RESUMO
The treatment of diabetic ulcer (DU) remains a major clinical challenge due to the complex wound-healing milieu that features chronic wounds, impaired angiogenesis, persistent pain, bacterial infection, and exacerbated inflammation. A strategy that effectively targets all these issues has proven elusive. Herein, we use a smart black phosphorus (BP)-based gel with the characteristics of rapid formation and near-infrared light (NIR) responsiveness to address these problems. The in situ sprayed BP-based gel could act as 1) a temporary, biomimetic "skin" to temporarily shield the tissue from the external environment and accelerate chronic wound healing by promoting the proliferation of endothelial cells, vascularization, and angiogenesis and 2) a drug "reservoir" to store therapeutic BP and pain-relieving lidocaine hydrochloride (Lid). Within several minutes of NIR laser irradiation, the BP-based gel generates local heat to accelerate microcirculatory blood flow, mediate the release of loaded Lid for "on-demand" pain relief, eliminate bacteria, and reduce inflammation. Therefore, our study not only introduces a concept of in situ sprayed, NIR-responsive pain relief gel targeting the challenging wound-healing milieu in diabetes but also provides a proof-of-concept application of BP-based materials in DU treatment.
Assuntos
Pé Diabético/terapia , Fósforo/administração & dosagem , Terapia Fototérmica , Materiais Inteligentes/administração & dosagem , Cicatrização/efeitos dos fármacos , Anestésicos Locais/administração & dosagem , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/efeitos dos fármacos , Fibrinogênio/administração & dosagem , Géis , Células Endoteliais da Veia Umbilical Humana , Humanos , Lidocaína/administração & dosagem , Masculino , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica/efeitos dos fármacos , Trombina/administração & dosagemRESUMO
Ingestible smart pills have the potential to be a powerful clinical tool in the diagnosis and treatment of gastrointestinal disease. Though examples of this technology, such as capsule endoscopy, have been successfully translated from the lab into clinically used products, there are still numerous challenges that need to be overcome. This review gives an overview of the research being done in the area of ingestible smart pills and reports on the technical challenges in this field.