropic magnetic susceptibility. The facet-dependent surface property was harnessed to synthesize anisotropic metal nanoparticle-foldecture composites, and the anisotropic magnetic susceptibility enables foldectures to undergo real-time alignment and rotating motion in response to an external magnetic field. By means of their unusual shapes and properties, foldectures have been demonstrated to mimic the functionality of natural systems such as magnetosomes or carboxysomes. Further development of foldectures using higher-order building units, complicated packing motifs, and functional moieties could provide a novel biocompatible platform rivaling 3D biological architectures in natural systems.


Assuntos
Peptídeos/química , Magnetospirillum/química , Modelos Moleculares , Tamanho da Partícula , Peptídeos/metabolismo , Difração de Pó , Conformação Proteica , Dobramento de Proteína
14.
Proc Natl Acad Sci U S A ; 112(6): 1699-703, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25624469

RESUMO

There are longstanding and ongoing controversies about the abiotic or biological origin of nanocrystals of magnetite. On Earth, magnetotactic bacteria perform biomineralization of intracellular magnetite nanoparticles under a controlled pathway. These bacteria are ubiquitous in modern natural environments. However, their identification in ancient geological material remains challenging. Together with physical and mineralogical properties, the chemical composition of magnetite was proposed as a promising tracer for bacterial magnetofossil identification, but this had never been explored quantitatively and systematically for many trace elements. Here, we determine the incorporation of 34 trace elements in magnetite in both cases of abiotic aqueous precipitation and of production by the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1. We show that, in biomagnetite, most elements are at least 100 times less concentrated than in abiotic magnetite and we provide a quantitative pattern of this depletion. Furthermore, we propose a previously unidentified method based on strontium and calcium incorporation to identify magnetite produced by magnetotactic bacteria in the geological record.


Assuntos
Biomarcadores/análise , Nanopartículas de Magnetita/análise , Magnetospirillum/química , Magnetospirillum/crescimento & desenvolvimento , Oligoelementos/análise , Análise de Variância , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Fermentação , Óxido Ferroso-Férrico/síntese química , Magnetospirillum/metabolismo , Microscopia Eletrônica de Transmissão , Oligoelementos/metabolismo
15.
Microb Cell Fact ; 16(1): 216, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183380

RESUMO

BACKGROUND: Gene therapy has gained an increasing interest in its anti-tumor efficiency. However, numerous efforts are required to promote them to clinics. In this study, a novel and efficient delivery platform based on bacterial magnetosomes (BMs) were developed, and the efficiency of BMs in delivering small interfering ribonucleic acid (siRNA) as well as antiproliferative effects in vitro were investigated. RESULTS: Initially, we optimized the nitrogen/phosphate ratio and the BMs/siRNA mass ratio as 20 and 1:2, respectively, to prepare the BMs-PEI-siRNA composites. Furthermore, the prepared nanoconjugates were systematically characterized. The dynamic light scattering measurements indicated that the particle size and the zeta potential of BMs-PEI-siRNA are 196.5 nm and 49.5 ± 3.77 mV, respectively, which are optimum for cell internalization. Moreover, the confocal laser scanning microscope observations showed that these composites were at a proximity to the nucleus and led to an effective silencing effect. BMs-PEI-siRNA composites efficiently inhibited the growth of HeLa cells in a dose-as well as time-dependent manner. Eventually, a dual stain assay using acridine orange/ethidium bromide, revealed that these nanocomposites induced late apoptosis in cancer cells. CONCLUSIONS: A novel and efficient gene delivery system based on BMs was successfully produced for cancer therapy, and these innovative carriers will potentially find widespread applications in the pharmaceutical field.


Assuntos
Inativação Gênica , Técnicas de Transferência de Genes , Magnetossomos/química , RNA Interferente Pequeno/metabolismo , Nanomedicina Teranóstica/métodos , Apoptose , Linhagem Celular Tumoral , Difusão Dinâmica da Luz/métodos , Terapia Genética/métodos , Células HeLa , Humanos , Magnetospirillum/química , Microscopia Confocal , Neoplasias/terapia , Tamanho da Partícula , RNA Interferente Pequeno/genética , Transfecção , Células Tumorais Cultivadas
16.
J Nanobiotechnology ; 15(1): 74, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29041937

RESUMO

BACKGROUND: Biologics magnetics nanoparticles, magnetosomes, attract attention because of their magnetic characteristics and potential applications. The aim of the present study was to develop and characterize novel magnetosomes, which were extracted from magnetotactic bacteria, purified to produce apyrogen magnetosome minerals, and then coated with Chitosan, Neridronate, or Polyethyleneimine. It yielded stable magnetosomes designated as M-Chi, M-Neri, and M-PEI, respectively. Nanoparticle biocompatibility was evaluated on mouse fibroblast cells (3T3), mouse glioblastoma cells (GL-261) and rat glioblastoma cells (RG-2). We also tested these nanoparticles for magnetic hyperthermia treatment of tumor in vitro on two tumor cell lines GL-261 and RG-2 under the application of an alternating magnetic field. Heating, efficacy and internalization properties were then evaluated. RESULTS: Nanoparticles coated with chitosan, polyethyleneimine and neridronate are apyrogen, biocompatible and stable in aqueous suspension. The presence of a thin coating in M-Chi and M-PEI favors an arrangement in chains of the magnetosomes, similar to that observed in magnetosomes directly extracted from magnetotactic bacteria, while the thick matrix embedding M-Neri leads to structures with an average thickness of 3.5 µm2 per magnetosome mineral. In the presence of GL-261 cells and upon the application of an alternating magnetic field, M-PEI and M-Chi lead to the highest specific absorption rates of 120-125 W/gFe. Furthermore, while M-Chi lead to rather low rates of cellular internalization, M-PEI strongly associate to cells, a property modulated by the application of an alternating magnetic field. CONCLUSIONS: Coating of purified magnetosome minerals can therefore be chosen to control the interactions of nanoparticles with cells, organization of the minerals, as well as heating and cytotoxicity properties, which are important parameters to be considered in the design of a magnetic hyperthermia treatment of tumor.


Assuntos
Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/uso terapêutico , Glioma/terapia , Magnetossomos/química , Nanopartículas/química , Nanopartículas/uso terapêutico , Células 3T3 , Animais , Linhagem Celular Tumoral , Quitosana/química , Quitosana/uso terapêutico , Difosfonatos/química , Difosfonatos/uso terapêutico , Hipertermia Induzida , Campos Magnéticos , Magnetospirillum/química , Camundongos , Polietilenoimina/química , Polietilenoimina/uso terapêutico , Ratos
17.
Proc Natl Acad Sci U S A ; 111(45): 16094-9, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349410

RESUMO

Magnetotactic bacteria synthesize highly uniform intracellular magnetite nanoparticles through the action of several key biomineralization proteins. These proteins are present in a unique lipid-bound organelle (the magnetosome) that functions as a nanosized reactor in which the particle is formed. A master regulator protein of nanoparticle formation, magnetosome membrane specific F (MmsF), was recently discovered. This predicted integral membrane protein is essential for controlling the monodispersity of the nanoparticles in Magnetospirillum magneticum strain AMB-1. Two MmsF homologs sharing over 60% sequence identity, but showing no apparent impact on particle formation, were also identified in the same organism. We have cloned, expressed, and used these three purified proteins as additives in synthetic magnetite precipitation reactions. Remarkably, these predominantly α-helical membrane spanning proteins are unusually highly stable and water-soluble because they self-assemble into spherical aggregates with an average diameter of 36 nm. The MmsF assembly appears to be responsible for a profound level of control over particle size and iron oxide (magnetite) homogeneity in chemical precipitation reactions, consistent with its indicated role in vivo. The assemblies of its two homologous proteins produce imprecise various iron oxide materials, which is a striking difference for proteins that are so similar to MmsF both in sequence and hierarchical structure. These findings show MmsF is a significant, previously undiscovered, protein additive for precision magnetite nanoparticle production. Furthermore, the self-assembly of these proteins into discrete, soluble, and functional "proteinosome" structures could lead to advances in fields ranging from membrane protein production to drug delivery applications.


Assuntos
Proteínas de Bactérias/química , Nanopartículas de Magnetita/química , Magnetossomos/química , Magnetospirillum/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nanopartículas de Magnetita/ultraestrutura , Magnetossomos/genética , Magnetossomos/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Tamanho da Partícula , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
J Bacteriol ; 198(20): 2794-802, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27481925

RESUMO

UNLABELLED: The magnetosome is an organelle specialized for inorganic magnetite crystal synthesis in magnetotactic bacteria. The complex mechanism of magnetosome formation is regulated by magnetosome proteins in a stepwise manner. Protein localization is a key step for magnetosome development; however, a global study of magnetosome protein localization remains to be conducted. Here, we comparatively analyzed the subcellular localization of a series of green fluorescent protein (GFP)-tagged magnetosome proteins. The protein localizations were categorized into 5 groups (short-length linear, middle-length linear, long-length linear, cell membrane, and intracellular dispersing), which were related to the protein functions. Mms6, which regulates magnetite crystal growth, localized along magnetosome chain structures under magnetite-forming (microaerobic) conditions but was dispersed in the cell under nonforming (aerobic) conditions. Correlative fluorescence and electron microscopy analyses revealed that Mms6 preferentially localized to magnetosomes enclosing magnetite crystals. We suggest that a highly organized spatial regulation mechanism controls magnetosome protein localization during magnetosome formation in magnetotactic bacteria. IMPORTANCE: Magnetotactic bacteria synthesize magnetite (Fe3O4) nanocrystals in a prokaryotic organelle called the magnetosome. This organelle is formed using various magnetosome proteins in multiple steps, including vesicle formation, magnetosome alignment, and magnetite crystal formation, to provide compartmentalized nanospaces for the regulation of iron concentrations and redox conditions, enabling the synthesis of a morphologically controlled magnetite crystal. Thus, to rationalize the complex organelle development, the localization of magnetosome proteins is considered to be highly regulated; however, the mechanisms remain largely unknown. Here, we performed comparative localization analysis of magnetosome proteins that revealed the presence of a spatial regulation mechanism within the linear structure of magnetosomes. This discovery provides evidence of a highly regulated protein localization mechanism for this bacterial organelle development.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Aerobiose , Proteínas de Bactérias/genética , Cristalização , Óxido Ferroso-Férrico/química , Ferro/metabolismo , Magnetossomos/química , Magnetossomos/genética , Magnetospirillum/química , Magnetospirillum/genética , Oxirredução , Transporte Proteico
19.
Phys Chem Chem Phys ; 18(18): 12768-73, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27101014

RESUMO

In light of the coarse-grained Monte Carlo numerical simulation method, the magnetosome chain stability of magnetotactic bacteria is analysed and discussed. This discrete chain of magnetic nanoparticles, encapsulated in a lipid membrane and flanked by filaments, orients bacteria in the geomagnetic field as a compass needle. Each magnetosome is a magnetite or greigite nanocrystal encapsulated in a soft lipid shell. This structure is modelled by a hard core with a magnetic dipole embedded and a cloud of electric dipoles which are able to move and rotate over the magnetic spherical core. In the present paper, some of the many possibilities of the model by varying the control parameters of the system are explored. Magnetic particles arrange in long linear clusters when the coating is removed. However, linear but twisted chains of magnetic particles emerge when there are electric dipoles in the coating shell. A unique linear and straight chain is not observed in any 3D numerical simulation; this result is in agreement with a real living system of bacteria in a geomagnetic field when proteins that form the filament are absent. Finally, the stability and magnetization of a magnetosome chain of 30 beads in one dimension set up are discussed resembling a real chain. The results suggest that a magnetosome chain not only orients bacteria but also should be considered as a potential storage of elastic energy.


Assuntos
Magnetossomos/química , Magnetospirillum/química , Imãs/química , Simulação por Computador , Elasticidade , Campos Magnéticos , Nanopartículas de Magnetita/química , Magnetospirillum/citologia , Modelos Biológicos , Método de Monte Carlo
20.
J Biol Chem ; 289(1): 143-51, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24257749

RESUMO

KirBac channels are prokaryotic homologs of mammalian inwardly rectifying potassium (Kir) channels, and recent structures of KirBac3.1 have provided important insights into the structural basis of gating in Kir channels. In this study, we demonstrate that KirBac3.1 channel activity is strongly pH-dependent, and we used x-ray crystallography to determine the structural changes that arise from an activatory mutation (S205L) located in the cytoplasmic domain (CTD). This mutation stabilizes a novel energetically favorable open conformation in which changes at the intersubunit interface in the CTD also alter the electrostatic potential of the inner cytoplasmic cavity. These results provide a structural explanation for the activatory effect of this mutation and provide a greater insight into the role of the CTD in Kir channel gating.


Assuntos
Proteínas de Bactérias/química , Magnetospirillum/química , Canais de Potássio Corretores do Fluxo de Internalização/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico/fisiologia , Magnetospirillum/genética , Magnetospirillum/metabolismo , Mutação de Sentido Incorreto , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA